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1 Introduction

For a non-negative integer m ∈ Z and a positive integer n ∈ Z, we define

Sm(n) =
n∑

i=1

im, Ωm(n) =
n−1∑
i=0

(−1)i(n− i)m

It is well known that Sm(n) can be written as the polynomial of the variable n as follows (see [2],
for example):

Sm(n) =
1

m+ 1

m∑
j=0

(
m+ 1

j

)
Bjn

m+1−j. (1)
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Here, Bj is the j-th Bernoulli number defined by
l∑

j=0

(
l + 1

j

)
Bj = l + 1, inductively.

According to Kim [5, Theorem 1] (see also Cereceda [3, Section 4]), Ωm(n) can be written as
a polynomial of the variable n as follows:

Ωm(n) =


1

2

(
nm −

m−1∑
j=1

(
m

j

)
Ej(0)n

m−j + ((−1)n − 1)Em(0)

)
, if m ≥ 1,

(1 + (−1)n−1)

2
, if m = 0.

(2)

Here, Ej(x) is the j-th Euler polynomial defined by
2ext

et + 1
=

∞∑
j=0

Ej(x)
tj

j!
.

In this note, we investigate the relationship between Ωm(n) and Sm(n) and have the following
theorem.

Theorem 1.1. For positive integers m ∈ Z and n ∈ Z, we have the following identity:

Ωm(n) =−
m−1∑
j=0

(
m

j

)
Em−j(0)Sj(n) +

(−1)n − 1

2
Em(0).

In [6], we wrote Sm(n) as the linear combination of Ωj(n) (see also Theorem 3.1). Therefore,
we can see that Theorem 1.1 is the converse of Theorem 3.1.

Remark 1.1. In Theorem 2.3 of [1], Antonippillai proved the following identity:

(−1)n+1Ωm(n) =


n+ 1

2
+

m−1∑
j=1

(
m

j

)
2jSj

(
n− 1

2

)
, if n ≥ 1 is odd,

(−1)m
n

2
+

m−1∑
j=1

(−1)m−j

(
m

j

)
2jSj

(n
2

)
, if n ≥ 0 is even.

(3)

As Theorem 1.1, the identity (3) represents Ωm(n) as the linear combination of Sj(n).

This note is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3, by
combining Theorems 1.1 and 3.1, we state the relationships between Bk and Ej(0).

2 Proof of Theorem 1.1

Both Ωm(n) and Sm−1(n) are degree m polynomials. On the other hand, Ωm(n) has the constant

term
(−1)n − 1

2
Em(0) and Sm−1(n) does not have the constant term. Therefore, we set

Ωm(n) =
m−1∑
j=0

ajSj(n) +
(−1)n − 1

2
Em(0), (4)
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where aj ∈ Q. From (4) and the definition of Sj(n), we have

Ωm(n+ 1)− Ωm(n) = a0 +
m−1∑
j=1

aj(n+ 1)j + (−1)n+1Em(0)

=
m−1∑
j=1

aj(n+ 1)j +
(
a0 + (−1)n+1Em(0)

)
.

(5)

Also, from the definition of Ωm(n),

Ωm(n+ 1) + Ωm(n) = (n+ 1)m (6)

holds if m ≥ 1. By summing (5) and (6), we have

Ωm(n+ 1) =
1

2
(n+ 1)m +

1

2

m−1∑
j=1

aj(n+ 1)j +
a0 + (−1)n+1Em(0)

2
(7)

if m ≥ 1. On the other hand, from (2),

Ωm(n+ 1) =
1

2
(n+ 1)m − 1

2

m−1∑
j=1

(
m

j

)
Ej(0)(n+ 1)m−j +

(−1 + (−1)n+1)Em(0)

2
(8)

holds if m ≥ 1. By comparing Equations (7) and (8), we obtain

aj = −
(
m

j

)
Em−j(0)

for j = 0, . . . ,m− 1. This completes the proof of Theorem 1.1. □

Corollary 2.1. For a non-negative integer m ∈ Z and a positive integer n ∈ Z, the following
identity holds:

Sm(n) =
Em+1(n+ 1) + Em+1(0)

m+ 1
+

2

m+ 1

m−1∑
j=0

(
m+ 1

j

)
Em+1−j(0)Sj(n).

Proof. If m ≥ 0 and n ≥ 1, from the identities (2) and Theorem 1.1, we have

−Ωm+1(n) +
(−1)n − 1

2
Em+1(0) =− 1

2
nm+1 +

1

2

m∑
j=1

(
m+ 1

j

)
Ej(0)n

m+1−j,

−Ωm+1(n) +
(−1)n − 1

2
Em+1(0) =

m∑
j=0

(
m+ 1

j

)
Em+1−j(0)Sj(n).

(9)

From (9), we have

Sm(n) =
1

m+ 1

(
nm+1 −

m∑
j=1

(
m+ 1

j

)
Ej(0)n

m+1−j

)

+
2

m+ 1

m−1∑
j=0

(
m+ 1

j

)
Em+1−j(0)Sj(n). (10)
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The contents of the parentheses in the first term on the right-hand side of (10) can be transformed
as follows:

nm+1 −
m∑
j=1

(
m+ 1

j

)
Ej(0)n

m+1−j = 2nm+1 −
m∑
j=0

(
m+ 1

j

)
Ej(0)n

m+1−j

= 2nm+1 + Em+1(0)−
m+1∑
j=0

(
m+ 1

j

)
Ej(0)n

m+1−j

= 2nm+1 + Em+1(0)− Em+1(n)

= Em+1(n+ 1) + Em+1(0).

