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Abstract: Let Q be the field of rational numbers, and let C be an algebraically closed field
containing Q. Let G ∈ Q[x, y, z] be a polynomial, then the zero set of G is Z(G) = {P ∈ Cn |
G(P ) = 0}. A set V ⊂ Cn is called a Q-algebraic variety if V = Z(G) for some polynomial G
in Q[x, y, z]. The set V (G) = {P ∈ Q3 | G(P ) = 0} is called the set of Q-rational points of V .
Let

F : Q3 → Q3,

(x, y, z) 7→ (f(x), f(y), f(z))

be a vector function, where f ∈ Q[x]. It is easy to show that the function obtained by the
composition of G and F , denoted as G◦F , is still in Q[x, y, z]. Moreover, let V (G◦F ) be the set
of Q-rational points of the Q-algebraic variety corresponding to G◦F , i.e., V (G◦F ) = {P ∈ Q3 |
G ◦ F (P ) = 0}. A rational point P is called a (G,F )-point on V (G) if P belongs to the
intersection of V (G) and V (G ◦ F ), that is P ∈ V (G) ∩ V (G ◦ F ). Denote ⟨G,F ⟩ as the set
consisting of all (G,F )-points on V (G). Obviously, ⟨G,F ⟩ is the set of Q-rational points of a
Q-algebraic variety, that is, ⟨G,F ⟩ = {P ∈ Q3 | G(P ) = 0 and G ◦ F (P ) = 0}. In this paper,
we consider the algebraic variety ⟨G,F ⟩ for some specific functions G and F . For these specific
functions G and F , we prove that ⟨G,F ⟩ will be isomorphic to a certain elliptic curve. We also
analyze some properties of these elliptic curves.
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1 Introduction

Diophantine geometry aims to study the rational points on algebraic varieties. However, it is not
an easy task to determine the rational points on an algebraic variety. In other words, it is not easy
to find the rational solutions of certain Diophantine equations. The famous Mordell Conjecture
states that there are only finitely many rational points on a curve with genus greater than 1. In
1983, the Mordell Conjecture was finally proven by Faltings. Curves with genus equal to 0 can be
parameterized. Therefore, we are concerned with curves with genus equal to 1. The representative
of curves with genus equal to 1 is the elliptic curve. However, the structure of rational points on
elliptic curves is still not fully understood.

Several authors (see [1–3, 6–11, 13]) investigated the rational solutions of the Diophantine
equation

f(x)f(y) = f(z)2,

where f ∈ Q[x]. In this studies, the transformation

x = T, y = u2T, z = uT

was frequently used. It means that they actually gave the rational solutions of the Diophantine
system {

f(x)f(y) = f(z)2,

xy = z2.
(1)

Naturally, we can consider the rational solutions of the general Diophantine system{
G(f(x), f(y), f(z)) = 0,

G(x, y, z) = 0,
(2)

where G ∈ Q[x, y, z] and f ∈ Q[x]. Let us redescribe the Diophantine system (2). Let
G ∈ Q[x, y, z] be a polynomial, and let V (G) be the set of Q-rational points of the Q-algebraic
variety corresponding to G, i.e., V (G) = {P ∈ Q3 | G(P ) = 0}. Let

F : Q3 → Q3,

(x, y, z) 7→ (f(x), f(y), f(z))

be a vector function, where f ∈ Q[x]. It is easy to show that the function obtained by the
composition of G and F , denoted as G ◦ F , is still in Q[x, y, z].

Moreover, let V (G◦F ) be the set of Q-rational points of the Q-algebraic variety corresponding
to G◦F , i.e., V (G◦F ) = {P ∈ Q3 |G◦F (P ) = 0}. A rational point P is called a (G,F )-point
on V (G) if P belongs to the intersection of V (G) and V (G ◦ F ), that is P ∈ V (G) ∩ V (G ◦ F ).
Denote ⟨G,F ⟩ as the set consisting of all (G,F )-points on V (G). Obviously, ⟨G,F ⟩ is the set of
Q-rational points of a Q-algebraic variety, that is, ⟨G,F ⟩ = {P ∈ Q3 | G(P ) = 0 and G ◦ F (P ) = 0}.
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When G(x, y, z) = xy − z2, ⟨G,F ⟩ represents all the rational solutions of the Diophantine
system (1). From G(x, y, z) = xy − z2 = 0, we obtain z =

