Anier Soria Lorente
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 20, 2014, Number 2, Pages 79—91
Download full paper: PDF, 209 Kb
Details
Authors and affiliations
Anier Soria Lorente
Department of Basic Sciences
Granma University, Cuba
Abstract
In this paper, a brief introduction to the Apéry’s result and to the so called phenomenon of Apéry’s is given. Here, a modification of the Nesterenko’s rational function, from which new Diophantine approximations to ζ(3) are deduced, is presented. Moreover, as a consequence we deduce the corresponding Apéry-Like recurrence relation as well as a new continued fraction expansion and a new series expansion for ζ(3).
Keywords
- Riemann zeta function
- Apéry’s approximants
- Recurrence relation
- Continued fraction expansion
- Irrationality
AMS Classification
- Primary: 11B37, 30B70, 14G10, 11J72, 11M06
- Secondary: 37B20, 11A55, 11J70, 11Y55, 11Y65
References
- Abramov, S. A. Applicability of Zeilberger’s algorithm to hypergeometric terms, Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC’02), New York, 2002, 1–7.
- Abramov, S. A., H. Q. Le, A criterion for the applicability of Zeilberger’s algorithm to rational functions, Discrete Math., Vol. 259, 2002, 1–17.
- Abramov, S. A. When does Zeilberger’s algorithm succeed?, Appl. Math., Vol. 30, 2003, 424–441.
- Abramov, S. A., J. J. Carette, K. O. Geddes, H. Q. Le. Telescoping in the context of symbolic summation in Maple, J. of Symb. Comput., Vol. 30, 2004, 1303–1326.
- Apéry, R. Irrationalité de ζ(2) et ζ(3), Astérisque, Vol. 61, 1979, 11–13.
- Arvesú, J. Orthogonal forms: A key tool for deducing Apéry’s recurrence relation, J. Approx. Theory, accepted, 2012.
- Beukers, F. A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc., Vol. 11, 1979, 268–272.
- Beukers, F. Legendre polynomials in irrationality proofs, Bull. Austral. Math. Soc., Vol. 22, 1980, 431–438.
- Beuker, F. Padé approximations in number theory, Padé approximation and its applications, (Amsterdam, 1980), 90–99, Lecture Notes in Math., Springer, Berlin-New York, Vol. 888, 1981.
- Beuker, F. Consequences of Apéry’s work on ζ(3), preprint of talk presented at the Rencontres Arithmétiques de Caen, ζ(3), Irrationnel: Les Retombées, 1995.
- Cohen, H. Demonstration de l’irrationalite de ζ(3) (d’aprés R. Apéry), Séminaire de Théorie des Nombres, Grenoble, 1978, VI.1–VI.9.
- Elsner, C. On Prime-Detecting Sequences From Apéry’s Recurrence Formulae for ζ(3) and ζ(2), J. Integer Sequences, Vol. 11, 2008.
- Gasper, G., M. Rahman. Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2004.
- Gutnik, L. A. On the irrationality of certain quantities involving ζ(3), Acta Arith., Vol. 42, 1983, 255–264.
- Jones, W. B., W. J. Thron. Continued fractions, Analytic theory and applications, Encyclopedia Math. Appl. Section: Analysis 11, Addison-Wesley, London, 1980.
- Kaneko, M., N. Kurokawa, M. Wakayama. A variation of Euler’s approach to values of the Riemann zeta function, arXiv:math/0206171v2 [math. QA], 31 July 2012.
- Koekoek, R., R. F. Swarttouw. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998.
- Markoff, A. A. Mémoire sur la transformation des séries peu convergentes en séries tres convergentes, Mémoires de l’Academie Impériale des Sciences de St.-Petersbourg, VII série, t. XXXVII, No. 9, 1890.
- Nesterenko, Y. V. A few remarks on ζ(3), Math. Notes, Vol. 59, 1996, No. 6, 625–636.
- Nesterenko, Y. V. Integral identities and constructions of approximations to zeta values, J. Théor. Nombres Bordeaux, Vol. 15, 2003, 535–550.
- Nikiforov, A. F., V. B. Uvarov. Special Functions in Mathematical Physics, Birkhauser Verlag, Basel, 1988.
- Perron, O. Über ein Satz des Herrn Poincaré, J. Reine Angew. Math., Über die Poincarésche lineare Differenzgleichung, Vol. 137, 1910, 6–64.
- Poincaré, H., Sur les équations linéaires aux différentielles et aux différences finies, Amer. J. Math., Vol. 7, 1885, 203–258.
- Prévost, M. A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants, J. Comput. Appl. Math., Vol. 67, 1996, 219–235.
- Petkovsek, M., H. S. Wilf, D. Zeilberger, A = B, A. K. Peters, Ltd., Wellesley, M.A., 1997.
- Sorokin, V. N. Hermite-Padé approximations for Nikishin systems and the irrationality of (3), Communications of the Moscow Math. Soc., Vol. 49, 1993, 176–177.
- Sorokin, V. N. Apéry’s theorem, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.], No. 3, 1998, 48–52.
- Van der Poorten, A. A proof that Euler missed… Apéry’s proof of the irrationality of ζ(3), Math. Intelligencer, Vol. 1, 1978/79, 195–203.
- Van Assche, W. Multiple orthogonal polynomials, irrationality and transcendence, Contemporary Mathematics, Vol. 236, 1999, 325–342.
Related papers
- Soria-Lorente, A. & Berres, S. (2020). A single parameter Hermite–Padé series representation for Apéry’s constant. Notes on Number Theory and Discrete Mathematics, 26 (3), 107-134, doi: 10.7546/nntdm.2020.26.3.107-134.
Cite this paper
Lorente, A. S. (2014). Nesterenko-like rational function, useful to prove the Apéry’s theorem. Notes on Number Theory and Discrete Mathematics, 20(2), 79-91.