J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 20, 2014, Number 3, Pages 45—49
Download full paper: PDF, 190 Kb
Details
Authors and affiliations
J. V. Leyendekkers
Faculty of Science, The University of Sydney
NSW 2006, Australia
A. G. Shannon
Faculty of Engineering & IT, University of Technology
Sydney, NSW 2007, Australia
Abstract
If we use the expression Fp = kp ± 1, p prime, then digital sums of k reveal specific values for primes versus composites in the range 7 ≤ p ≤ 107. The associated digital sums of Fp±1 also yield prime/composite specificity. It is shown too that the first digit of Fp, and hence for the corresponding triples, (Fp, Fp±1) and (Fp, Fp−1, Fp−2) can be significant for primality checks.
Keywords
- Fibonacci numbers
- Primality
- Digit sums
AMS Classification
- 11B39
- 11B50
References
- Erdös, P., E. Jabotinsky. On Sequences of Integers Generated by a Sieving Process. Nedelandse Akademie van Wetenschappen. Series A. 61, 1958, 115–128.
- Leyendekkers, J. V., A. G. Shannon. Fibonacci Numbers within Modular Rings. Notes on Number Theory and Discrete Mathematics. Vol. 4, 1998, No. 4, 165–174.
- Leyendekkers, J. V., A. G. Shannon. The Structure of the Fibonacci Numbers in the Modular Ring Z5. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 1, 66–72.
- Leyendekkers, J. V., A. G. Shannon. Fibonacci and Lucas Primes. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 2, 49–59.
- Leyendekkers, J. V., A. G. Shannon. The Pascal–Fibonacci Numbers. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 3, 5–11.
- Leyendekkers, J. V., A. G. Shannon. Fibonacci Primes. Notes on Number Theory and Discrete Mathematics. Vol. 20, 2014, No. 2, 6–9.
- Watkins, J. J. Number Theory: A Historical Approach. Princeton and Oxford: Princeton University Press, 2014, 271–272.
Related papers
Cite this paper
Leyendekkers, J., & Shannon, A. (2014). Fibonacci numbers with prime subscripts: Digital sums for primes versus composites. Notes on Number Theory and Discrete Mathematics, 20(3), 45-49.