
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2026, Volume 32, Number 1, 15–22
DOI: 10.7546/nntdm.2026.32.1.15-22

Characterizations of L-additive functions
via generalized arithmetic convolutions

Champak Talukdar 1,3 , Debashis Bhattacharjee 2

and Helen K. Saikia 3

1 Department of Mathematics, Behali Degree College
Assam, India

e-mail: champak.nlb.2012@gmail.com
2 Retd. Prof., Department of Mathematics, North Eastern Hill University

Meghalaya, India
e-mail: debashis_bhattacharjee@yahoo.com

3 Department of Mathematics, Gauhati University
Assam, India

e-mail: hsaikia@yahoo.com

Received: 8 November 2025 Revised: 9 February 2026
Accepted: 15 February 2026 Online First: 18 February 2026

Abstract: This paper investigates the properties of L-additive functions within the algebraic
frameworks of two generalized arithmetic convolutions: the K-convolution and Narkiewicz’s
A-convolution. We establish the foundational algebraic context for these operations by citing
the established conditions for their associativity and commutativity. Our main results provide
rigorous characterization theorems for completely additive and L-additive functions, which
manifest as Leibniz-type rules that these functions satisfy with respect to the convolutions.
Furthermore, we provide insightful, non-trivial examples using classical arithmetic functions
to illustrate the mechanics of these characterizations, thereby demonstrating the utility of the
generalized convolution framework in the study of arithmetic derivatives and their generalizations.
Keywords: Arithmetic function, L-additive function, Arithmetic derivative, K-convolution,
Narkiewicz’s A-convolution, Completely additive function.
2020 Mathematics Subject Classification: 11A25.

Copyright © 2026 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0009-0571-4831
https://orcid.org/0000-0002-9602-6162
https://orcid.org/0000-0003-1971-9472
champak.nlb.2012@gmail.com
debashis_bhattacharjee@yahoo.com
hsaikia@yahoo.com


1 Introduction

The set of arithmetic functions, equipped with pointwise addition and the Dirichlet convolution,
forms a unique factorization domain that is central to the study of number theory. Within this
structure, certain classes of functions exhibit properties analogous to operators in classical calculus.
The arithmetic derivative D, introduced by Barbeau [1], is one such function, defined by its action
on primes, D(p) = 1, and its adherence to the Leibniz rule: D(mn) = D(m)n +mD(n) for all
m,n ∈ N.

This concept was generalized by Haukkanen et al. [3] to the class of Leibniz-additive
(or L-additive) functions. An arithmetic function f is L-additive if there exists a completely
multiplicative function hf such that for all m,n ∈ N,

f(mn) = f(m)hf (n) + f(n)hf (m). (1)

The arithmetic derivative D is the special case where hD(n) = n, while completely additive
functions correspond to the case where hf (n) = 1 for all n. The notion of Leibniz-type behavior
for arithmetic functions originates in the work of Haukkanen [3], while the term Leibniz-additive
was explicitly introduced later in Haukkanen, Merikoski, and Tossavainen [4]. Further structural
properties and examples of Leibniz-additive functions were developed in subsequent works; see,
for instance, Merikoski, Haukkanen, and Tossavainen [5, 6].

However, the Dirichlet convolution is itself a special case of broader classes of convolutions.
This paper extends the study of L-additive functions to two such generalizations: the K-convolution
and Narkiewicz’s A-convolution.

The K-convolution, studied by Gioia [2], modifies the Dirichlet product with a kernel function
K, while Narkiewicz’s A-convolution restricts the sum to a pre-defined set of divisors An [7].
These frameworks unify the Dirichlet and unitary convolutions, among others. A key feature of
these generalized products is that their fundamental algebraic properties, such as associativity, are
not guaranteed and depend on specific conditions on the kernel K or the divisor sets An.

The central question of this paper is: How are L-additive functions characterized within
these more general and structurally nuanced convolution rings? We answer this question by
providing rigorous proofs for several characterization theorems that take the form of Leibniz-type
rules. In doing so, we correct significant logical errors present in earlier drafts of this work,
particularly in the proofs of the converse directions of our main theorems. By first establishing
the necessary algebraic context for these convolutions and then providing rigorous proofs and
insightful examples, we aim to place the study of L-additive functions on a firm footing within
the theory of generalized arithmetic convolutions.

