Ali H. Hakami
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 17, 2011, Number 1, Pages 30—36
Download full paper: PDF, 171 Kb
Details
Authors and affiliations
Ali H. Hakami
Department of Mathematics, Ahmadu Bello University
Zaria, Nigeria
Abstract
Let m be a positive integer, p be an odd prime, and ℤpm = ℤ / (pm) be the ring of integers modulo pm. Let Q(x) = Q(x1, x2, …, xn) be a nonsingular quadratic form with integer coefficients. In this paper we shall prove that any nonsingular quadratic form Q(x) over ℤ, Q(x) is equivalent to a diagonal quadratic form (modulo pm).
Keywords
- Integral quadratic form
- Nonsingular quadratic form
- Diagonalization quadratic form modulo prime
AMS Classification
- 11E08
References
- Larry J. Gerstein, Basic Quadratic Forms, American Mathematical Society, 2008.
- G. L. Watson, Integral Quadratic Forms, Cambridge University Press, 1960.
- Michel Artin, Algebra, Prentice-Hall, New Jersey, 1991.
- R. Lidl and H. Niederreiter, Encyclopedia of Mathematics and its Applications, Finite Fields, Addison-Wesley Publishing Company, 1983.
Related papers
Cite this paper
Hakami, A. H. (2011). A note of diagonalization of integral quadratic forms modulo pm, Notes on Number Theory and Discrete Mathematics, 17(1), 30-36.