Ilias Laib

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 3, Pages 39—43

DOI: 10.7546/nntdm.2021.27.3.39-43

**Download full paper: PDF, 189 Kb**

## Details

### Authors and affiliations

Ilias Laib

*ENSTP, Garidi Kouba, 16051, Algiers,
and Laboratory of Equations with Partial Non-Linear Derivatives,
ENS Vieux Kouba, Algiers, Algeria*

### Abstract

In this note, we construct a new set of primitive sets such that for any real number we get:

where denotes the set of prime numbers.

### Keywords

- Primitive sequences
- Erdős’s conjecture
- Prime numbers

Integer sequences

### 2020 Mathematics Subject Classification

- 11B05
- 11Y55
- 11L20

### References

- Clark, D. A. (1995). An upper bound of for primitive sequences, Proceedings of the American Mathematical Society, 123, 363–365.
- Cohen, H. (1991). High precision computation of Hardy–Littlewood constants. Preprint. Available online at: http://www.math.u-bordeaux1.fr/~cohen/hardylw.dvi.
- Erdős, P. (1935). Note on sequences of integers no one of which is divisible by any other. Journal of the London Mathematical Society, 10(2), 126–128.
- Erdős, P. (1988). Seminar at the University of Limoges.
- Erdős, P., & Zhang, Z. (1993). Upper bound of for primitive sequences. Proceedings of the American Mathematical Society, 117(4), 891–895.
- Farhi, B. (2017). Results and conjectures related to a conjecture of Erdős concerning primitive sequences. Preprint. arXiv:1709.08708v2 [math.NT].
- Laib, I., Derbal, A., & Mechik, R. (2019). Somme translatee sur des suites primitives et la conjecture d’Erdős. Comptes Rendus Mathematique, 357(5), 413–417.
- Lichtman, J. D., & Pomerance, C. (2019). The Erdős conjecture for primitive sets. Proceedings of the American Mathematical Society Ser. B, 6, 1–14.
- Rezzoug, N., Laib, I., & Guenda, K. (2020). On a translated sum over primitive sequences related to a conjecture of Erdős. Notes on Number Theory and Discrete Mathematics, 26(4), 68–73.
- Rosser, J. B., & Schoenfeld, L. (1962). Approximates Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics, 6, 64–94.
- Zhang, Z. (1991). On a conjecture of Erdős on the sum . Journal of Number Theory, 39, 14–17.
- Zhang, Z. (1993). On a problem of Erdős concerning primitive sequences. Mathematics of Computation, 60(202), 827–834.

## Related papers

- Rezzoug, N., Laib, I., & Guenda, K. (2020). On a translated sum over primitive sequences related to a conjecture of Erdős. Notes on Number Theory and Discrete Mathematics, 26(4), 68–73.

## Cite this paper

Laib, I. (2021). Note on translated sum on primitive sequences. Notes on Number Theory and Discrete Mathematics, 27(3), 39-43, doi: 10.7546/nntdm.2021.27.3.39-43.