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Abstract: Let Q be the field of rational numbers, and let C' be an algebraically closed field
containing Q. Let G € Q|[z, y, 2] be a polynomial, then the zero set of G is Z(G) = {P € C" |
G(P) =0}. Aset V C C™is called a Q-algebraic variety if V' = Z(G) for some polynomial G
in Q[z,y, z]. The set V(G) = {P € Q3| G(P) = 0} is called the set of Q-rational points of V.
Let

F: Q=@
(w,9,2) = (@), [(y), [(2))

be a vector function, where f € Q[z]. It is easy to show that the function obtained by the
composition of G and F, denoted as G o I, is still in Q[z, y, z]. Moreover, let V(G o F') be the set
of Q-rational points of the Q-algebraic variety corresponding to GoF, i.e., V(GoF) = {P € Q3 |
G o F(P) = 0}. A rational point P is called a (G, F')-point on V(G) if P belongs to the
intersection of V(G) and V(G o F), thatis P € V(G) N V(G o F). Denote (G, F) as the set
consisting of all (G, F')-points on V(G). Obviously, (G, F) is the set of Q-rational points of a
Q-algebraic variety, that is, (G, F) = {P € Q*| G(P) = 0 and G o F(P) = 0}. In this paper,
we consider the algebraic variety (G, F') for some specific functions G and F'. For these specific
functions GG and F', we prove that (G, F') will be isomorphic to a certain elliptic curve. We also
analyze some properties of these elliptic curves.
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1 Introduction

Diophantine geometry aims to study the rational points on algebraic varieties. However, it is not
an easy task to determine the rational points on an algebraic variety. In other words, it is not easy
to find the rational solutions of certain Diophantine equations. The famous Mordell Conjecture
states that there are only finitely many rational points on a curve with genus greater than 1. In
1983, the Mordell Conjecture was finally proven by Faltings. Curves with genus equal to 0 can be
parameterized. Therefore, we are concerned with curves with genus equal to 1. The representative
of curves with genus equal to 1 is the elliptic curve. However, the structure of rational points on
elliptic curves is still not fully understood.

Several authors (see [1-3,6—11, 13]) investigated the rational solutions of the Diophantine
equation

f@)f(y) = f(2)",

where f € Q[z]. In this studies, the transformation
r=T, y=u*T, z=uT

was frequently used. It means that they actually gave the rational solutions of the Diophantine
system

{f(x)f(g) = f(2), W

Ty = 2".

Naturally, we can consider the rational solutions of the general Diophantine system

{G(f(cw, fw), f(z) =0,

2
G(z,y,2) =0, )

where G € Q|z,y,z] and f € Q[z]. Let us redescribe the Diophantine system (2). Let
G € Qlz,y, z] be a polynomial, and let V() be the set of Q-rational points of the Q-algebraic
variety corresponding to G, i.e., V(G) = {P € Q* | G(P) = 0}. Let

F: Q@ —Q,
(#,y,2) = (f(2), [(y), F(2))

be a vector function, where f € Q[z]. It is easy to show that the function obtained by the
composition of G and F, denoted as G o F, is still in Q[x, y, z].

Moreover, let V (GoF') be the set of Q-rational points of the QQ-algebraic variety corresponding
toGoF,ie.,V(GoF)={P e Q®|GoF(P)=0}. Arational point P is called a (G, F')-point
on V(G) if P belongs to the intersection of V(G) and V(G o F), thatis P € V(G) NV (G o F).
Denote (G, F') as the set consisting of all (G, F')-points on V' (G). Obviously, (G, F') is the set of
Q-rational points of a Q-algebraic variety, that is, (G, F) = {P € Q* | G(P) = 0 and G o F(P) = 0}.
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When G(z,y,2) = zy — 22, (G, F) represents all the rational solutions of the Diophantine
system (1). From G(z,y,z) = zy — z* = 0, we obtain z = ,/zy, which means that z is the
geometric mean of z and y.

For some specific functions G and F, the set V(G o F') may be an empty set or may have
only trivial solutions. When G = = + y — z and f(z) = 2", by Fermat’s Last Theorem,
V(G o F) has only trivial solutions. When G = zy — 2% and f(z) = 2 — 1, Bennett [1]
proved that V(G o F') has only trivial solutions. When G = 2%+ y? — 2% and f(z) = x(z +1)/2,
Sierpinski [4] introduced (given by Zarankiewicz) a nontrivial positive integer solution (z,y, z) =
(132,143,164) for V(G o F).

