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Abstract: The main purpose of this paper is to verify the geometric conjectures of Mustonen
(2022) concerning the solutions and the number of solutions of the congruence

xn + yn ≡ 0 (mod p),

where p is a prime. For p > 2, the nontrivial solutions lie on the “lines” y ≡ cx (mod p), where
c ranges over the n-th roots of −1 modulo p. The total number of solutions is 1 + (p− 1)d if d
divides (p − 1)/2, and 0 otherwise, where d = gcd(n, p − 1). For each c, the lines are equally
spaced.
Keywords: Congruence of powers, Experimental geometry, Power residue, Primitive root, Cyclic
group.
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1 Introduction

In this note, we study the congruence

xn + yn ≡ 0 (mod p),

where p is a prime. Equivalently, we look for solutions of xn + yn = 0 over the finite field
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Fp = {0, 1, . . . , p− 1}. Seppo Mustonen examined this congruence experimentally with the aid of
the Survo system [4]. He observed that the solution set in the region 0 < x, y < p can be divided
into straight lines (or line segments), and he recorded the following observations without providing
proofs [5]:

1. The number of directions of straight lines covering all roots is gcd(p− 1, n).

2. The number of nontrivial roots in each direction is p− 1 in the region 0 < x, y < p.

3. Each nontrivial root is covered by only one of these straight lines. Hence the total number
of nontrivial roots in the region 0 < x, y < p is (p− 1) gcd(p− 1, n).

It can be seen from the figures [5] that lines with the same direction are equidistant. Merikoski
et al. [3] studied the solvability of this congruence modulo m and reported Mustonen’s observations
on the congruence modulo p.

The structure of the paper is as follows. In Section 2 we study the algebraic structure of
the congruence, describe its solution set, and determine its cardinality. In Section 3 we take a
geometric perspective and formalize and verify Mustonen’s observations 1–3, illustrating them
with examples. In Section 4 we prove that the parallel lines are equidistant, and in Section 5 we
propose directions for further research.

2 Solution of the congruence

The case p = 2. For every integer t and n ≥ 1 we have tn ≡ t (mod 2), since

tn − t = t
(
tn−1 − 1

)
has an even factor. Hence the congruence reduces to x + y ≡ 0 (mod 2), i.e., x ≡ y (mod 2).
Over F2 there are precisely two solutions: (x, y) ≡ (0, 0) and (1, 1).

The case p is odd. If x ≡ 0 (mod p), then yn ≡ 0 (mod p) and thus y ≡ 0 (mod p). So (0, 0)

is the only solution with a zero coordinate. For x ̸≡ 0 (mod p), put c = yx−1 ∈ F×
p , where

F×
p = {1, 2, . . . , p− 1} is the finite cyclic group of order p− 1. Then

xn + yn ≡ xn
(
1 + cn

)
(mod p),

so xn + yn ≡ 0 (mod p) if and only if

cn ≡ −1 (mod p). (1)

Thus the problem reduces to counting the nth roots of −1 in the cyclic group F×
p . We then obtain

the solution as
y ≡ cx (mod p),

where c goes through the solutions of cn ≡ −1 (mod p) and x goes through the values 1, 2, . . . ,
p− 1.
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Theorem 2.1. Let p be an odd prime and n ≥ 1, and set d = gcd(n, p− 1). Then the congruence
xn + yn ≡ 0 (mod p) has

1 + (p− 1)Np(n)

solutions (x, y) ∈ F2
p, where Np(n) is the number of solutions c ∈ F×

p to (1). Moreover,

Np(n) =

d, if d | p− 1

2
,

0, otherwise.
(2)

Equivalently, (1) is solvable if and only if the 2-adic valuation satisfies ν2(n) < ν2(p− 1); in that
case there are exactly d distinct solutions c of (1).

Proof. The map ϕ : F×
p → F×

p , ϕ(u) = un, is a homomorphism onto a subgroup of size (p− 1)/d

with kernel of size d = gcd(n, p− 1). Hence, for any a ∈ F×
p , the equation un = a has either d or

0 solutions u, according as a does or does not lie in the image of ϕ.
Write −1 = g(p−1)/2 for a fixed primitive root g modulo p [1]. Then un = −1 is equivalent to

gkn ≡ g(p−1)/2 (mod p) ⇐⇒ kn ≡ p− 1

2
(mod p− 1).

