Ayse Nalli and Pentti Haukkanen

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 9, 2003, Number 4, Pages 90—98

**Download full paper: PDF, 77 Kb**

## Details

### Authors and affiliations

Ayse Nalli

*Department of Mathematics, Faculty of Science and Literature, University of Selcuk
42070 Campüs Konya, Turkey
*

Pentti Haukkanen

*Department of Mathematics, Statistics and Philosophy,
FIN-33014 University of Tampere, Finland
*

### Abstract

Let *S* = {*x*_{1}, *x*_{2}, …, *x _{n}*} be an ordered set of distinct positive integers with

*x*

_{1}<

*x*

_{2}< … <

*x*(

_{n}*n*> 1). We provide some properties for the

*n*×

*n*matrix (

*G*)

*o [*

_{f}*L*]

*on*

_{f}*S*, where (

*G*)

*denotes the*

_{f}*n*×

*n*GCD matrix on

*S*associated with

*f*, [

*L*]

*denotes the*

_{f}*n*×

*n*LCM matrix on

*S*associated with

*f*and o denotes the Hadamard product.

### Keywords

- Hadamard product
- GCD matrix
- LCM matrix
- Semi-multiplicative function

### AMS Classification

- 11C20
- 11A05
- 15A36
- 11A25

### References

- S. J. Beslin, Reciprocal GCD matrices and LCM matrices. Fibonacci Quart. 29 (1991), no. 3, 271-274.
- P. Haukkanen and J. Sillanpää, Some analogues of Smith’s determinant, Linear and Multilinear Algebra 41 (1996), 233-244.
- P. Haukkanen, J. Wang and J. Sillanpää, On Smith’s determinant. Linear Algebra Appl. 258 (1997), 251-269.
- R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge University Press, New York 1985.
- I. Korkee and P. Haukkanen, On meet and join matrices associated with incidence functions. Linear Algebra Appl. 372C (2003), 127-153.
- R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Marcel Dekker, New York, 1989.
- H. J. S. Smith, On the value of a certain arithmetical determinant. Proc. London Math. Soc. 7 (1875/76), 208-212.
- N. Tuglu and D. Tasci, On the LCM-reciprocal GCD matrices. Far East J. Math. Sci. (FJMS) 6 (2002), no. 1, 89-94.

## Related papers

## Cite this paper

Nalli, A., & Haukkanen, P. (2003). On the Hadamard product of GCD and LCM matrices associated with semi-multiplicative functions, Notes on Number Theory and Discrete Mathematics, 9(4), 90-98.