Catalan triangles and Finucan’s hidden folders

A. G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 22, 2016, Number 2, Pages 10—16
Download full paper: PDF, 138 Kb


Authors and affiliations

A. G. Shannon
Faculty of Engineering & IT, University of Technology, Sydney, NSW 2007, Australia
Campion College, PO Box 3052, Toongabbie East, NSW 2146, Australia


This note is to capture and extend some of Finucan’s ideas for further exploration by students. These ideas connect with several elementary concepts in combinatorial analysis which lend themselves to undergraduate research projects.


  • Catalan numbers and polynomials
  • Young tableaux
  • Fibonacci numbers
  • Recurrence relations

AMS Classification

  • 11B39
  • 11K31
  • 11B83
  • 05A15


  1. Andrews, G. E. (1987) Catalan numbers, q-Catalan and hypergeometric series. Journal of Combinatorial Theory, Series A. 44, 267–273.
  2. Barbero, S., & Cerrutti, U. (2010) Catalan Moments. Congressus Numerantium. 201, 187–209.
  3. Benjamin, A. T., & Yerger, C. R. (2006) Combinatorial Identities of Spanning Tree Identities. Bulletin of the Institute of Combinatorics and Its Applications. 47, 37–42.
  4. Carlitz, L., & Riordan, J. (1964) Two Element Lattice Permutation Numbers and their q-generalization. Duke Mathematical Journal. 31, 371–388.
  5. Catalan, E. (1885) Quelques théorèmes empiriques. Mémoires de la Société Royale des Sciences de Liège. 12, 42–43.
  6. Chen, W. Y. C., Wang, L. X. W., Yang, A. L. B. (2010) Schur Positivity and the q-log-convexity of the Narayana Polynomials. Journal of Algebraic Combinatorics. 32, 303–338.
  7. Finucan, H. M. (1977) Some Elementary Aspects of the Catalan Numbers. In Louis R. A. Casse, Walter D. Wallis. (eds). Combinatorial Mathematics IV. Berlin, Springer-Verlag, 41–45.
  8. Finucan, H. M. (1981) Fragmenting the Erdelyi-Etherington-Sands Number. Department of Mathematics, University of Queensland. Colloquium. 10th August.
  9. Finucan, H. M. (1982) Some Decompositions of Generalised Catalan Numbers. In Anne Penfold Street, Elizabeth J. Billington, Sheila Oates-Williams. (eds). Combinatorial Mathematics IX. Berlin, Springer-Verlag, 275–293.
  10. Fulton, W. (1997) Young Tableaux, With Applications to Representation Theory and Geometry. Cambridge, Cambridge University Press.
  11. Glaister, P., & Glaister, E. M. (2014) Alternating Sums of Binomial Coefficients with Unit Fraction Arithmetic Sequence Coefficients. International Journal of Mathematical Education in Science and Technology. 15, 452–464.
  12. Gould, H. W. (1972) Combinatorial Identities, Second edition. Morgantown, WV, Published by the author.
  13. Gould, H. W. (1978) Bell and Catalan Numbers, Research Bibliography of Two Special Number Sequences. Revised Edition. Morgantown, WV, Combinatorial Research Institute.
  14. Hoggatt, V. E. Jr. (1968) A New Angle on Pascal’s Triangle. The Fibonacci Quarterly. 6, 221–234.
  15. Jarden, D. (1966) Recurring Sequences. Jerusalem, Riveon Lematematika.
  16. Koshy, T. (2014) Lobb Numbers and Forder’s Catalan Triangle. Bulletin of the Institute of Combinatorics and Its Applications. 71, 57–69.
  17. Lang, W. (2000) On Generalizations of the Stirling Number Triangles. Journal of Integer Sequences. 3, Article 00. 2. 4.
  18. Larcombe, P. J., O’Neill, S. T., & Fennessey, E. J. (2014) On certain series expansions of the sine function, Catalan numbers and convergence. The Fibonacci Quarterly. 52, 236–242.
  19. Lipton, S. (1985) Obituary, Henry Maurice Finucan 1917-1983. Journal of the Australian Mathematical Society. (Series A). 38, 1–8.
  20. Mansour, T., & Shattuck, M. (2013) Polynomials whose coefficients are generalized Tribonacci numbers. Applied Mathematics and Computation. 219, 8366–8374.
  21. Narayana, T. V. (1955) Sur les treillis formée par les partitions d’un entire etleurs applications à la théorie des probabilités. Comptes rendus hebdomadaires des séances de l’Académie des Sciences. (Paris). 240, 1188–1189.
  22. Rogers, D. G. (1978) Pascal Triangles, Catalan Numbers and Renewal Arrays. Discrete Mathematics. 22, 301–310.
  23. Shannon, A. G. (1991) Shrewd guessing in problem-solving, International Journal of Mathematical Education in Science and Technology. 22, 144–147.
  24. Shannon, A. G., Turner, J. C., & Atanassov, K. T. (1991) A Generalized Tableau Associated with Colored Convolution Trees. Discrete Mathematics. 92, 329–340.
  25. Sloane, N. J. A., &  Plouffe, S. (1995) The Encyclopedia of Integer Sequences. San Diego, CA, Academic Press. [oeis. org].
  26. Turner, J. C., & Shannon, A. G. (1993) On an inhomogeneous, non-linear, second-order recurrence relation, International Journal of Mathematical Education in Science and Technology, 24, 324–327.
  27. Wright, T. (1995) Pascal’s Triangle Gets Its Genes from Stirling Numbers of the First Kind. College Mathematics Journal. 26, 368–370.

Related papers

Cite this paper


Shannon, A. G. (2016). Catalan triangles and Finucan’s hidden folders. Notes on Number Theory and Discrete Mathematics, 22(2), 10-16.


Shannon, A. G. “Catalan Triangles and Finucan’s Hidden Folders.” Notes on Number Theory and Discrete Mathematics 22, no. 2 (2016): 10-16.


Shannon, A. G. “Catalan Triangles and Finucan’s Hidden Folders.” Notes on Number Theory and Discrete Mathematics 22.2 (2016): 10-16. Print.

Comments are closed.