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Abstract: In this article, we study the properties of i)-amicable numbers. We prove that their
asymptotic density relative to the positive integers is zero. We also propose generalizations of
1-amicable numbers.
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1 Notations, definitions and formulas

The letter p, with or without a subscript, will always denote prime number. Let n > 1 be positive
integer with prime factorization

__al a
n=py--p".
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We define the Dedekind function ¢/(n) by the formula

W(n) = nll (1 + pi) and (1) =1. (1)

Recall that

wn) = 3 2D @)
d|n

where j(n) is the Mobius function. The proof of (2) can be found in [5]. We shall use the
convention that a congruence, m = n (mod d) will be written as m = n (d). A positive integer
n is said to be ¢-abundant if ¢(n) > 2n. A primitive ¢)-abundant number is defined as an
1-abundant number none of whose proper divisors is 1-abundant. Thus every -abundant number
is a multiple of a primitive -abundant numbers. Throughout this paper we denote v = loglogn

and sy (n) = ¢¥(n) —n.
2 Introduction and statement of the results
Two different natural numbers a and b are said to be y-amicable if

v(a) = (b)) =a+b. 3)

In 2019, Amiram Eldar contributed sequences A323329 and A323330 to the OEIS [6], listing the
smaller and larger members, respectively, of the 1)-amicable pairs. The smallest 1)-amicable pair

is (1330, 1550). Apparently, this definition is analogous to the classical definition of amicable
pairs, which uses the sum-of-divisors function ¢. In Section 5, we introduce the notion of
Y-amicable k-tuples. In Section 6, we provide another definition of the same concept. Our main
result concerns the density of y-amicable pairs. We prove that their asymptotic density is zero.

Theorem 2.1. Let M (n) denote the number of \-amicable pairs (a,b) with a < b and a < n.
Then M (n) = o(n) as n — oo.

Our approach is based on the method of Erdds’ [3]. We essentially reproduce his argument,
adapting it to Dedekind’s ¢)-function, with only minor technical modifications.
3 Lemmas

Lemma 3.1. Let q; be a sequence of prime numbers satisfying

Denote by v,(n) the number of q; dividing n. Then the density of integers n with vy(n) < Ais0
for every A.

Proof. See ([3], Lemma 1). L]
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Lemma 3.2. The number of integers m < n which do not satisfy all of the following three
conditions:

(1) If p* | mand a > 1, then p® < (logn)?;
(2) The number of distinct prime factors of m is less than 10v ;

(3) The greatest prime factor of m is greater than n'*/(?) ;

is 0<10g+n>.
Proof. See [2, Lemma 1]. O]

Lemma 3.3. Let A be any constant. Then the density of integers n for which
A
p(n) # 0 ((Hp) )
p<A

Proof. 1t suffices to show that the density of integers n for which there exists a prime p < A such
that ¢»(n) # 0 (pA) is 0. Let g1, ¢, . . . be primes satisfying ¢; = —1 (p). It is well known that

is 0 for every A.

Hence, by Lemma 3.1, the density of integers divisible by fewer than A of the ¢; is 0. If n is
divisible by at least A of the ¢;, then (1) gives us 1(n) = 0 (p*). Therefore the density of the
integers with 1(n) # 0 (p*) is 0. O

Lemma 3.4. Denote

np*(d)

Ya(n) = y

(]

“4)

d|n
d<A

Then for every € > 0 and n > 0, there exists Ay such that for A > Ay, the number of integers
n < x for which 1)(n) — ¥ a(n) > nn is less than cx.

Proof. Using (2) and (4), we have

ol 2

ORI I S) SLLLL IS SUETTRND SEFAE) SE At

n=1 n=1 d|n di>A dggl‘/dl d>A

If Lemma 3.4 were not true, we would have ¢)(n) — ¢4(n) > nn for at least ez integers d < x.
Thus

z nea?
Z (¥(n) — va(n)) >n Z d > T (6)
n=1 d<ex
For A > -4 (6) contradicts (5), which proves Lemma 3.4. O
ne

Lemma 3.5. A primitive 1)-abundant number not exceeding n, which satisfies the three conditions
of Lemma 3.2, necessarily has a prime divisor between (logn)'® and n'/“"), provided n is
sufficiently large.
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Proof. Assume that m = ab is such a primitive 1)-abundant number, where all prime factors of a
are less than (log n)'” and all prime factors of b are greater than n'/(“*) We have

) @
m
and
@ < 2. (8)
Now (8) and Lemma 3.2 imply
¥(a) 1 1
a =2- a <2- (log n)t00v ©)

On the other hand, by (2) and Lemma 3.2, we obtain

() = pA(d) 1 1\ 20v
= > = [T(1+=)<(1+ Sy ) <1t e (10)

dlb plb p
if n 1s sufficiently large. Now (9) and (10) yield
Y(m) _ ¢(a) ¥(b)

= <2
m a b

for sufficiently large n, which contradicts (7). O

4 Proof of Theorem 2.1

Denote by (a;,b;), a; < b;, i = 1,2,... the sequence of pairs of ¢-amicable numbers. It is
sufficient to prove that the sequence a;, © = 1,2, ... has density 0.

