J. V. Leyendekkers and A. G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 4, 1998, Number 4, Pages 165—174

**Download full paper: PDF, 6568 Kb**

## Details

### Authors and affiliations

J. V. Leyendekkers

*The University of Sydney, 2006, Australia*

A. G. Shannon

*University of Technology, Sydney, 2007, Australia*

### AMS Classification

- 11R29
- 11B39

### References

- Barakat, Richard. 1964. The matrix operator ezand the Lucas polynomials. Journal of Mathematics and Physics. 43: 332-335.
- Brent, R P. 1994. On the periods of generalized Fibonacci recurrences. Mathematics of Computation. 63: 207.
- Carlitz, L. 1955. Some class number relations. Mathematische Zeitschrift. 62: 167-170.
- D’Antona Ottavio, M. 1998. The would-be method of targeted rings, in Bruce Sagan & Richard P Stanley (eds). Mathematical Essay’s in Honor of Gian-Carlo Rota. Boston: Birkhauser, pp. 157-172.
- DeCarli, D J. 1970. A generalized Fibonacci sequence over an arbitrary’ ring. The

Fibonacci Quarterly. 8.2: 182-184. - Dilcher, Karl. 1998. Nested squares and evaluations of integer products. 8th International Conference on Fibonacci Numbers and Their Applications, Rochester, USA, 22-26 June.
- Hoggatt, V E. Jr. 1969. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin.
- Horadam, A. F. 1965. Generating functions for powers of a certain generalized sequence of numbers. Duke Mathematical Journal. 32.3: 437-446.
- Leyendekkers, J V, Rybak, J M & Shannon, A G. 1997. Analysis of Diophantine properties using modular rings with four and six classes. Notes on Number Theory & Discrete Mathematics. 3.2: 61-74.
- Leyendekkers, J V, Rybak, J M & Shannon, A G. 1998. The characteristics of primes and other integers within the modular ring Z4 and in class 1. Notes on Number Theory & Discrete Mathematics. 4.1: 1-17.
- Morgan, Mark D. 1998. The distribution of second order linear recurrence sequences mod 2m. Acta Arithmetica. 83.2: 181-195.
- Shannon, A.G. 1972. Iterative formulas associated with third order recurrence relations.

S.I.A.M. Journal of Applied Mathematics. 23.3: 364-368. - Shannon, A.G. 1974. Some properties of a fundamental linear recursive sequence of arbitrary order. The Fibonacci Quarterly. 12.4: 327-335.
- Stein, S.K. 1962. The intersection of Fibonacci sequences. The Michigan Mathematics Journal. 9: 399-402.
- Wyler, O. 1965. On second order recurrences. American Mathematical Monthly. 72.5: 500-506.

## Related papers

## Cite this paper

Leyendekkers, J. V. & Shannon, A. G. (1998). Title. Notes on Number Theory and Discrete Mathematics, 4(4), 165-174.