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Abstract: We provide an elementary proof of the fact that a sequence defined by a linear
recurrence relation with integer coefficients is periodic if and only if all characteristic roots are
distinct roots of unity. Additionally, we discuss the case in which the coefficients of the recurrence
relation are restricted to the set {−1, 0, 1}.
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1 Introduction

We study homogeneous linear recurrence relations of the form

sn+k = ck−1sn+k−1 + ck−2sn+k−2 + · · ·+ c0sn (1)

with integer coefficients c0, . . . , ck−1, where c0 ̸= 0. A sequence (sn) is uniquely determined by
its initial values s0, . . . , sk−1.

In a recent paper, Atanassov and Shannon [1] proved that sequences (sn) defined by the
coefficients ck−1 = 1, ck−2 = −1, ck−3 = 1, ck−4 = −1, . . . are periodic. They also gave
explicit formulas for sn, distinguishing between the cases where the order k is odd or even.
A similar result was obtained by Gryszka [5] for sequences defined by coefficients of the types
0,−1, 0,−1, . . . and 0, 1, 0,−1, 0, 1, 0,−1, . . . . It is worth mentioning that the characteristic
polynomials for the sequences mentioned above are
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P1(x) = xk − xk−1 + xk−2 − · · ·+ (−1)k ,

P2(x) = x2k + x2k−2 + x2k−4 + · · ·+ 1 ,

and

P3(x) = x2k − x2k−2 + x2k−4 · · ·+ (−1)k ,

respectively. All of them are divisors of a polynomial xm − 1 for a suitable integer m.
This note aims to characterize linear recurrence relations with integer coefficients that generate

periodic sequences. Our main result follows, for example, from more general results discussed in
Chapter 3 of the book by Everest et al. [3].

2 Results

Theorem 1. Let the sequence (sn) be defined by the recurrence relation (1) with integer
coefficients ci for i = 0, 1, . . . , k − 1, where c0 ̸= 0. Then (sn) is periodic for any initial values
s0, . . . , sk−1 if and only if all the roots of the characteristic polynomial

P (x) = xk − ck−1x
k−1 − ck−2x

k−2 − · · · − c1x− c0

are distinct and and lie on the unit circle.

Proof. First, suppose the characteristic polynomial P (x) has only simple roots λ1, λ2, . . . , λk

lying on the unit circle.
It is known that the closed-form solution for sn is

sn = a1λ
n
1 + a2λ

n
2 + · · ·+ akλ

n
k .

Furthermore, for a given set of k initial conditions, the constants a1, a2, . . . , ak are uniquely
determined. By Kronecker’s theorem, every algebraic integer λ on the unit circle is a root
of unity (see, e.g., [5]). Therefore, for each root λj (j = 1, 2, . . . , k), there exists a positive
integer mj (its multiplicative order) such that λmj

j = 1. Let m be the least common multiple
of m1,m2, . . . ,mk. Then for any nonnegative integer n and for all j, we have λm+n

j = λn
j , and

consequently, sn+m = sn, which proves the sequence (sn) is periodic.
On the other hand, suppose, to the contrary, that the characteristic polynomial P (x) has a

multiple root or at least one root that does not lie on the unit circle and (sn) is periodic for any
initial values. The constant term c0 is a nonzero integer. It follows from Vieta’s formulas that if
there is a root inside the unit circle, then there must also be a root outside the unit circle.

So, without loss of generality, we may assume that a root λ1 of the polynomial P (x) lies
outside the unit circle or has multiplicity at least two.

Let P (x) have distinct roots λ1, λ2, . . . , λr with multiplicities t1, t2, . . . , tr, respectively. In this
case, the general closed-form solution for (sn) is

sn = a1(n)λ
n
1 + · · ·+ ar(n)λ

n
r , (2)

where each aj(n) is a polynomial whose degree is less than tj .
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Now, suppose, for the sake of contradiction, that the sequence (sn) defined by the original
recurrence is periodic for any choice of initial values s0, . . . , sk−1. We will show this leads to
a contradiction. The coefficients aj(n) in (2) are not arbitrary; they are uniquely determined by
the initial values. We are free to choose these initial values to construct a specific sequence that
violates periodicity. Consider a choice of initial values such that in the closed form (2), we have
a2(n) = a3(n) = · · · = 0 for all n, and a1(n) is a non-zero constant polynomial. This is always
possible by an appropriate choice of initial conditions.

