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Abstract: As a continuation of Part I (see [1]), we offer new inequalities for classical arithmetic
functions such as the Euler’s totient function, the Dedekind’s psi function, the sum of the positive
divisors function, the number of divisors function, extended Jordan’s totient function, generalized
Dedekind’s psi function.
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1 Introduction

Let φ(n) and ψ(n) denote the Euler’s totient and Dedekind’s psi functions. Their generalizations
are Jordan’s totient Js(n) and ψs(n), defined by
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Js(1)=1, Js(n)=n
s ·

∏
p|n

(
1− 1

ps

)
for n > 1, s – arbitrary complex number, and

ψs(1) = 1, ψs(n) = ns ·
∏
p|n

(
1 +

1

ps

)
for n > 1, repsectively, where p denotes a prime number (see [3]). Clearly, J1(n) = φ(n) and
ψ1(n) = ψ(n).

The sum of the positive divisors function is denoted by σ(n), while the number of divisors is
denoted by d(n).

Let ω(n) denote the number of distinct prime factors of n and γ(n) – the product of distinct
prime divisors of n.

There are many important inequalities for the above functions, for a survey of results, see [2].
In a recent paper [1], certain new inequalities have been provided. The aim of this paper is to
offer more new inequalities, as well as some generalizations.

2 Main results

Theorem 1. For all n ̸= 2, 3, 4, 6, 8, 10, 18, 30, one has

(φ(n))2 > σ(n). (1)

Proof. By the classical inequality
φ(n)σ(n) < n2

(see, e.g., [2]), one has

σ(n) <
n2

φ(n)
.

On the other hand, by a result by D. G. Kendall and R. Osborn (see [2]), we have

φ(n) > n
2
3 for n > 30. (2)

Then we get from the above that

σ(n) <
n2

φ(n)
< (φ(n))2 for n ≥ 31. (3)

An easy computation shows that (1) is true also for the specified values.

Corollary 1. For n ≥ 7, and n ̸= 10, 12, 18, 30, one has

(φ(n))2 > ψ(n). (4)

Proof. As σ(n) ≥ ψ(n), relation (4) follows by (1) for the values given there. An easy verification
shows that (4) is also true for the above stated values.

Corollary 2. For each n ≥ 5, one has

(φ(n))d(n) > (ψ(n))ω(n). (5)
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Proof. Since d(n) ≥ 2ω(n), we get that

(φ(n))d(n) ≥ (φ(n))2ω(n) > (ψ(n))ω(n),

by Corollary 1. A verification shows that the inequality is also valid for n = 6, 10, 12,

18, 30.

Theorem 2. For all n ≥ 31, one has

2φ(n) > ψ(n). (6)

Proof. Since φ(n)ψ(n) < n2, it will be sufficient to prove that

φ(n) · 2φ(n) > n2 for n ≥ 31. (7)

By inequality (2) it will be sufficient to show that

2x > x2 for n ≥ 4, (8)

where x = n
2
3 .

Now by taking logarithms in (8), and considering the function

f(x) = x ln 2− 2 lnx,

since
f ′(x) =

x ln 2− 2

x
,

f will be strictly increasing for

x ≥ 2

ln 2
= 2.8 . . . .

As f(4) = 0, Inequality (8) follows. Now remark that n
2
3 ≥ 4 for n ≥ 8. Thus (6) holds true for

any n ≥ 31.

Corollary 3. For each n ≥ 5, one has

(d(n))φ(n) > (ψ(n))ω(n). (9)

Proof. Indeed, as d(n) ≥ 2ω(n), one has

(d(n))φ(n) ≥ 2ω(n)φ(n) > (ψ(n))ω(n)

by Theorem 2, for n ≥ 31.A direct verification shows that (9) holds true also for 5 ≤ n ≤ 30.

Theorem 3. For each natural number n one has

ψ(n)

φ(n)
≤ 3ω(n)

ω(n)
. (10)

Proof. Let p1, . . . , pr be the distinct prime factors of n, with p1 < · · · < pr, with r = ω(n). We
will prove by induction that

ψ(n)

φ(n)
=

(p1 + 1) · · · (pr + 1)

(p1 − 1) · · · (pr − 1)
≤ 3r

r
. (11)

For r = 1, it is true, as this is equivalent to p1 ≥ 2.
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Now, if (11) is true for r, in order to prove it for r+1, it is immediate that we have to prove that
p+ 1

p− 1
≤ 3r

r + 1
, where p = pr+1. This inequality however can be rewritten as p(2r−1) ≥ 4r+1.

Now as r ≥ 2 and p = pr+1 ≥ 3, this will follow by 3 · (2r − 1) ≥ 4r + 1. Thus relation (11)
follows.

Corollary 4. For each natural number n one has

φ(n)(d(n))2 ≥ ψ(n)ω(n). (12)

Proof. Remark that (12) can be rewritten as

ψ(n)

φ(n)
≤ (d(n))2

ω(n)
. (13)

Clearly,
(d(n))2

ω(n)
≥ 4ω(n)

ω(n)
>

3ω(n)

ω(n)
,

so (13) follows by (10) for n ≥ 2. For n = 1, there is equality.

Now, we will obtain a result similar to one in [1].

Theorem 4. One has

ψ(n)

φ(n)
≤ (γ(n))λ for n ≥ 3, odd, (14)

ψ(n)

φ(n)
≤

( 3

2λ

)
(γ(n))λ for n even, (15)

where λ =
ln 2

ln 3
.

Proof. Let us consider the function

g(x) =
xλ · (x− 1)

(x+ 1)

for x > 0. An easy computation shows that

g′(x) · (x+ 1)2 = 2xλ > 0.