2 Preliminaries

Let A denote the set of all arithmetic functions f : N → C. This set forms a commutative ring
under pointwise addition, (f + g)(n) = f(n) + g(n), and the Dirichlet convolution, (f ∗ g)(n) =∑

d|n f(d)g(n/d).
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Definition 2.0.1 (Additive and Multiplicative Functions). An arithmetic function f is said to be:

• Additive if f(mn) = f(m) + f(n) whenever gcd(m,n) = 1.

• Completely Additive if f(mn) = f(m) + f(n) for all m,n ∈ N. Such functions have been
studied extensively; see, for example, [8].

• Multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever gcd(m,n) = 1.

• Completely Multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all m,n ∈ N.

Definition 2.0.2 (L-additive Function [3]). An arithmetic function f is L-additive if there exists a
completely multiplicative function hf such that for all m,n ∈ N,

f(mn) = f(m)hf (n) + f(n)hf (m).

A key result connecting L-additive and completely additive functions is the following theorem.

Theorem 2.0.1 (Haukkanen [3]). Let f be an arithmetic function. If f is L-additive and its
associated function hf is non-zero valued, then the function f/hf is completely additive.
Conversely, if there is a completely multiplicative non-zero valued function h such that f/h is
completely additive, then f is L-additive and hf = h.

2.1 Generalized convolutions

We now define the two generalized convolutions that are the focus of this study.

Definition 2.1.1 (K-convolution). Let A denote the set of all arithmetic functions f : N → C. Let
K ∈ A be a nonzero arithmetic function, called the kernel. The K-convolution (or K-product)
of two functions u, v ∈ A is defined by

(u ∗K v)(n) =
∑
d|n

u(d) v
(n
d

)
K
(
gcd

(
d,

n

d

))
.

The K-convolution is always commutative. It is associative if and only if the kernel K

satisfies the functional equation K(gcd(a, b))K(gcd(ab, c)) = K(gcd(a, bc))K(gcd(b, c)) for all
a, b, c ∈ N [2].

Definition 2.1.2 (Narkiewicz’s A-convolution [7]). For each n ∈ N, let An be a non-empty set of
positive divisors of n. The A-convolution of two functions u, v ∈ A is defined as

(u ∗A v)(n) =
∑
d∈An

u(d)v
(n
d

)
.

The algebraic properties of the A-convolution depend on the structure of the sets An. As
established by Narkiewicz [7], the A-convolution is:

• Commutative if and only if for every n ∈ N and every d ∈ An, we also have n/d ∈ An.

• Associative if and only if for all d,m, n ∈ N, the conditions ‘d ∈ Am and m ∈ An’ are
equivalent to the conditions ‘d ∈ An and m/d ∈ An/d’.
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3 Main results

In this section, we present the characterization theorems for completely additive and L-additive
functions with respect to the K- and A-convolutions. Throughout, we use the notation (fu)(n) =

f(n)u(n) for the pointwise product of two arithmetic functions.

3.1 Characterizations via K-convolution

Throughout this subsection, K denotes a given non-zero arithmetic function.

Theorem 3.1.1. Let K ∈ A be an arithmetic function such that K(n) ̸= 0 for all n ∈ N. An
arithmetic function f is completely additive if and only if for all arithmetic functions u, v ∈ A,
the identity

f(u ∗K v) = (fu) ∗K v + u ∗K (fv) (2)

holds.

Proof. First, suppose f is a completely additive function. For any n ∈ N, we have

[f(u ∗K v)](n) = f(n)(u ∗K v)(n)

= f(n)
∑
d|n

u(d)v
(n
d

)
K

(
gcd

(
d,

n

d

))
=

∑
d|n

f
(
d · n

d

)
u(d)v

(n
d

)
K

(
gcd

(
d,

n

d

))
=

∑
d|n

(
f(d) + f

(n
d

))
u(d)v

(n
d

)
K

(
gcd

(
d,

n

d

))
=

∑
d|n

(fu)(d)v
(n
d

)
K

(
gcd

(
d,

n

d

))
+
∑
d|n

u(d)(fv)
(n
d

)
K

(
gcd

(
d,

n

d

))
= [(fu) ∗K v](n) + [u ∗K (fv)](n).