In 2019, Zhang and Chen [12] studied the rational solutions of Diophantine equation of

harmonic mean 9

z) = .

In this paper, we consider the set (G, F') for some specific functions GG and F'. For the function

G, we consider that G = zy — 2%, or G = (v +y)z — 2xy. For G = (v +y)z — 2xy = 0, it means

that z is the harmonic mean of = and y. For the vector function F', we consider the components f

of Ftobe f = ax®> +bx +c¢, f = ax + b+ cx™t, f = z(azx® + bx + ¢), respectively. For these

specific functions G and F', we prove that (G, F) will be isomorphic to a certain elliptic curve.
We also analyze some properties of these elliptic curves.

2 The main results

By the theory of elliptic curves, we prove

Theorem 2.1. Let G = zy— 2% and f(z) = ax®+bx+c € Q[z] with abe # 0. When 4ac—b* # 0,
(G, F) is birationally equivalent to the elliptic curve

E1:Y? = X? 4270’0’ (3ac — b*) X + 27a*b*c*(9ac — 20%).
When dac — b* = 0, (G, F') is a curve with genus 0 and its parameterization is given by

bet? (bt + 4ct + 2b)ct

Y= T et 102 T (et +0) (0t + 2¢t + )

where t is a rational number.

Proof. When G = zy — 2% and f(x) = az? + bx + ¢, the Diophantine system (2) is equivalent to
(y — 2)* (abyz® + acy® + 2acyz + acz® + bey) = 0. 3)

Since y = z is trivial, we only need to consider the rational points on the curve

Cy : abyz® + acy® + 2acyz + acz® + bey = 0.
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By the map ¢1:

_ 3abe(3acy + 6acz — b*y + 2be)

X ;
by + ¢ @)

v — 27a2bc? (abey? + 3abeyz — b3yz — ac*y — ac?z + bPcy — bPcz — be?)

N (by + c)? ’

with the inverse map o] '
~ c(108a*b*c® — 18a*b*c® + 9Xa*c® — 3Xab*c 4+ 6Y ac + X?)
v b(X — 9a2c® + 3ab2c)? ’ )
9a%v*c* +3Xac+Y
z =

" 3ba(X — 9a2c + 3ab’c)’
we can transform C; into the elliptic curve
& Y2 = X3 4 27a%* A (3ac — b*) X + 27a°b*c* (9ac — 20%).
The discriminant of &; is
A (E) = —531441a%°c® (4ac — b?).

Hence, if 4ac — b?> # 0, then A{(E) # 0, so & is non-singular. Therefore, (4) and (5) give
a bijection between (G, F') and the elliptic curve &£, so (G, F') is birationally equivalent to the
elliptic curve &;.

When 4ac — b* = 0, the Diophantine system (2) is equivalent to

b?yz2? + bey® + 2beyz + bez? + 4’y = 0. (6)

The curve given by (6) is a curve of genus 0, and its parameterization is given by

bet? (bt + 4ct + 2b)ct
= —-—— Z = —
Y= T et 1 by (2¢t + b)(bt + 2¢t +b)’
where ¢ is a rational number. This completes the proof. [

Remark 2.1. Since zy = 22, when f = a*(ax® + bx + ¢), k € Z, we can obtain exactly the same
result as that of Theorem 1.1. Particularly, when k = 1 or k = —1, we obtain f = x(ax®+bx+c)
and f = ax + b+ cx™ 1, respectively.

Theorem 2.2. When b? # kac (k = —1,1,3), the elliptic curve £, has a positive rank. When
b?> = kac (k = —1,1, 3), the rank of the elliptic curve & is 0.

Proof. 1t is easy to check that the elliptic curve £; contains two rational points

Py = (=3ab’c,0), P, = (6ab’c,27a’b*c?).
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By the group law, we have

3(3ac — b?)(ac — 3b? 27(ac — b?)(a%c® + 4dab*c — b*
by, (3B Pl =3) _ 2lac— i) Y
4 8
6ab%c(13a*c* + 24a3b%3 — 22a2b*c + b8
(a?c* — 6ab’c + b*)

27a%b*c*(3ac — b*)(ac + b*)(a*c* + 24a3b*c® — 22a2b*c? + 16ab’c — 3b%)
(a?c? — 6ab?c + b*)3

and
P, = [4]P
B 3(3ac — v*) X, 27(a*c* — 20a3b*c® + 6ab*c? — 4abSc + b8)Y,
~ \16(ac — b%)2(a2c® + 4ab%c — b*)?’ 64(ac — b?)3(a?c? 4 4dab*c — b*)3 ’
where

Xy =a"¢" — 450502 + 365a°b® — 121a*b5¢*
+307a®b%¢® — 151a%"°¢? 4 31ab'?c — 3™,
Yy = a®® +80a"b?c” — 180a°b"c® + 656a°b°c”
— 282a*b8ct — 80a*b™c? + 76a%b'*c? — 16ab™c + b'°.
Let the line go through the points F and Py, intersecting &; at Ps, then
P5 = —(Py+ P) = (3ac(3ac — b°),27a°¢ ) .