√
xy, which means that z is the

geometric mean of x and y.
For some specific functions G and F , the set V (G ◦ F ) may be an empty set or may have

only trivial solutions. When G = x + y − z and f(x) = xn, by Fermat’s Last Theorem,
V (G ◦ F ) has only trivial solutions. When G = xy − z2 and f(x) = xk − 1, Bennett [1]
proved that V (G ◦F ) has only trivial solutions. When G = x2+ y2− z2 and f(x) = x(x+1)/2,
Sierpiński [4] introduced (given by Zarankiewicz) a nontrivial positive integer solution (x, y, z) =

(132, 143, 164) for V (G ◦ F ).
In 2019, Zhang and Chen [12] studied the rational solutions of Diophantine equation of

harmonic mean
f(z) =

2
1

f(x)
+ 1

f(y)

.

In this paper, we consider the set ⟨G,F ⟩ for some specific functions G and F . For the function
G, we consider that G = xy− z2, or G = (x+ y)z−2xy. For G = (x+ y)z−2xy = 0, it means
that z is the harmonic mean of x and y. For the vector function F , we consider the components f
of F to be f = ax2 + bx + c, f = ax + b + cx−1, f = x(ax2 + bx + c), respectively. For these
specific functions G and F , we prove that ⟨G,F ⟩ will be isomorphic to a certain elliptic curve.
We also analyze some properties of these elliptic curves.

2 The main results

By the theory of elliptic curves, we prove

Theorem 2.1. Let G = xy−z2 and f(x) = ax2+bx+c ∈ Q[x] with abc ̸= 0. When 4ac−b2 ̸= 0,
⟨G,F ⟩ is birationally equivalent to the elliptic curve

E1 : Y 2 = X3 + 27a2b2c2(3ac− b2)X + 27a3b4c3(9ac− 2b2).

When 4ac− b2 = 0, ⟨G,F ⟩ is a curve with genus 0 and its parameterization is given by

y = − bct2

(2ct+ b)2
, z = − (bt+ 4ct+ 2b)ct

(2ct+ b)(bt+ 2ct+ b)
,

where t is a rational number.

Proof. When G = xy− z2 and f(x) = ax2 + bx+ c, the Diophantine system (2) is equivalent to

(y − z)2
(
abyz2 + acy2 + 2acyz + acz2 + bcy

)
= 0. (3)

Since y = z is trivial, we only need to consider the rational points on the curve

C1 : abyz2 + acy2 + 2acyz + acz2 + bcy = 0.
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By the map φ1:

X =
3abc(3acy + 6acz − b2y + 2bc)

by + c
,

Y =
27a2bc2(abcy2 + 3abcyz − b3yz − ac2y − ac2z + b2cy − b2cz − bc2)

(by + c)2
,

(4)

with the inverse map φ−1
1 :

y = − c(108a3b2c3 − 18a2b4c2 + 9Xa2c2 − 3Xab2c+ 6Y ac+X2)

b(X − 9a2c2 + 3ab2c)2
,

z = − 9a2b2c2 + 3Xac+ Y

3ba(X − 9a2c2 + 3ab2c)
,

(5)

we can transform C1 into the elliptic curve

E1 : Y 2 = X3 + 27a2b2c2(3ac− b2)X + 27a3b4c3(9ac− 2b2).

The discriminant of E1 is

∆1(E) = −531441a8b6c8(4ac− b2).

Hence, if 4ac − b2 ̸= 0, then ∆1(E) ̸= 0, so E1 is non-singular. Therefore, (4) and (5) give
a bijection between ⟨G,F ⟩ and the elliptic curve E1, so ⟨G,F ⟩ is birationally equivalent to the
elliptic curve E1.

When 4ac− b2 = 0, the Diophantine system (2) is equivalent to

b2yz2 + bcy2 + 2bcyz + bcz2 + 4c2y = 0. (6)

The curve given by (6) is a curve of genus 0, and its parameterization is given by

y = − bct2

(2ct+ b)2
, z = − (bt+ 4ct+ 2b)ct

(2ct+ b)(bt+ 2ct+ b)
,

where t is a rational number. This completes the proof.