This linear congruence has solutions in k if and only if d | p−1
2

, and in that case there are exactly d

incongruent solutions k modulo p− 1, yielding d distinct c = gk that solve (1). This proves (2).
Finally, for each such c and each x ∈ F×

p , we obtain a solution (x, y) = (x, cx) to the original
congruence. These are precisely all the solutions with x ̸= 0, and each such solution is counted
exactly once. Indeed, if c1x ≡ c2x (mod p), then c1 ≡ c2 (mod p) since x ̸= 0; similarly, if
cx1 ≡ cx2 (mod p), then x1 ≡ x2 (mod p) since c ̸= 0 (see also Section 3.)

Thus, the total number is 1 + (p − 1)Np(n), where the extra ‘1’ accounts for (0, 0). The
equivalence with ν2(n) < ν2(p− 1) follows from noting that d | p−1

2
is automatically satisfied at

all odd primes dividing d, so the only restriction is on the power of 2.

Remark 2.1 (Explicit solutions via a primitive root). Assume d | p−1
2

and let g be a primitive
root modulo p. Put M = p−1

d
, n′ = n

d
(so gcd(n′,M) = 1), and T = 1

d
· p−1

2
. Then the linear

congruence
n′k ≡ T (mod M)

has the unique solution class k ≡ n′−1T (mod M), and the d solutions of (1) are

c = g k+tM (t = 0, 1, . . . , d− 1).

For each such c and any x ∈ F×
p , the pair (x, y) = (x, cx) is a solution, together with (0, 0).

Corollary 2.1. If p ≡ 3 (mod 4) and n is even, then xn + yn ≡ 0 (mod p) has only the trivial
solution (0, 0).

Example 2.1. • p = 5, n = 2: p − 1 = 4, d = gcd(2, 4) = 2 and d | p−1
2

= 2, so there are
Np(n) = 2 values of c with c2 ≡ −1 (mod 5) (namely c ≡ ±2), giving (p− 1)Np(n) + 1 = 9

solutions in total.

• p = 7, n = 2: p − 1 = 6, d = 2 ∤ p−1
2

= 3, so there are no nontrivial solutions. Thus, we
have only the trivial solution (x, y) = (0, 0).

• p = 7, n = 3: p−1 = 6, d = 3 | p−1
2

= 3, so Np(n) = 3 and there are (p−1)Np(n)+1 = 19

solutions.
778



Example 2.2 (Case n = p). Let p be prime and take n = p. Over Fp the Frobenius endomorphism
[2] gives tp = t for all t ∈ Fp, hence

xp + yp ≡ x+ y (mod p).

So xp + yp ≡ 0 (mod p) if and only if x + y ≡ 0 (mod p), i.e., y ≡ −x (mod p). Therefore
the solutions are exactly the p pairs (x,−x) with x ∈ Fp. This agrees with Theorem 2.1: here
d = gcd(p, p− 1) = 1, so Np(p) = 1 and the total number of solutions is 1 + (p− 1) · 1 = p. An
illustration for n = p = 7 is presented in Figure 1.
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Solutions to x7 + y7 ≡ 0 (mod 7)

Figure 1. Solutions of x7 + y7 ≡ 0 (mod 7) in F2
7:

the anti-diagonal y ≡ −x and the origin.

We conclude this section with two figures illustrating solutions to congruences of the type
considered in this paper.
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(a) p = 13, n = 3
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Solutions to x4 + y4 ≡ 0 (mod 17)

(b) p = 17, n = 4

Figure 2. Two examples of solution sets {(x, y) ∈ F2
p : xn + yn ≡ 0 (mod p)}.
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3 Proofs of Mustonen’s observations

In this section, we verify Mustonen’s observations as reviewed in the introduction. Some of the
reasoning from Section 2 is repeated here for clarity.

We start with an overview. Let p be an odd prime and n ≥ 1. Put d = gcd(n, p− 1) and

S = { c ∈ F×
p : cn ≡ −1 (mod p)}.

Then |S| ∈ {0, d}, and in fact |S| = d if and only if d | p−1
2

(otherwise |S| = 0). Here, S is the set
of directions. (Each direction corresponds to a class of slopes congruent modulo p. By convention
we usually take representatives with 0 < c < p, but one may also use −p < c < 0. The latter
choice only affects the apparent geometry of the picture, not the solution set itself.)

For each direction c ∈ S, the “line” of solutions is

Lc = {(x, y) ∈ F2
p : y ≡ cx (mod p)}.

It contains exactly p− 1 nontrivial solutions (x, y) of xn + yn ≡ 0 (mod p). When drawn in the
square 0 ≤ x, y ≤ p− 1, Lc appears as one or more straight-line segments of slope c; when the
slope is positive breaks occur at the wrap-around points where (c(x+ 1) mod p) < (cx mod p),
where (cx mod p) denotes the residue of cx modulo p. If the slope is negative, breaks occur at the
wrap-around points where (c(x+ 1) mod p) > (cx mod p). (By a “line” we mean either the set
of pairs (x, y) such that y ≡ cx (mod p), or its chosen set of representatives.)