Similarly,

3ab®c(11ac? 4 2ab’*c — b* 54(a’c? + 4ab’c — bY)a*b*c?
Pﬁz_(PO+P2):( ( ) ( ) ),

(ac — b?)? o (ac — b?)3
Poe— (Pyt Py) = (3ac(3a5c5 — 45a*b*ct + 102a36* 3 — 34a*05¢? + Tab®c — b10)
(ac + b?)?(3ac — b?)? ’
2730 (a*c* 4 24aP0* P — 22a*b*? + 16abPc — 3b%)(a?c? — 6ab?c + b*)
B (3ac — b2)3(ac + b?)3 ) ’

and
3ab’c Xy
Ps=—(Py+P) =
s (Fo+ 24) ((a4c4 — 20a3b2c3 + 6a2b*c? — 4abbe + b%)?’
108c*b?a®(ac — b?)(a?c® + 4ab’c — b)Yy
(atct — 20a3bc® + 6a2b*c? — 4abbe + b%)3 )7
where

Xg = 47a% + 328a7b%c" — 460a°b* S — 1096a°b°¢

+ 1290a*b®c* — 392a°b™°c?® + 20a*b™c? + 8ab™c — b'°,
Ys = a®c® 4+ 80a"b%c” — 180a°b*c® + 656a°b°c°

— 282a*b8¢* — 804200 + T6a%b'2c? — 16ab*c + b'C.
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Let X (P) denote the X -coordinate of the point P. When a # 0, we give the conditions such
that X (P,) = X(P;), 0 <i < j < 81in the following Table 1.

Table 1. Conditions such that X (P;) = X(F;),0<i < j <8.

X -coordinate ‘ k (b* = kab)
X(P)=X(P),i=1,...8| -1, 1,3
X(P)=X(P),i=2..,8|-1,1,3
X(P)=X(P), i=3,...8 | -1, 1, 3
X(Py) = X(P), i=4,..8 | 1
X(P)=X(P),i=5,..,8|-1,3
X(Ps) = X(P), i=6,..8 | 1
X(P)=X(P),i=78 |-1,3
X(Pr)=X(Fs),i=38 none

Table 1 shows that when b* # kac (k = —1,1,3), the points P and =P, i = 1,...,8, are
different. By Mazur’s theorem (see p. 58 of [5]) about the quantity of rational points and the rank
of elliptic curve: If an elliptic curve F defined over (Q has more than 16 different rational points,
then it has infinitely many rational points and its rank has at least one. Therefore, £ has a positive

rank, and thus there are infinitely many rational points on &;.
When b2 = kac (k = —1,1,3), we have a = 2, and then

ok’

27(k — 3)v® 27(2k — 9)b'*
Cv2 v
&Y= X°— 13 X — = .
By the transformation

Y X

U - b_67 V = b_47 (7)

we get

27(k —3) 27(2k —9)

.72 _ /3
Ewy: U =V" — 13 V- = :

1) When k = —1, we get
Ecny: UP=V?—108V +297.

Using the package of Magma, the rank of £_) is 0, and the only rational points on £
are
(3,0), (—=6,427) (12,427).

2) When k = 1, we get
Eqy: U =V?+54V + 189,
The rank of &) is 0, and the only rational points on &£y are
(—3,0), (6,+27).
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3) When k = 3, we get
5(3) cU? = V3+1.
The rank of &3, is 0, and the only rational points on &3, are

(—=1,0), (0,£1), (2,£3).