This proves the “if” part of the theorem.
Conversely, suppose that equation (2) holds for all u, v ∈ A. To show that f is completely

additive, we must prove that f(mn) = f(m) + f(n) for arbitrary m,n ∈ N. We employ a
standard technique by choosing specific functions for u and v. Let δk ∈ A be the function defined
by δk(j) = 1 if j = k and 0 otherwise.

Let u = δm and v = δn. We evaluate both sides of (2) at the integer mn.

• LHS: For the left-hand side (LHS), we first compute the convolution (u ∗K v)(mn):

(u ∗K v)(mn) = (δm ∗K δn)(mn) =
∑
d|mn

δm(d)δn

(mn

d

)
K

(
gcd

(
d,

mn

d

))
.

The only non-zero term in this sum occurs when d = m, which implies mn/d = n. Thus,
the sum reduces to a single term: (δm ∗K δn)(mn) = K(gcd(m,n)). The LHS is therefore
[f(u ∗K v)](mn) = f(mn) ·K(gcd(m,n)).
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• RHS: For the right-hand side (RHS), we compute the two convolution terms. The first term
is [(fu) ∗K v](mn). Note that fu = f · δm = f(m)δm.

[(f(m)δm) ∗K δn](mn) = f(m)
∑
d|mn

δm(d)δn

(mn

d

)
K

(
gcd

(
d,

mn

d

))
= f(m)K(gcd(m,n)).

Similarly, the second term is [u ∗K (fv)](mn). Since fv = f · δn = f(n)δn, we have

[δm ∗K (f(n)δn)](mn) = f(n)
∑
d|mn

δm(d)δn

(mn

d

)
K

(
gcd

(
d,

mn

d

))
= f(n)K(gcd(m,n)).

The RHS is the sum of these two terms: (f(m) + f(n))K(gcd(m,n)).

Equating the LHS and RHS gives

f(mn)K(gcd(m,n)) = (f(m) + f(n))K(gcd(m,n)).

Since K(gcd(m,n)) ̸= 0 by hypothesis, dividing by K(gcd(m,n)) yields f(mn) = f(m)+f(n).
Since m,n were arbitrary, f is completely additive.

Example 3.1.1. To illustrate Theorem 3.1.1, let f(n) = Ω(n), the total number of prime factors
of n (a completely additive function). Let the kernel be the constant function K(n) ≡ 1. Let u
and v be the constant function U(n) = 1. We test the identity at n = 12 = 22 · 3.

• LHS: f(U∗1U)(12) = Ω(12)·(U∗1U)(12) = 3·
∑

d|12 U(d)U(12/d)K(gcd(d, 12/d)). The
divisors are {1, 2, 3, 4, 6, 12}. Since U(·) = 1 and K(·) ≡ 1, the sum equals

∑
d|12 1 = 6.

Hence LHS = 3 · 6 = 18.

• RHS: The first term is
∑

d|12Ω(d)·1·1 =
∑

d|12Ω(d). The second term is
∑

d|12 1·Ω(12/d)·
1 =

∑
d|12Ω(12/d) =

∑
d|12Ω(d). Thus RHS = 2

∑
d|12Ω(d). Now Ω(1) = 0,Ω(2) = 1,

Ω(3) = 1, Ω(4) = 2, Ω(6) = 2, Ω(12) = 3, so
∑

d|12Ω(d) = 0 + 1 + 1 + 2 + 2 + 3 = 9.
Hence RHS = 2 · 9 = 18 = LHS.

Therefore, the identity holds.

Theorem 3.1.2. Let f be an arithmetic function. If f is L-additive and hf is non-zero valued,
then for all u, v ∈ A,

f(u ∗K v) = (fu) ∗K (hfv) + (hfu) ∗K (fv). (3)

Conversely, if there is a completely multiplicative non-zero valued function h such that for all
u, v ∈ A,

f(u ∗K v) = (fu) ∗K (hv) + (hu) ∗K (fv),

then f is L-additive and hf = h.
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Proof. Suppose that f is L-additive with associated function hf . By Theorem 2.0.1 (restated from
Haukkanen [3]), the function g = f/hf is completely additive. By Theorem 3.1.1, g satisfies

g(u ∗K v) = (gu) ∗K v + u ∗K (gv).