Remark 2.1. Since xy = z2, when f = xk(ax2 + bx+ c), k ∈ Z, we can obtain exactly the same
result as that of Theorem 1.1. Particularly, when k = 1 or k = −1, we obtain f = x(ax2+bx+c)

and f = ax+ b+ cx−1, respectively.

Theorem 2.2. When b2 ̸= kac (k = −1, 1, 3), the elliptic curve E1 has a positive rank. When
b2 = kac (k = −1, 1, 3), the rank of the elliptic curve E1 is 0.

Proof. It is easy to check that the elliptic curve E1 contains two rational points

P0 = (−3ab2c, 0), P1 = (6ab2c, 27a2b2c2).
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By the group law, we have

P2 = [2]P1 =

(
3(3ac− b2)(ac− 3b2)

4
, − 27(ac− b2)(a2c2 + 4ab2c− b4)

8

)
,

P3 = [3]P1 =

(
6ab2c(13a4c4 + 24a3b2c3 − 22a2b4c2 + b8)

(a2c2 − 6ab2c+ b4)2
,

− 27a2b2c2(3ac− b2)(ac+ b2)(a4c4 + 24a3b2c3 − 22a2b4c2 + 16ab6c− 3b8)

(a2c2 − 6ab2c+ b4)3

)
and

P4 = [4]P1

=

(
3(3ac− b2)X4

16(ac− b2)2(a2c2 + 4ab2c− b4)2
,
27(a4c4 − 20a3b2c3 + 6a2b4c2 − 4ab6c+ b8)Y4

64(ac− b2)3(a2c2 + 4ab2c− b4)3

)
,

where

X4 = a7c7 − 45a6b2c6 + 365a5b4c5 − 121a4b6c4

+ 307a3b8c3 − 151a2b10c2 + 31ab12c− 3b14,

Y4 = a8c8 + 80a7b2c7 − 180a6b4c6 + 656a5b6c5

− 282a4b8c4 − 80a3b10c3 + 76a2b12c2 − 16ab14c+ b16.

Let the line go through the points P0 and P1, intersecting E1 at P5, then

P5 = −(P0 + P1) =
(
3ac(3ac− b2), 27a3c3

)
.

Similarly,

P6 =− (P0 + P2) =

(
3ab2c(11a2c2 + 2ab2c− b4)

(ac− b2)2
,−54(a2c2 + 4ab2c− b4)a3b2c3

(ac− b2)3

)
,

P7 =− (P0 + P3) =

(
3ac(3a5c5 − 45a4b2c4 + 102a3b4c3 − 34a2b6c2 + 7ab8c− b10)

(ac+ b2)2(3ac− b2)2
,

− 27c3a3(a4c4 + 24a3b2c3 − 22a2b4c2 + 16ab6c− 3b8)(a2c2 − 6ab2c+ b4)

(3ac− b2)3(ac+ b2)3

)
,

and

P8 = −(P0 + P4) =

(
3ab2cX8

(a4c4 − 20a3b2c3 + 6a2b4c2 − 4ab6c+ b8)2
,

108c3b2a3(ac− b2)(a2c2 + 4ab2c− b4)Y8

(a4c4 − 20a3b2c3 + 6a2b4c2 − 4ab6c+ b8)3

)
,

where

X8 = 47a8c8 + 328a7b2c7 − 460a6b4c6 − 1096a5b6c5

+ 1290a4b8c4 − 392a3b10c3 + 20a2b12c2 + 8ab14c− b16,

Y8 = a8c8 + 80a7b2c7 − 180a6b4c6 + 656a5b6c5

− 282a4b8c4 − 80a3b10c3 + 76a2b12c2 − 16ab14c+ b16.
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Let X(P ) denote the X-coordinate of the point P . When a ̸= 0, we give the conditions such
that X(Pi) = X(Pj), 0 ≤ i < j ≤ 8 in the following Table 1.

Table 1. Conditions such that X(Pi) = X(Pj), 0 ≤ i < j ≤ 8.

