Raj Kumar Mistri

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 4, Pages 34–41

**Full paper (PDF, 157 Kb)
Corrigendum**

## Details

### Authors and affiliations

Raj Kumar Mistri

*Department of Mathematics, Harish-Chandra Research Institute, HBNI
Chhatnag Road, Jhunsi, Allahabad – 211 019, India
*

### Abstract

Let *A*⊆ *Z* and *B* ⊆ *Z* be nonempty finite sets and let *r* be a nonzero integer. The sumof dilates of *A* and *B* is defined as *A* + *r · B* := {*a* + *rb* : *a* ∈ *A* and *b* ∈ *B*}. Finding nontrivial lower bound for the sum of dilates is an important problem in additive combinatorics and it has applications in sum-product problems. In case of *A* = *B*, a recent result of Freiman et al. states that if *r* ≥ 3, then |*A *+ *r* *· A| * ≥ 4|*A*| – 4. We generalize this result for the sum of dilates *A* + *r · B *for two sets

*A*and

*B*, where

*r*is an integer with |

*r*| ≥ 3.

### Keywords

- Sum of dilates
- Minkowski sumsets
- Sum-product problem
- Additive combinatorics

### AMS Classification

- 11B75

### References

- Balog, A., & Shakan, G. (2014) On the sum of dilations of a set, Acta Arith., 164, 153–162.
- Balog, A., & Shakan, G. (2015) Sum of dilates in vector spaces, North-West. Eur. J. Math., 1, 46–54.
- Bukh, B. (2008) Sums of dilates, Combin. Probab. Comput., 17(5), 627–639.
- Cilleruelo, J., Hamidoune, Y. O., & Serra, O. (2009) On sums of dilates, Combin. Probab. Comput., 18(6), 871–880.
- Cilleruelo, J., Silva, M., & Vinuesa, C. (2010) A sumset problem, J. Comb. Number Theory, 2(1), 79–89.
- Du, S., Cao, H., & Sun, Z. (2014) On a sumset problem for integers, Electron. J. Combin., 21(1), Paper #P1.13.
- Freiman, G. A., Herzog, M., Longobardi, P., Maj, M., & Stanchescu, Y. V. (2014) Direct and inverse problems in additive number theory and in non-abelian group theory, European J. Combin., 40, 42–54.
- Garaev, M. Z. (2007) An explicit sum-product estimate in
*F*norms, Israel J. Math., 152, 157–179._{p} - Hamidoune, Y. O., & Plagne, A. (2002) A generalization of Freiman’s 3
*k*–3 theorem, Acta Arith., 103(2), 147–156. - Hamidoune, Y. O., & Rue, J. (2011) A lower bound for the size of a Minkowski sum of dilates, Combin. Probab. Comput., 20(2), 249–256.
- Konyagin, S., & Laba, I. (2006) Distance sets of well-distributed planar sets for polygonal norms, Israel J. Math., 152, 157–179.
- Lev, V. F., & Smeliansky, P. Y. (1995) On addition of two distinct sets of integers, Acta Arith., 70(1), 85–91.
- Ljujic, Z. (2013) A lower bound for the size of a sum of dilates, J. Comb. Number Theory, 5(1), 31–51.
- Nathanson, M. B. (1996) Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer.
- Nathanson, M. B. (2008) Inverse problems for linear forms over finite sets of integers, J. Ramanujan Math. Soc., 23(2), 151–165.
- Plagne, A. (2011) Sums of dilates in groups of prime order, Combin. Probab. Comput., 20(6), 867–873.
- Plagne, A., & Tringali, S. (2016) Sums of dilates in ordered groups, Comm. Algebra, 44(12), 5223–5236.
- Pontiveros, G. F. (2013) Sums of dilates in Z
, Combin. Probab. Comput., 22(2), 282–293._{p} - Shakan, G. (2016) Sum of many dilates, Combin. Probab. Comput., 25(3), 460–469.
- Stanchescu, Y. V. (1996) On addition of two distinct sets of integers, Acta Arith., 75(2), 191–194.

## Corrigendum

- Mistri, R. K. (2018). Corrigendum to “Sum of dilates of two sets” [Notes on Number Theory and Discrete Mathematics, Vol. 23, 2017, No. 4, 34–41].
*Notes on Number Theory and Discrete Mathematics*, 24(1), 136.

## Related papers

## Cite this paper

Mistri, R. K. (2017). Sum of dilates of two sets. *Notes on Number Theory and Discrete Mathematics*, 23(4), 34-41.