We split the sequence a; into two classes. Let A = A(e) be sufficiently large. In the first
class are the a; for which there exists a p < A with ¢(a;) # 0 (p*). It follows from Lemma 3.3
that the density of the a; of the first class is 0. For the a; of the second class ¢(a;) = 0 (pA)
for every p < A. It is easy to see that if d < A and d | a; then ¢(a;) — a; = 0(d). Therefore
¥(a;) —a; = b; = 0(d). From Lemma 3.4 it follows that except for at most en of the a; not
exceeding n we have

Yalai) > Y(a;) _q. (11)

a; a;
By (2), (4), (11) and the fact that every divisor d < A of a; also divides b;, we get
¥ (bi) N2<d) MQ(d) Yalai) _ ¥(ai)
d|b; d|a;
d<A
Now (3) and (12) lead to
yo Vo) _v) b _a
a; bz Q; bz
Hence
l<—= <1+,
The last inequality and (3) give us
o< P8 oy, (13)
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Bearing in mind Lemma 3.2, we may assume that each a; from (13) has a primitive 1-abundant
divisor satisfying all of the three conditions of Lemma 3.2. Let ay, as, . . ., a; denote all distinct
numbers from (13) such that a; < n. According to Lemma 3.5, each a; has a prime factor p;
between (logn)'? and n'/“%). Thus a; = p;c;, where ¢; < n/(logn). Suppose that ¢; = ¢; for
some ¢ # j. Then p;, # p;. We have

Pla;)  Y(p)(e)  v(e)pi+1

a; a; Gi Di
and
lag) _ p)ele) _ i) p+ 1
@ aj Cj Dj 7
which together imply
Plai) a;  pilpi+1) (14)

a; Pla;)  pi(p;+1)°
Without loss of generality, assume that p; > p;. Now (14) yields

w(az) CLj 1 1
— > > 15
a; (a) " pi(pj +1) = nl/CV) (1
On the other hand, from (13) it follows that
OIS U
— <14 -,
a; ¢(aj> 2

which contradicts (15) for 7 sufficiently small. Consequently, ¢; # ¢, for i # j, which means that
the number of a; < n from (13) is equal to the number of ¢;, which is o(n). This completes the
proof of Theorem 2.1.

5 )-amicable k-tuples

Dickson [1] and Mason [4] introduced a definition of amicable k-tuples using the sum-of-divisors
function 0. We now provide an analogous definition based on the function v). We say that the
natural numbers nq, ..., n; form an v-amicable k-tuple if

) = Ylm) =+ = Y(ng) = ma+ma+ o+
When n; < ny < - -+ < ng, we have that
kni < (n;) < kny

for each j € [1, k|, which means that n; is k-i)-abundant. The next theorem will help us search
for y-amicable k-tuples.

Theorem 5.1. Suppose the natural numbers Ny, ..., Ny and a satisfy (a, N1) =---= (a, Ny) =1

and
w(a)_Nl‘f‘“"f‘Nk_ _N1_|_..._|_Nk

a o) »(Nk)

Then aNy, . ..,aNy are an \-amicable k-tuple.

Proof. This follows directly from the multiplicativity of ). [
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Several ¢)-amicable triples are listed below.

List 1. ¢)-amicable triples

w-amicable triples

(79170, 80850, 81900), (150150, 158340, 175350), (158340, 161700, 163800),

(237510, 242550, 245700), (300300, 316680, 350700), (316680, 323400, 327600),
(395850, 404250, 409500), (450450, 474810, 526260), (450450, 475020, 526050),
(468930, 483210, 499380), (474810, 485940, 490770), (475020, 485100, 491400),
(554190, 565950, 573300), (570570, 662340, 702450), (600600, 633360, 701400),
( ) ( ) ( )
( ) ( ) ( )

622440, 641550, 671370), (633360, 646800, 655200), (641550, 646800, 647010),
644280, 644280, 646800), (696150, 696150, 784980), (712530, 727650, 737100

The OEIS [6] sequences A385852, A386901 and A386933 consist of the first, second and
third components of 1)-amicable triples, respectively.

6 Another definition of y)>-amicable k-tuples

The following definition is analogous to that given by Yanney [7], formulated for o-function. We
say that the natural numbers n4, . . ., n; form a ¢)-amicable k-tuple if

Y(ny) = (ng) = =1(ng) = (n1+mng+ - +ng).

E—1

When k£ = 3, we have
ny = sy(n2) + sy(n3)
ne = Sy(ny) + sy(ng) .
ng = sy(n1) + sy(ne)

Several i)-amicable triples are listed below.