Thus, g is a strictly increasing function, implying that for p ≥ 3 one has g(p) ≥ g(3), where
3λ

2
= 1. Thus we get the inequality:

p+ 1

p− 1
≤ pλ (p ≥ 3). (16)

Now, relation (14) follows from the fact that ψ(n)
φ(n)

is the product of terms of type p+ 1

p− 1
for

primes p ≥ 3. Relation (15) follows again by (16), by writing n = 2k · N, with N odd, N ≥ 3.
For N = 1, there is an equality.
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Corollary 5. For n ≥ 31 and odd, one has

ψ(n)

φ(n)
≤ (γ(n))λ < (γ(n))

2
3 < φ(n). (17)

Proof. This follows by the (14) and γ(n) ≤ n, combined with relation (2).

Theorem 5. Let Ω(n) denote the total number of prime factors of n. If n ≥ 3 is odd, and

Ω(n)

ω(n)
≥ λ+ 1, (18)

then
ψ(n) · ω(n) ≤ (φ(n))2. (19)

Proof. Let n = pa11 · · · parr be the prime factorization of n. Then Ω(n) = a1 + · · · + ar. By (14)
one has

ψ(n)

φ(n)
≤ (γ(n))λ = (p1 · · · pr)λ.

We want to see when this last term is less than or equal to φ(n)

r
, where r = ω(n). This is equivalent

to

pa1−λ−1
1 · · · par−λ−1

r · (p1 − 1) · · · (pr − 1) ≥ r. (20)

Clearly, (p1 − 1) · · · (pr − 1) ≥ r as p1 − 1 ≥ 1, . . . , pr − 1 ≥ r. Now,

pa1−λ−1
1 · · · par−λ−1

r ≥ 2Ω(n)−(λ+1)ω(n) ≥ 1,

by (18). Thus, inequality (19) follows.

Corollary 6. When n is odd and squarefull, then (19) holds true.

Proof. If n is squarefull, then all ai ≥ 2 (i = 1, 2, . . . , r), so

Ω(n)

ω(n)
≥ 2,

and (18) holds true, as λ+ 1 = 1.63092 . . . .

As a generalization of Corollary 1, we now state the following theorem.

Theorem 6. For each real number s ≥ 2 and positive integer n ≥ 2, the inequality

(Js(n))
s+1 > (ψs(n))

s (21)

holds true.

Proof. The functions Js and ψs being multiplicative (see [2,3]), it will be sufficient to prove (21)
for prime powers n = pα (α ≥ 1, p prime).

Inequality (21) can be rewritten in this case as

(ps)α−1 · (ps − 1)s+1 > (ps + 1)s. (22)
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Since (ps)α−1 ≥ 1, for the proof of (22) it is enough the prove the inequality

(ps − 1)
ps

s >
(
1 +

2

ps − 1

)ps

(23)

for any real numbers s ≥ 2, k ≥ 2.

To prove (23), we shall use the function

h(x) =
(
1 +

2

x

)x+1

,

which is strictly decreasing for x > 0. Indeed, for x > 0, we have h′(x) = h(x) · t(y), where
y =

2

x
and

t(y) = ln(1 + y)− y(y + 2)

2(1 + y)
.

We will prove that t(y) < 0 by using the classical logarithmic inequality L > G, where

L(a, b) =
b− a

ln b− ln a

for a ̸= b is the logarithmic mean, and
G =

√
ab

is the geometric mean. One has particularly that

L(1, 1 + y) > G(1, 1 + y),

so
ln(1 + y)

y
<

1√
1 + y

.

This is less than y + 2

2(1 + y)
, as √

1 + y <
y + 2

2
= 1 +

y

2
.

Thus t(y) < 0, and the result follows.
Therefore, h′(x) < 0 for x > 0. Hence h is a strictly decreasing function for x > 0, and

therefore for x ≥ 3, too. So for x = ps − 1, we obtain

625

81
=

(
1 +

2

22 − 1

)22

>
(
1 +

2

ps − 1

)ps

for p ≥ 2 and s ≥ 2. On the other hand, we have

(ps − 1)
ps

s ≥ (2s − 1)
2s

s ≥ (22 − 1)
22

2 = 9.

Since 9 >
625

81
, inequality (22) follows.

Theorem 7. For each real number s ≥ 2 and positive integer n ≥ 2, the inequality

(Js(n))
s+θ > (ψs(n))

s. (24)

holds, where θ is an arbitrary real number satisfying

1 ≥ θ > 2
ln 5

ln 3
− 2 = 0.929947 . . . .
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Proof. As in the proof of Theorem 6, it will be sufficient to consider prime powers n = pα. Thus,
we have to prove that

(psθ)α−1 · (ps − 1)s+θ > (ps + 1)s. (25)

Since α− 1 ≥ 0, we have (psθ)α−1 ≥ 1. Therefore, (25) will be proved if the inequality

(ps − 1)s+θ > (ps + 1)s (26)

holds for all real numbers p ≥ 2 and s ≥ 2. Relation (26) can be rewritten as(
(ps − 1)

ps

s

)θ

>
(
1 +

2

ps − 1

)ps

. (27)

Let LHS be the left-hand side of (27) and RHS be the right-hand side, respectively. From the
proof of Theorem 6, we know that it is fulfilled:

LHS ≤ (32)θ, (28)
625

81
≥ RHS. (29)

Therefore, to prove (27), it remains to verify the inequality

32θ >
625

81
. (30)

Let µ = 2
ln 5

ln 3
−2. Then it is easy to see that

µ = 2 log3 5− 2 = log3

(52
32

)
= log3

(25
9

)
.

Hence,

32µ = 32 log3(
25
9
) =

625

81
.

But since θ > µ, we obtain

32θ > 32µ =
625

81
,

and (30) is proved. This finishes the proof of Theorem 7.
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