Now, we analyze the two cases from our initial assumption:

• Case 1: λ1 is a multiple root. In this case, we can choose initial values such that a1(n) is a
non-constant polynomial (e.g., a1(n) = n).

• Case 2: λ1 is a simple root with |λ1| > 1. In this case, a1(n) is a constant, which we can
take to be 1.

In both cases, the resulting sequence simplifies to sn = a1(n)λ
n
1 . We then have

lim
n→∞

|sn| = +∞ .

A sequence that diverges to infinity cannot be periodic. This contradicts the assumption that (sn)
is periodic for any initial values.

We recall the definition of cyclotomic polynomials. The primitive n-th roots of unity are the
complex roots of xn − 1 that are not roots of xd − 1 for any positive divisor d < n; that is, their
multiplicative order is exactly n. The n-th cyclotomic polynomial, denoted Φn(x), is the monic
polynomial whose complex roots are precisely the primitive n-th roots of unity.

The first six cyclotomic polynomials are:

Φ1(x) = x− 1 , Φ2(x) = x+ 1 , Φ3(x) = x2 + x+ 1 , Φ4(x) = x2 + 1 ,

Φ5(x) = x4 + x3 + x2 + x+ 1 , Φ6(x) = x2 − x+ 1 .

A fundamental identity involving cyclotomic polynomials is:

xn − 1 =
∏
d|n

Φd(x) .

where the product is taken over all positive divisors d of n.
As a consequence of Theorem 1, we immediately have that any sequence whose characteristic

polynomial is a product of pairwise distinct cyclotomic polynomials is periodic.

We now turn our attention to the case when the coefficients of the linear recurrence relation (1)
belong to the set {−1, 0, 1}. It is known that for any n < 105, the coefficients of the cyclotomic
polynomial Φn(x) are −1, 0 or 1. This property also holds for Φpq(x), where p and q are distinct
primes (see [2]).

Let U denote the set of all monic polynomials with coefficients in {−1, 0, 1}, all of whose
roots are simple roots of unity. Then, for example, for any positive integer n we have

xn − 1 ∈ U , xn + 1 ∈ U , Φn(x) ∈ U (for n < 105) .

Giving a complete characterization of U seems to be a very hard problem. We give some simple
sufficient conditions for a polynomial to belong to U .
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Proposition 1.

(i) Let P (x) ∈ U be a polynomial with coefficients in {0, 1}. Then (1− x)P (x) ∈ U .

(ii) Let P (x) ∈ U be a polynomial of degree h and let Q(x) ∈ U be of the form

Q(x) = xtm + atm−1x
tm−1 + atm−2x

tm−2 + · · ·+ at1x
t1 + a0 ,

where t1 > h and ti > ti−1 + h for i = 2, 3, . . . ,m. If P (x) and Q(x) are coprime, then
P (x)Q(x) ∈ U .

The proofs are straightforward and are left to the reader.

To conclude, we give an example of a periodic sequence defined by the recurrence relation:

sn+2k+1 = −sn+2k − sn+1 − sn (n = 0, 1, 2, . . . , n) , (3)

where k is a fixed non-negative integer. The corresponding characteristic polynomial is

x2k+1 + x2k + x+ 1 = (x+ 1)(x2k + 1) ∈ U .

Let the initial conditions s0, s1, . . . , s2k be given. It can be shown that the sequence defined by
(3) is periodic with period 4k. The sequence for one period is (s0, s1.s2, . . . , s4k−1), where

s2k+m = (−1)m(s2k + s0)− sm for m = 1, 2, . . . , 2k − 1 .
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