List 2. ¢)-amicable triples

w-amicable triples

(2,2,2), (4,4,4), (6,9,9), (8,8,8), (16, 16, 16), (18,27,27), (28, 33, 35), (32, 32, 32),
(64,64,64), (54,81, 81), (70,99, 119), (105,124, 155), (128,128, 128), (110, 135, 187),
(165,176, 235), (150, 275,295), (200, 225, 295), (182,245, 245), (162, 243, 243),

(256, 256, 256), (238, 255,371), (240, 385, 527), (280, 345, 527), (310, 315, 527),
(310, 345, 497), (315, 320,517), (315,320, 517), (382, 385, 385), (364, 441, 539),
( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( ) (

512,512,512), (512,512,512), (468, 715, 833), (520, 663, 833), (585, 598, 833),
644,705, 955), (590,675, 895), (486, 729, 729), (795, 862, 935), (800, 885, 1195)

The OEIS [6] sequence A387291 consists of the first elements of 1-amicable triples. When
k = 4, we have
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Several 1-amicable quadruples are listed below.

List 3. y-amicable quadruples

1-amicable quadruples

(3,3,3,3), (4,4,5,5), (6,8,11,11), (8,8,9,11), (9,9,9,9), (12, 14, 23, 23),
(30,44,71,71), (44,46, 55,71), (45,45,55,71), (51,55, 55, 55), (68, 68,81, 107),
(81,81,81,81), (99,99, 115, 119), (75,95, 95,95), (96,128,161, 191), (105, 155, 155, 161),
(112,112,161,191), (100, 116, 145, 179), (114, 158,209, 239), (152,152,177, 239),
(
(
(

(
152,158, 171,239), (171,171,175, 203), (188, 188, 235, 253), (164, 166, 205, 221),
190, 236, 295, 359), (225, 261, 275, 319), (243, 243, 243, 243), (186, 254, 329, 383),
204,230, 431, 431), (230, 284, 391, 391), (238, 272, 355, 431), (255, 255, 355, 431)

The OEIS [6] sequence A387292 lists the first components of y)-amicable quadruples. When
k = 5, we have
ny = Sy(n2) + Sy(ng) + sy(na) + sy(ns)
ny = sy(n1) + sp(ns) + sy(na) + sy(ns)
ng = sy(n1) + syp(n2) + sy(na) + sy(ns)
(n1) + 53 (n2) + sy(n3) + sy(ns)
)+ sy(ns) + sy (n4)

Ny = Syp(N1) + Syp(N2) + Sy(N3) + Sy(Nns

Several 1-amicable quintuples are listed below.

List 4. ¢)-amicable quintuples

1-amicable quintuples

(4,5,5,5,5), (6,9,11,11,11), (8,9,9,11,11), (12,15, 23, 23, 23),
(28,35,35,47,47), (32,33, 33,47,47), (30,45,71,71,71), (36, 55,55, 71, 71),
(40,51,55,71,71), (44,51,51,71,71), (45,46, 55,71, 71), (78,117,143, 167, 167),
(98,117,123,167,167), (104,117,117,167,167), (84, 141,161,191, 191),
(
(
(

112,155,155, 155, 191), (124, 161, 161, 161, 161), (158, 175, 209, 209, 209),
158, 177,177,209, 239), (140, 253, 253, 253, 253), (176, 235, 235, 253, 253),
174,225, 323,359, 359), (174, 261, 323, 323, 359), (200, 261, 261, 359, 359)

The OEIS [6] sequence A387486 consists of the first elements of 1)-amicable quintuples.
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When k£ = 6, we have

Several 1-amicable sextuples are listed below.

List 5. v-amicable sextuples

w-amicable sextuples

(5,5,5,5,5,5), (8,8,11,11,11,11), (9,9,9, 11, 11, 11), (12, 16, 23, 23, 23, 23)
(14,14,23,23,23,23), (24, 28,47, 47,47,47), (25,25, 25, 25, 25, 25), (32, 32, 35, 47, 47, 47),
(30,46, 71,71,71,71), (33,33, 33,47,47,47), (36,40, 71, 71,71, 71), (45,51,51, 71, 71,71),
(46, 46,55, 71,71, 71), (98,98, 143, 167, 167, 167), (117, 123,123, 143, 167, 167),
(84,112,191, 191,191, 191), (105, 141, 141,191, 191, 191), (128, 128, 161, 161, 191, 191),
(141,141, 141,155,191, 191), (155, 161, 161, 161, 161, 161), (152, 152, 209, 209, 239, 239),
(152,158, 203, 209, 239, 239), (158, 158,203, 203,239, 239), (171,171,171, 209, 239, 239),

The OEIS [6] sequence A387636 lists the first components of y-amicable sextuples.
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