The lines {Lc : c ∈ S} are pairwise disjoint on the set of nontrivial solutions, and their union
equals the set of all nontrivial solutions. Consequently, the number of nontrivial solutions with
0 < x, y < p is

(p− 1) |S| =

(p− 1) gcd(n, p− 1), if gcd(n, p− 1) | p− 1

2
,

0, otherwise.

We next present detailed proofs of the Properties 1–3 given by Mustonen [5].

Proof. Property 1: Number of directions. Directions are solutions c of the congruence cn ≡
−1 (mod p). We look at this algebraically. Because F×

p is cyclic of order p − 1, the map
u 7→ un has kernel of size d = gcd(n, p− 1) and image of size (p− 1)/d. Thus cn = a has either
d or 0 solutions. In our application, a = −1. This proves Property 1.

Property 2: Number of roots in each direction. For each direction c ∈ S, the “line” of solutions is

Lc = {(x, y) ∈ F2
p : y ≡ cx (mod p)}.

The elements x = 1, 2, . . . , p−1 give distinct solutions in Lc. In fact, assume cx1 ≡ cx2 (mod p);
then x1 ≡ x2 (mod p) since c ̸= 0. Thus, the number of nontrivial roots in each direction in p− 1.
This proves Property 2.

Property 3: Total number of nontrivial roots. We analyze Property 3 in the four subtitles below.
Lines from solutions (each solution is on a line). Let (x, y) be a nontrivial solution, so x, y ̸= 0.

Set c = yx−1 ∈ F×
p . Then

0 ≡ xn + yn ≡ xn
(
(yx−1)n + 1

)
= xn(sn + 1) (mod p),
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so cn ≡ −1 (mod p), i.e. c ∈ S, and (x, y) lies on the line y ≡ cx (mod p), where c ∈ S.
Solutions from lines (each integer point in a line is a solution). Conversely, assume (x, y)

lies in a line y ≡ cx (mod p). If c ∈ S and x ∈ F×
p , then with y = cx we have xn + yn ≡

xn(cn + 1) ≡ 0 (mod p). So, (x, y) is a solution.
Disjointness of the lines. If (x, y) lies on both Lc1 and Lc2 , then y ≡ c1x ≡ c2x (mod p) with

x ̸= 0: hence c1 ≡ c2 (mod p). So, the lines are disjoint.
Conclusion of Property 3. Combining the above parts, we see that every nontrivial solution lies

on exactly one line Lc, (c ∈ S), and each Lc contributes one solution for each x ∈ F×
p , i.e., exactly

p− 1 nontrivial solutions. This proves that each nontrivial root is covered by exactly one of these
straight lines and the total number of nontrivial roots in the region 0 < x, y < p is (p− 1)|S|.

We illustrate the geometry of the solutions with a couple of examples.

Example 3.1. Consider the congruence x2 + y2 ≡ 0 (mod 13) with p = 13 and n = 2. Then
d = gcd(n, p − 1) = 2, and thus d | (p − 1)/2. Now, S = {5, 8} = {5,−5} ⊂ F×

13, the set
of square roots of −1 modulo 13. Hence there are d = 2 directions, and the “lines” are L5 and
L8 = L−5, which together partition the set of nontrivial solutions. Moreover, |L5| = p− 1 = 12,
and likewise |L−5| = 12. Thus the total number of solutions, including the trivial solution (0, 0),
is 1 + d(p− 1) = 1 + 2 · 12 = 25.

The set L5 consists of the points in blue line segments in Figure 3a. In these line segments the
slope is c = 5 ∈ Z. The set L−5 consists of the points in red line segments in Figure 3a. In these
line segments the slope is c = −5 ∈ Z. Although L8 = L−5 as sets, the decomposition into line
segments differs: the first segment for L8 is the single point (1, 8), the second segment runs from
(2, 3) to (3, 11), and so on.

Thus the nontrivial solutions are exactly L5 ∪ L−5, as depicted in Figure 3a.
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Solutions to x2 + y2 ≡ 0 (mod 13)

(a) The lines correspond to y ≡ cx (mod 13) with
c2 ≡ −1 (mod 13), here c = −5 (red) and c = 5

(blue). The origin is marked in green.
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Solutions to x9 + y9 ≡ 0 (mod 13)

(b) The lines correspond to y ≡ cx (mod 13) with
c9 ≡ −1 (mod 13), here c = 4 (red), c = −3 (blue)
and c = −1 (black). The origin is marked in green.