X-coordinate k (b2 = kab)

X(P0) = X(Pi), i = 1, ..., 8 −1, 1, 3

X(P1) = X(Pi), i = 2, ..., 8 −1, 1, 3

X(P2) = X(Pi), i = 3, ..., 8 −1, 1, 3

X(P3) = X(Pi), i = 4, ..., 8 1

X(P4) = X(Pi), i = 5, ..., 8 −1, 3

X(P5) = X(Pi), i = 6, ..., 8 1

X(P6) = X(Pi), i = 7, 8 −1, 3

X(P7) = X(P8), i = 8 none

Table 1 shows that when b2 ̸= kac (k = −1, 1, 3), the points P0 and ±Pi, i = 1, ..., 8, are
different. By Mazur’s theorem (see p. 58 of [5]) about the quantity of rational points and the rank
of elliptic curve: If an elliptic curve E defined over Q has more than 16 different rational points,
then it has infinitely many rational points and its rank has at least one. Therefore, E1 has a positive
rank, and thus there are infinitely many rational points on E1.

When b2 = kac (k = −1, 1, 3), we have a = b2

ck
, and then

E ′
1 : Y 2 = X3 − 27(k − 3)b8

k3
X − 27(2k − 9)b12

k4
.

By the transformation

U =
Y

b6
, V =

X

b4
, (7)

we get

E(k) : U2 = V 3 − 27(k − 3)

k3
V − 27(2k − 9)

k4
.

1) When k = −1, we get

E(−1) : U2 = V 3 − 108V + 297.

Using the package of Magma, the rank of E(−1) is 0, and the only rational points on E(−1)

are
(3, 0), (−6,±27) (12,±27).

2) When k = 1, we get

E(1) : U2 = V 3 + 54V + 189.

The rank of E(1) is 0, and the only rational points on E(1) are

(−3, 0), (6,±27).
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3) When k = 3, we get

E(3) : U2 = V 3 + 1.

The rank of E(3) is 0, and the only rational points on E(3) are

(−1, 0), (0,±1), (2,±3).

Therefore, when b2 ̸= kac (k = −1, 1, 3), the elliptic curve E1 has a positive rank. When
b2 = kac (k = −1, 1, 3), the rank of the elliptic curve E1 is 0.

Theorem 2.3. Let G = (x + y)z − 2xy and f(x) = ax2 + bx + c ∈ Q[x] with abc ̸= 0. When
2ac− b2 ̸= 0 and 4ac− b2 ̸= 0, ⟨G,F ⟩ is birationally equivalent to the elliptic curve

E2 : Y 2 = X3 − 3a4c4X + a4c4(2a2c2 − 4ab2c+ b4).

When 2ac− b2 = 0, ⟨G,F ⟩ is the union of two curves, which are

z = −2c

b
, z =

2cy(by + 2c)

b2y2 + 2c2
.

When 4ac− b2 = 0, ⟨G,F ⟩ is a curve with genus 0 and its parameterization is given by

y =
24ct(2bt− 12ct− c)

68b2t2 + 48bct2 − 144c2t2 + 4bct− 24c2t− c2
,

z =− 48ct(8bt− 12ct− c)

100b2t2 − 192bct2 + 144c2t2 − 16bct+ 24c2t+ c2
,

where t is a rational number.

Proof. When G = (x + y)z − 2xy and f(x) = ax2 + bx + c, the Diophantine system (2) is
equivalent to

(y − z)2
(
a2y2z2 − 2acy2 − 2acyz + acz2 − 2bcy + bcz

)
= 0. (8)

Since y = z is trivial, we only need to consider the rational points on the curve

C2 : a2y2z2 − 2acy2 − 2acyz + acz2 − 2bcy + bcz = 0.

By the map φ2:

X =
c(a2by2z + a2cy2 + abcz + b2c)

y2
,

Y =
bc2(a3y3z + a2by3 + a2by2z + 2a2cy2 + a2cyz + abcy + abcz + b2c)

y3
,

(9)

with the inverse map φ−1
2 :

y =
bc(−a3c3 + a2b2c2 +Xac+ Y )

a4c4 − 2a3b2c3 − 2Xa2c2 +X2
, z =

2bc(−2a3c3 − a2b2c2 + 2Xac+ Y )

a4c4 + 4a3b2c3 − 2Xa2c2 +X2
, (10)

we can transform C2 into the elliptic curve

E2 : Y 2 = X3 − 3a4c4X + a4c4(2a2c2 − 4ab2c+ b4).
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The discriminant of E2 is

∆2(E) = 27a8c8b2(4ac− b2)(2ac− b2)2.