Multiplying pointwise by hf (which is completely multiplicative) gives

hf · (g(u ∗K v)) = hf · ((gu) ∗K v) + hf · (u ∗K (gv)).

Since f = ghf , the LHS is f(u ∗K v). For the RHS, we expand the convolutions. For any n ∈ N:

[hf · ((gu) ∗K v)](n) = hf (n)
∑
d|n

g(d)u(d)v(n/d)K(gcd(d, n/d))

=
∑
d|n

hf (d)hf (n/d)g(d)u(d)v(n/d)K(gcd(d, n/d))

=
∑
d|n

(f(d)u(d))(hf (n/d)v(n/d))K(gcd(d, n/d))

= [(fu) ∗K (hfv)](n).

A similar calculation shows that [hf · (u ∗K (gv))](n) = [(hfu) ∗K (fv)](n). This proves the first
part.

For the converse, assume the identity holds for some completely multiplicative non-zero
valued function h. Dividing pointwise by h, we get(

f

h

)
(u ∗K v) =

((
f

h

)
u

)
∗K v + u ∗K

((
f

h

)
v

)
.

By Theorem 3.1.1, this implies that the function f/h is completely additive. By Theorem 2.0.1,
it follows that f is L-additive with hf = h.

Corollary 3.1.3. Let D denote the arithmetic derivative and let N(n) = n. If u, v ∈ A, then

D(u ∗K v) = (Du) ∗K (Nv) + (Nu) ∗K (Dv).

Proof. The arithmetic derivative D is L-additive with hD(n) = n = N(n). The function N is
completely multiplicative and non-zero valued.

The result follows directly from Theorem 3.1.2.

3.2 Characterizations via A-convolution

We now present the analogous results for Narkiewicz’s A-convolution.

Definition 3.2.1. An arithmetic function f is A-additive if f(mn) = f(m)+f(n) for all m,n with
m,n ∈ AN and mn = N [9]. A function f is LA-additive if there is a completely multiplicative
function hf such that f(mn) = f(m)hf (n) + f(n)hf (m) for all m,n with m,n ∈ AN and
mn = N .
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Theorem 3.2.1. Let ∗A be a commutative A-convolution. An arithmetic function f is A-additive
if and only if for all u, v ∈ A,

f(u ∗A v) = (fu) ∗A v + u ∗A (fv).

Proof. The proof is analogous to that of Theorem 3.1.1. The direct part follows by expanding
the definitions. For the converse, we again choose u = δm and v = δn and evaluate at an integer
N such that m,n ∈ AN and mn = N . The convolution (u ∗A v)(N) =

∑
d∈AN

δm(d)δn(N/d)

will be non-zero only if m ∈ AN and n = N/m. Commutativity ensures n ∈ AN as well. The
argument then proceeds identically, yielding f(N) = f(m) + f(n).

Theorem 3.2.2. Let ∗A be a commutative A-convolution. Let f be an arithmetic function. If f is
LA-additive and hf is non-zero valued, then for all u, v ∈ A,

f(u ∗A v) = (fu) ∗A (hfv) + (hfu) ∗A (fv).

Conversely, if there is a completely multiplicative non-zero valued function h such that the identity
holds for all u, v ∈ A, then f is LA-additive and hf = h.

Proof. The proof follows the same structure as that of Theorem 3.1.2, but relies on the
A-convolution versions of the preceding theorems.

Corollary 3.2.3. Let ∗A be commutative. If f is an LA-additive function and hf is non-zero
valued, then for all u ∈ A,

f(u ∗A u) = 2((fu) ∗A (hfu)).

Proof. This follows by setting v = u in Theorem 3.2.2 and using the commutativity of ∗A.

4 Conclusion

This paper has rigorously established characterization theorems for completely additive and
L-additive functions within the frameworks of K-convolution and Narkiewicz’s A-convolution.
The core contribution is the demonstration that Leibniz-type rules serve as necessary and sufficient
conditions for these classes of functions, extending classical results for the Dirichlet convolution
to a much broader family of operations.

Future work could explore several avenues. One direction is to investigate higher-order
L-additive functions or to seek analogous characterizations for other classes of arithmetic functions.
Another promising direction is to study the analytic consequences of these identities, such as
deriving asymptotic formulas for summatory functions involving these generalized convolutions,
which would further illuminate the deep connections between the algebraic and analytic properties
of arithmetic functions.
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