Robson da Silva, Jorge F. A. Lima, José Plínio O. Santos and Eduardo C. Stabel
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 21, 2015, Number 4, Pages 30—35
Download full paper: PDF, 208 Kb
Details
Authors and affiliations
Robson da Silva
ICT, UNIFESP
12247-014, Sao Jose dos Campos-SP, Brazil
Jorge F. A. Lima
IMECC, UNICAMP
C.P. 6065, 13084-970, Campinas-SP, Brazil
José Plínio O. Santos
IMECC, UNICAMP
C.P. 6065, 13084-970, Campinas-SP, Brazil
Eduardo C. Stabel
UFSM
97105-900, Santa Maria-RS, Brazil
Abstract
We revisit Elder’s theorem on integer partitions, which is a generalization of Stanley’s theorem. Two new proofs are presented. The first proof is based on certain tilings of 1 × ∞ boards while the second one is a consequence of a more general identity we prove using generating functions.
Keywords
- Elder’s theorem
- Integer partition
- Generating function
- Tiling
AMS Classification
- 11P84
- 05A19
References
- Benjamin, A. T., & J. J. Quinn (2003) Proofs That Really Count: The Art of Combinatorial Proof. The Dolciani Mathematical Expositions, 27.
- Benjamin, A. T., Plott, S., & J. A. Sellers (2008) Tiling Proofs of Recent Sum Identities Involving Pell Numbers. Annals of Combinatorics, 12, 271–278.
- Briggs, K. S., Little, D. P., & J. A. Sellers (2011) Combinatorial Proofs of Various q-Pell Identities via Tilings. Annals of Combinatorics, 14(4), 407–418.
- Dastidar, M. G., & S. S. Gupta (2013) Generalization of a few results in integer partitions. Notes on Number Theory and Discrete Mathematics, 19(2), 69–76.
- Hoare, A. H. (1986) An Involution of Blocks in the Partitions of n, The American Mathematical Monthly, 93, 475–476.
- Kirdar, M. S., & T. H. R. Skyrme (1982) On an Identity Related to Partitions and Repetitions of Parts, Canadian Journal of Mathematics, 34, 194–195.
- Little, D. P., & J. A. Sellers (2010) A Tiling Approach to Eight Identities of Rogers. European Journal of Combinatorics, 31, 694–709.
- Schmidt, F. W., & R. Simion (1984) On a Partition Identity, Journal of Combinatorial Theory Series A, Vol. 36, 249–252.
- Stabel, E. C. (2011) A Combinatorial Proof of an Identity of Ramanujan Using Tilings. Bulletin of the Brazilian Mathematical Society, 42(2), 203–212.
- Stanley, R. P. (1997) Enumerative Combinatorics, Vol. 1, Cambridge University Press, UK.
Related papers
Cite this paper
Da Silva, R., Lima, J. F. A., Santos, J. P. O. & Stabel, E. C. (2015). Generating function and combinatorial proofs of Elder’s theorem. Notes on Number Theory and Discrete Mathematics, 21(4), 30-35.