Hence, if 2ac − b2 ̸= 0 and 4ac − b2 ̸= 0, then ∆2(E) ̸= 0, so E2 is non-singular. Therefore,
(9) and (10) give a bijection between ⟨G,F ⟩ and the elliptic curve E2, so ⟨G,F ⟩ is birationally
equivalent to the elliptic curve E2.

When 2ac− b2 = 0, the Diophantine system (2) is equivalent to

(bz + 2c)(b2y2z − 2bcy2 − 4c2y + 2c2z) = 0,

which leads to

z = −2c

b
, z =

2cy(by + 2c)

b2y2 + 2c2
.

When 4ac− b2 = 0, the Diophantine system (2) is equivalent to

b3y2z2 − 8bc2y2 − 8bc2yz + 4bc2z2 − 32c3y + 16c3z = 0. (11)

The curve given by (11) is a curve of genus 0, and its parameterization is given by

y =
24ct(2bt− 12ct− c)

68b2t2 + 48bct2 − 144c2t2 + 4bct− 24c2t− c2
,

z =− 48ct(8bt− 12ct− c)

100b2t2 − 192bct2 + 144c2t2 − 16bct+ 24c2t+ c2
,

where t is a rational number. This completes the proof.

Theorem 2.4. The elliptic curve E2 has a positive rank.

Proof. It is easy to check that the elliptic curve E2 contains the following rational point

P =
(
−a2c2,−c2(2ac− b2)a2

)
.

By the group law, we get the following eight points

[2]P, [3]P, [4]P, [5]P, [6]P, [7]P, [8]P, [9]P.

The points [2]P and [3]P are as follows

[2]P =
(
2a2c2, a2c2(2ac− b2)

)
,

[3]P =

(
7

9
a2c2 − 16

9
ab2c+

4

9
b4,−(2ac− b2)(5a2c2 − 32ab2c+ 8b4)

27

)
.

We omit the expressions for the other six points because they will not be used directly. It is easy
to verify that when 2ac− b2 ̸= 0, the points P and ±[i]P, i = 2, ..., 9, are different. By Mazur’s
theorem (see p. 58 of [5]) about the quantity of rational points and the rank of elliptic curve: If
an elliptic curve E defined over Q has more than 16 different rational points, then it has infinitely
many rational points and its rank has at least one. Therefore, E2 has a positive rank, and thus there
are infinitely many rational points on E2.
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Theorem 2.5. Let G = (x + y)z − 2xy and f(x) = ax + b + cx−1 ∈ Q[x, x−1] with abc ̸= 0.
When 4ac− b2 ̸= 0, ⟨G,F ⟩ is birationally equivalent to the elliptic curve

E3 : Y 2 = X3 − 3a2c6X − a2c8(2ac− b2).

When 4ac− b2 = 0, ⟨G,F ⟩ is a curve with genus 0 and its parameterization is given by

y =
8ct(9bt+ 6ct+ b)

(17bt+ 6ct+ b)(5bt+ 6ct+ b)
, z = −(17bt+ 6ct+ b)(9bt+ 6ct+ b)c

16b3t2
,

where t is a rational number.

Proof. When G = (x + y)z − 2xy and f(x) = ax + b + cx−1, the Diophantine system (2) is
equivalent to

(y − z)2
(
aby2z2 + 3acy2z − 2c2y + c2z

)
= 0. (12)

Since y = z is trivial, we only need to consider the rational points on the curve

C3 : aby2z2 + 3acy2z − 2c2y + c2z = 0.

By the map φ3:

X =
c2(aby2z + 2acy2 + c2)

y2
, Y =

c4(aby3 + aby2z + 3acy2 + c2)

y3
, (13)

with the inverse map φ−1
3 :

y =
c2(Y + abc4)

(X + ac3)(X − 2ac3)
, z =

2c2(Y − abc4)

(X + ac3)2
, (14)

we can transform C3 into the elliptic curve

E3 : Y 2 = X3 − 3a2c6X − a2c8(2ac− b2).

The discriminant of E3 is
∆3(E) = 27a4c16b2(4ac− b2).

Hence, if 4ac − b2 ̸= 0, then ∆3(E) ̸= 0, so E3 is non-singular. Therefore, (13) and (14) give
a bijection between ⟨G,F ⟩ and the elliptic curve E3, so ⟨G,F ⟩ is birationally equivalent to the
elliptic curve E3.