Figure 3. Geometric illustration of solution sets {(x, y) ∈ F2
p : xn + yn ≡ 0 (mod p)}.
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Example 3.2. Consider the congruence x9 + y9 ≡ 0 (mod 13) with p = 13 and n = 9. Then
d = gcd(n, p − 1) = 3, and thus d | (p − 1)/2. Now, S = {4, 10, 12} = {4,−3,−1} ⊂ F×

13,
the set of 9-th roots of −1 modulo 13. Hence there are d = 3 directions, and the “lines” are L4,
L10 = L−3, and L12 = L−1, which together partition the set of nontrivial solutions. Each of these
sets has cardinality p− 1 = 12. Thus the total number of solutions, including the trivial solution
(0, 0), is 1 + d(p− 1) = 1 + 3 · 12 = 37.

The set L4 consists of the points in blue line segments in Figure 3a. In these line segments the
slope is c = 4 ∈ Z. The set L−3 consists of the points in red line segments in Figure 3a. In these
line segments the slope is c = −3 ∈ Z. Although L10 = L−3, the line segments related to L10

and L−3 are different. The line segments related to L10 have the slope c = 10 ∈ Z. The set L−1

consists of the points in the black line segment. Now, L12 = L−1 but there are 12 “line segments”
related to L12, and each line segment consists only of one point. The first “line segment” is (1, 12),
the second is (2, 11), and so on.

Thus the nontrivial solutions are exactly L4 ∪ L−3 ∪ L−1, as shown in Figure 3a.

Remark 3.1. It should be noted that the set of nontrivial solutions can also be partitioned into
parallel and equidistant line segments that are not of the form y ≡ cx (mod p) with c ∈ S.
For example, in Figure 3a, the red points can be grouped so that (2, 3) is connected to (5, 1), and
so on. These segments have slope −2/3. A similar phenomenon can also be observed in Figure 3b.
A closer study of such line segments suggests that they can be described by congruences of the
form

ax+ by ≡ 0 (mod p).

For instance, the line through the points (2, 3) and (5, 1) has the equation

2x+ 3y − 13 = 0,

which modulo 13 takes the form 2x + 3y ≡ 0 (mod 13). In the finite field F13, we obtain
y = (−2/3)x = (−5)x = 8x. We do not pursue this direction further in the present paper.

4 Distance of line segments

In this section, we prove that for each direction c ∈ S the line segments are equally spaced. For
example, in Figure 3b, the blue line segments are equally spaced, and similarly for the red line
segments.

Let c ∈ S be a direction with −p < c < p, and consider the line

y ≡ cx (mod p).

Then each line segment in the region 0 ≤ x, y < p is of the form

ℓk : y = cx− kp

for a suitable value of k and certain values of x. To be more precise, if 0 < c < p, then

0 < cx− kp < p ⇐⇒ kp

c
< x <

(k + 1)p

c
,

and if −p < c < 0, then (k + 1)p/c < x < kp/c.
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One easily checks that ℓk and ℓk+1 are two consecutive line segments (the order depends on the
sign of c). For example, if 0 < c < p, then ℓ0 is the left-most line segment and ℓ1 is the next one.

Applying elementary geometry to the equations ℓk : y = cx−kp and ℓk+1 : y = cx−(k+1)p,
we see that their perpendicular distance is equal to

p√
1 + c2

.

Since the distance is independent of k, the line segments are equally spaced.

5 Concluding remarks

The nontrivial solutions of the congruence xn + yn ≡ 0 (mod p) are the “lines”

y ≡ cx (mod p),

where c goes through the solutions of cn ≡ −1 (mod p) and x goes through the values 1, 2, . . . , p− 1.
This gives every solution exactly once. Here, c determines the direction of a line, and each line has
a distinct direction, [5].

However, a single line y ≡ cx (mod p) does not extend to infinity. Instead, it is represented
within the region 0 < x, y < p; whenever the line crosses the boundary of this region, the points
are mapped back into the region by modular reduction. Consequently, the graph of the line inside
this region consists of a collection of line segments that are parallel and equally spaced, as is
shown in Section 4. The line segments can also be described by

y = (cx mod p).

In this paper, we proved the conjectures of Mustonen [5] concerning the geometry of the congruence
solutions.

This is a rich area of research, and we hope that these results will stimulate further investigations
into the number-theoretic, algebraic, and geometric properties of such congruences.

In particular, Merikoski et al. [3] studied the solvability of this congruence for arbitrary moduli
m (≥ 2), and the reader is invited to examine their solutions.
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