(11)

Here, the third equation of (11) uses the relationship

Em(x) =
m∑
j=0

(
m

j

)
Ej(0)x

m−j, if m ≥ 0.

It is obtained from the definition of the Euler polynomial
2ext

et + 1
=

∞∑
j=0

Ej(x)
tj

j!
. The fourth

equation comes from the identity

Em+1(x+ 1) + Em+1(x) = 2xm+1, if m ≥ 0

(see [4], for example). This completes the proof of Corollary 2.1.

Remark 2.1. By using (1) and Theorem 3.1, we have the following identity, which is similar to
Corollary 2.1:

Ωm+1(n) =
Bm+1(n+ 1)−Bm+1

2
−

m−1∑
j=1

(
m+ 1

j

)
Bm+1−jΩj(n).

Here, m and n are positive integers and Bj(x) is the j-th Bernoulli polynomial defined by
text

et − 1
=

∞∑
j=0

Bj(x)
tj

j!
.

3 Relationships between Bk and Ej(0)

Relating to Theorem 1.1, the following theorem is known.

Theorem 3.1 ([6]). For a non-negative integer m ∈ Z and a positive integer n ∈ Z, we have the
following identity:

Sm(n) =


2

m+ 1

∑
0≤j≤m
j ̸=1

(
m+ 1

j

)
BjΩm+1−j(n), if m ≥ 1,

2B0Ω1(n)− Ω0(n), if m = 0.

764



From Theorem 1.1, if we define an m×m matrix A by

A = −



(
m

1

)
E1(0) 0 · · · 0 0 0(

m

2

)
E2(0)

(
m− 1

1

)
E1(0) · · · 0 0 0

...
... . . . ...

...
...(

m

m− 2

)
Em−2(0)

(
m− 1

m− 3

)
Em−3(0) · · ·

(
3

1

)
E1(0) 0 0(

m

m− 1

)
Em−1(0)

(
m− 1

m− 2

)
Em−2(0) · · ·

(
3

2

)
E2(0)

(
2

1

)
E1(0) 0

Em(0) Em−1(0) · · · E3(0) E2(0) E1(0)


and a 1×m matrix b by

b =
(−1)n − 1

2

(
Em(0) Em−1(0) · · · E3(0) E2(0) E1(0)

)
,

we have (
Ωm(n) · · · Ω1(n)

)
=
(
Sm−1(n) · · · S0(n)

)
A+ b.

From Theorem 3.1, if we define an m×m matrix C by

C =



2

m
B0 0 · · · 0 0 0

0
2

m− 1
B0 · · · 0 0 0

2

m

(
m

2

)
B2 0 · · · 0 0 0

...
... . . . ...

...
...

2

m

(
m

m− 3

)
Bm−3

2

m− 1

(
m− 1

m− 4

)
Bm−4 · · · 2

3
B0 0 0

2

m

(
m

m− 2

)
Bm−2

2

m− 1

(
m− 1

m− 3

)
Bm−3 · · · 0 B0 0

2

m

(
m

m− 1

)
Bm−1

2

m− 1

(
m− 1

m− 2

)
Bm−2 · · · 2

3

(
3

2

)
B2 0 2B0


and a 1×m matrix d by

d =
(−1)n − 1

2

(
0 0 · · · 0 0 1

)
,

we have (
Sm−1(n) · · · S0(n)

)
=
(
Ωm(n) · · · Ω1(n)

)
C + d.

From the equation AC = CA = Im, we have the following corollary. Here, Im is the identity
matrix.
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Corollary 3.1. For a positive integer m ∈ Z, we take positive integers i, j ∈ Z such that
1 ≤ j ≤ i ≤ m. Then, the following relations hold:

i∑
k=j+2

(
m+ 1− j

k − j

)(
m+ 1− k

i+ 1− k

)
Bk−jEi+1−k(0)

+

(
m+ 1− j

i+ 1− j

)
Ei+1−j(0) = −m+ 1− j

2
δi,j

and

i−2∑
k=j

1

m+ 1− k

(
m+ 1− j

k + 1− j

)(
m+ 1− k

i− k

)
Bi−kEk−j+1(0)

+
1

m+ 1− i

(
m+ 1− j

i+ 1− j

)
Ei+1−j(0) = −1

2
δi,j.

Here, δi,j is the Kronecker delta.

Remark 3.1. When j = 1 and i = m, both identities in Corollary 3.1 reduce to the equation:
m−2∑
k=1

(
m

k

)
Bm−kEk(0) = −Em(0)

when m ≥ 2. This equation corresponds to the case x = 0 of the formula (13) in [4].

4 Conclusion

In this note, we investigated the relationship between alternating sums of powers of integers and
sums of powers of integers. By combining this note with previous researchs such as [1] and [4], it
is expected that research on alternating sums of powers of integers and the relationship between
the Bernoulli numbers and the Euler polynomials will progress further.
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