When 4ac− b2 = 0, the Diophantine system (2) is equivalent to

b3y2z2 + 3b2cy2z − 8c3y + 4c3z = 0. (15)

The curve given by (15) is a curve of genus 0, and its parameterization is given by

y =
8ct(9bt+ 6ct+ b)

(17bt+ 6ct+ b)(5bt+ 6ct+ b)
, z = −(17bt+ 6ct+ b)(9bt+ 6ct+ b)c

16b3t2
,

where t is a rational number. This completes the proof.
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Theorem 2.6. When b2 ̸= kac (k = 27
8
, 27

4
), the elliptic curve E3 has a positive rank. When

b2 = kac (k = 27
8
, 27

4
), the rank of the elliptic curve E3 is 0.

Proof. It is easy to check that the elliptic curve E3 contains the following rational point

P = (2ac3,−abc4).

By the group law, we get the following eight points

[2]P, [3]P, [4]P, [5]P, [6]P, [7]P, [8]P, [9]P.

The point P2 is as follows

[2]P =

(
ac3(81ac− 16b2)

4b2
,
c4a(729a2c2 − 216ab2c+ 8b4)

8b3

)
.

We omit the expressions for the other seven points because they will not be used directly. It is
easy to verify that when b2 ̸= kac (k = 27

8
, 27

4
), the points P and ±[i]P, i = 2, ..., 9, are different.

By Mazur’s theorem (see p. 58 of [5]) about the quantity of rational points and the rank of elliptic
curve: If an elliptic curve E defined over Q has more than 16 different rational points, then it has
infinitely many rational points and its rank has at least one. Therefore, E3 has a positive rank, and
thus there are infinitely many rational points on E3.

When b2 = kac (k = 27
8
, 27

4
), we have a = b2

ck
, and then

E ′
3 : Y 2 = X3 − 3b4c4

k2
X +

b6c6(k − 2)

k3
.

By the transformation

U =
Y

b3c3
, V =

X

b2c2
, (16)

we get

E(k) : U2 = V 3 − 3

k2
V +

k − 2

k3
.

1) When k = 27
8

, we get

E( 27
8
) : U2 = V 3 − 64

243
V +

704

19683
.

Using the package of Magma, the rank of E( 27
8
) is 0.

2) When k = 27
4

, we get

E( 27
4
) : U2 = V 3 − 16

243
V +

304

19683
.

The rank of E( 27
4
) is 0.

Therefore, when b2 ̸= kac (k = 27
8
, 27

4
), the elliptic curve E3 has a positive rank. When

b2 = kac (k = 27
8
, 27

4
), the rank of the elliptic curve E3 is 0.
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Theorem 2.7. Let G = (x+ y)z− 2xy and f(x) = x(ax2 + bx+ c) ∈ Q[x] with abc ̸= 0. When
ac− b2 ̸= 0, 3ac− b2 ̸= 0 and 4ac− b2 ̸= 0, ⟨G,F ⟩ is birationally equivalent to the elliptic curve

E4 : Y 2 = X3 − 3a6c2X − a6(2ac− b2)(a2c2 − 4ab2c+ b4).

When ac− b2 = 0, ⟨G,F ⟩ is a curve with genus 0 and its parameterization is given by

y = −c(2t2 + 6t+ 3)

3(t+ 1)b
, z = −c(2t2 + 6t+ 3)

3b(t+ 1)2
,

where t is a rational number. When 3ac− b2 = 0, ⟨G,F ⟩ is the union of two curves, which are

z = −2c

b
, z =

y(by + 2c)

c
.

When 4ac− b2 = 0, ⟨G,F ⟩ is a curve with genus 0 and its parameterization is given by

y = − 2ct(bt+ 6ct+ 3b)

3(bt+ 2ct+ b)(2ct+ b)
, z = −4(2bt+ 6ct+ 3b)ct

3(bt+ 2ct+ b)2
,

where t is a rational number.

Proof. When G = (x + y)z − 2xy and f(x) = x(ax2 + bx + c), the Diophantine system (2) is
equivalent to

(y − z)2
(
3a2y2z + 2aby2 + 2abyz − abz2 − 2acy + acz + 2b2y − b2z

)
= 0. (17)

Since y = z is trivial, we only need to consider the rational points on the curve

C4 : 3a2y2z + 2aby2 + 2abyz − abz2 − 2acy + acz + 2b2y − b2z = 0.

