Debika Banerjee and Makoto Minamide

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 22, 2016, Number 1, Pages 8—17

**Download full paper: PDF, 206 Kb**

## Details

### Authors and affiliations

Debika Banerjee

*Harish-Chandra Research Institute
Chhatnag Road, Jhunsi, Allahabad 211019, India
*

Makoto Minamide

*Faculty of Science, Yamaguchi University*

Yoshida 1677-1, Yamaguchi 753–8512, Japan

Yoshida 1677-1, Yamaguchi 753–8512, Japan

### Abstract

In this paper, let *p* denote a prime. We shall consider sums of the type Φ (*x,y;f*)= Σ* _{n≤p|n ⇒ p > y} f(n)* and ψ (

*x,y;f*)=Σ

*for certain kinds of arithmetical functions*

_{n≤p|n ⇒ p < y}f(n)*f*and prove some identities for Φ and ψ which are analogous to the ‘so-called’ Buchstab identity. As an application, we will prove some formulas for square-free integers.

### Keywords

- Buchstab’s identity
- Square-free integers

### AMS Classification

- 11N25
- 11N37

### References

- Alladi, K. (1982) Asymptotic estimates of sums involving the Moebius function, J. Number Theory, 14, 86–98.
- Alladi, K. (1982) Asymptotic estimates of sums involving the Moebius function. II, Tran. Amer. Math. Soc., 272, 87–105.
- Buchstab, A. A. (1937) Asymptotic estimates of a general number-theoretic function, Mat. Sbornik (N.S.), 2(44), 1239–1246 (in Russian).
- De Bruijn, N. G. (1951) On the number of positive integers ≤ x and free of prime factors

> y, Nederl. Akad. Welensch. Proc. Ser. A, 54, 50–60 (Indag. Math., 13, 50–60.). - De Bruijn, N. G. (1966) On the number of positive integers ≤ x and free of prime factors

> y, II, Nederl. Akad. Welensch. Proc. Ser. A, 69, 239–247 (Indag. Math., 28, 239–247). - Dickman, K. (1930) On the frequency of numbers containing prime of certain relative magnitude, Ark. Mat. Aston. Fys., 22, 1–14.
- Hilderbrand, A. (1986) On the number of positive integers ≤ x and free of prime factors

> y, J. Number Theory, 22, 289–307. - Hilderbrand, A. & G. Tenenbaum (1986) On integers free of large prime factors, Trans. Amer. Math. Soc., 296, 265–290.
- Ivić, A. (1985) On square free numbers with restricted prime factors, Studia Scien. Math.

Hungarica, 20, 189–192. - Tenenmbaum, G. (1995) Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics, Vol. 46, Cambridge University Press.

## Related papers

## Cite this paper

Banerjee, D. & Makoto M. (2016). On an analogue of Buchstab’s identity. Notes on Number Theory and Discrete Mathematics, 22(1), 8-17.