József Sándor

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 22, 2016, Number 2, Pages 54—57

**Download full paper: PDF, 126 Kb**

## Details

### Authors and affiliations

József Sándor

*Babeș-Bolyai University, Department of Mathematics
Cluj, Romania
*

### Abstract

We show that the Gregory series combined with Newton’s binomial expansion give a natural approach to the logarithmic mean inequalities.

### Keywords

- Gregory series
- Newton binomial series
- Logarithmic mean

### AMS Classification

- 26D15
- 26D99
- 26A06

### References

- Alzer, H. (1986) Ungleichungen fur Mittelwerte, Arch. Math. (Basel), 47, 422–426.
- Carlson, B. C. (1972) The logarithmic mean, Amer. Math. Monthly, 79, 615–618. 56
- Hairer, E., & Wanner, G. (2008) Analysis by its history, Springer Verlag.
- Leach, E. B., & Sholander, M. C. (1983) Extended mean values II, J. Math. Anal. Appl., 92, 207–223.
- Lin, T. P. (1974) The power mean and the logarithmic mean, Amer. Math. Monthly, 81, 879–883.
- Sándor, J. (1988) Some integral inequalities, Elem. Math., 43, 177–180.
- Sándor, J. (1990) On the identric and logarithmic means, Aequationes Math., 40, 261–270.
- Sándor, J. (1991) A note on some inequalities for means, Arch. Math. (Basel), 56, 471–473.
- Sándor, J. (1995) On certain inequalities for means, J. Math. Anal. Appl., 189, 402–606.
- Sándor, J. (2008) Some simple integral inequalities, Octogon Math. Mag., 16(2), 925–933.
- Sándor, J. (2012) On a logarithmic inequality, Bull. Intern. Math. Virtual Inst., 2, 219–221.
- Sándor, J. (2013) New refinements of two inequalities for means, J. Math. Ineq., 7(2), 251– 254.
- Sándor, J. (2014) Buniakowsky and the logarithmic mean inequalities, RGMIA Research Report Collection, 17(5), 1–5.
- Sándor, J. (2015) A basic logarithmic inequality and the logarithmic mean, Notes Number Th. Discr. Math., 21(1), 31–35.
- Sándor, J. (2016) A note on the logarithmic mean, Amer. Math. Monthly, 123(1), 112.
- Stolarsky, K. B. (1980) The power and generalized logarithmic means, Amer. Math. Monthly, 87, 545–548. 57.

## Related papers

## Cite this paper

APASándor, J. (2016). Series expansions related to the logarithmic mean. Notes on Number Theory and Discrete Mathematics, 22(2), 54-57.

ChicagoSándor, József. “Series Expansions Related to the Logarithmic Mean.” Notes on Number Theory and Discrete Mathematics 22, no. 2 (2016): 54-57.

MLASándor, József. “Series Expansions Related to the Logarithmic Mean.” Notes on Number Theory and Discrete Mathematics 22.2 (2016): 54-57. Print.