By the map φ4:

X =
2a3cy2 − a2b2y2 − a2bcz + ab3z + a2c2 − 2ab2c+ b4

y2
,

Y =
(ac− b2)Y1

y3
,

(18)

where

Y1 = 3a3cy2 − a2b2y2 + a2b2yz − a2bcy − a2bcz + ab3y + ab3z + a2c2 − 2ab2c+ b4,

with the inverse map φ−1
4 :

y = − (ac− b2)(−2a4bc+ a3b3 +Xab− Y )

(a3c− 2a2b2 +X)(−2a3c+ a2b2 +X)
,

z = − 2(ac− b2)(−a4bc− a3b3 + 2Xab− Y )

(a3c− 2a2b2 +X)2
,

(19)

we can transform C4 into the elliptic curve

E4 : Y 2 = X3 − 3a6c2X − a6(2ac− b2)(a2c2 − 4ab2c+ b4).

The discriminant of E4 is

∆4(E) = 27a12b2(4ac− b2)(3ac− b2)2(ac− b2)2.
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Hence, if ac− b2 ̸= 0, 3ac− b2 ̸= 0 and 4ac− b2 ̸= 0, then ∆4(E) ̸= 0, so E4 is non-singular.
Therefore, (18) and (19) give a bijection between ⟨G,F ⟩ and the elliptic curve E4, so ⟨G,F ⟩ is
birationally equivalent to the elliptic curve E4.

When ac− b2 = 0, the Diophantine system (2) is equivalent to

3by2z + 2cy2 + 2cyz − cz2 = 0. (20)

The curve given by (20) is a curve of genus 0, and its parameterization is given by

y = −c(2t2 + 6t+ 3)

3(t+ 1)b
, z = −c(2t2 + 6t+ 3)

3b(t+ 1)2
,

where t is a rational number. When 3ac− b2 = 0, the Diophantine system (2) is equivalent to

(bz + 2c)(by2 + 2cy − cz) = 0,

which leads to

z = −2c

b
, z =

y(by + 2c)

c
.

When 4ac− b2 = 0, the Diophantine system (2) is equivalent to

3b2y2z + 8bcy2 + 8bcyz − 4bcz2 + 24c2y − 12c2z = 0. (21)

The curve given by (21) is a curve of genus 0, and its parameterization is given by

y = − 2ct(bt+ 6ct+ 3b)

3(bt+ 2ct+ b)(2ct+ b)
, z = −4(2bt+ 6ct+ 3b)ct

3(bt+ 2ct+ b)2
,

where t is a rational number. This completes the proof.

Theorem 2.8. When b2 ̸= 3
2
ac, the elliptic curve E4 has a positive rank. When b2 = 3

2
ac, the rank

of the elliptic curve E4 is 0.

Proof. It is easy to check that the elliptic curve E4 contains two rational points

P0 = (2a3c− a2b2, 0), P1 = (−a3c, a3b(3ac− b2)).

By the group law, we get the following seven points

P2 = [2]P1, P3 = [3]P1, P4 = [4]P1,

P5 = P1+P0, P6 = P2 + P0, P7 = P3 + P0, P8 = P4 + P0.

The point P2 is as follows

P2 = (2a3c,−3cba4 + a3b3).

We omit the expressions for the other six points because they will not be used directly. It is easy
to verify that when b2 ̸= 3

2
ac, the points P and ±[i]P, i = 2, ..., 9, are different. By Mazur’s

theorem (see p. 58 of [5]) about the quantity of rational points and the rank of elliptic curve: If
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an elliptic curve E defined over Q has more than 16 different rational points, then it has infinitely
many rational points and its rank has at least one. Therefore, E4 has a positive rank, and thus there
are infinitely many rational points on E4.

When b2 = 3
2
ac, we have a = 2b2

3c
, and then

E ′
4 : Y 2 = X3 − 64b12

243c4
X +

704b18

19683c6
.

By the transformation

U =
c3Y

b9
, V =

c2X

b6
, (22)

we get

E ′′
4 : U2 = V 3 − 64

243
V +

704

19683
.

Using the package of Magma, the rank of E ′′
4 is 0.
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