Therefore, when b # kac (k = —1,1,3), the elliptic curve & has a positive rank. When
b?> = kac (k = —1,1, 3), the rank of the elliptic curve & is 0. [

Theorem 2.3. Let G = (x +y)z — 2zy and f(x) = ax?® + bx + ¢ € Q[z] with abc # 0. When
2ac — b* # 0 and 4ac — b* # 0, (G, F) is birationally equivalent to the elliptic curve

E:Y? = X7 —3a'c'X +a'c*(2a*c® — dab’c + bY).
When 2ac — b* = 0, (G, F') is the union of two curves, which are

2c 2cy(by + 2c)

z = z = .
b’ b2y? + 2c2

When 4ac — b* = 0, (G, F) is a curve with genus 0 and its parameterization is given by

B 24ct(2bt — 12c¢t — c)

 68D2t2 + 48bct? — 144¢2t2 + 4bet — 242t — 2’

B 48¢t(8bt — 12¢t — ¢)

T 100622 — 192bct? + 14422 — 16bct + 242t + ¢

where t is a rational number.

Y

Proof. When G = (z + y)z — 2zy and f(z) = ax® + bz + ¢, the Diophantine system (2) is
equivalent to

(y — 2)? (a2y222 — 2acy® — 2acyz + acz® — 2bey + bcz) =0. (8)
Since y = z is trivial, we only need to consider the rational points on the curve
Cy : a*y*2* — 2acy® — 2acyz + acz? — 2bey + bez = 0.

By the map ¢5:

c(a®by?z + a’cy? + abez + b%c)

X = . ,
9
b (aPyPz + a®by? 4 aby’z + 2aPcy® + a’cyz + abey + abez + bc) ©)

Y = " :
with the inverse map ¢, ':

be(—a*c + a?b*c® + Xac+Y) 20c(—2ac® — a*b*c? + 2Xac+Y) (10)

y= =

atct — 2a3b%2c3 — 2Xa2c? + X2’ = atct 4+ 4a3b%c3 — 2Xa2c? + X2

we can transform C; into the elliptic curve

Ey: Y2 = X% 3a*c* X + a'c*(2a*c* — dab’c + bY).
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The discriminant of &, is
Ay(E) = 27a%cPb*(4ac — b*)(2ac — b*)?.

Hence, if 2ac — b* # 0 and 4ac — b* # 0, then Ay(FE) # 0, so & is non-singular. Therefore,
(9) and (10) give a bijection between (G, F') and the elliptic curve &, so (G, I') is birationally
equivalent to the elliptic curve &.

When 2ac — b* = 0, the Diophantine system (2) is equivalent to

(bz + 2¢)(B*y*z — 2bey® — 4cPy + 2¢*2) = 0,

which leads to
2¢ 2cy(by + 2¢)
—_— =
b’ b2y? + 2¢2

When 4ac — b* = 0, the Diophantine system (2) is equivalent to

Zz =

bPy?2? — 8bc*y? — 8bc’yz + 4bc® 2 — 32¢%y + 16¢%2 = 0. (11)

The curve given by (11) is a curve of genus 0, and its parameterization is given by

24ct(2bt — 12¢t — ¢)

Y7 680212 1 48bet® — 144¢21% + 4bel — 24¢% — 2
- 48¢t(8bt — 12¢t — ¢)
100622 — 192bct? + 144c%t2 — 16bet + 242t + 2’
where ¢ is a rational number. This completes the proof. ]

Theorem 2.4. The elliptic curve & has a positive rank.

Proof. 1t is easy to check that the elliptic curve & contains the following rational point
P = (—a*¢®, —c*(2ac — b%)a?) .

By the group law, we get the following eight points

The points [2] P and [3] P are as follows

[2]P = (2a*c*, a*c*(2ac — b%))

7 16 4
[B|P = (—a202 — —ab*c + §b4, -

(2ac — b?)(5a*c? — 32ab*c + 8b4)>
9 9 '

27

We omit the expressions for the other six points because they will not be used directly. It is easy
to verify that when 2ac — b* # 0, the points P and £[i] P, i = 2, ..., 9, are different. By Mazur’s
theorem (see p. 58 of [5]) about the quantity of rational points and the rank of elliptic curve: If
an elliptic curve £ defined over (Q has more than 16 different rational points, then it has infinitely
many rational points and its rank has at least one. Therefore, £, has a positive rank, and thus there
are infinitely many rational points on &. [l
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Theorem 2.5. Let G = (z + y)z — 2xy and f(z) = ax + b+ cx™' € Q[z, x| with abc # 0.
When 4ac — b* # 0, (G, F) is birationally equivalent to the elliptic curve

E3: Y2 =X —3d*cSX — a’B(2ac — b?).
When dac — b* = 0, (G, F') is a curve with genus 0 and its parameterization is given by

8ct(9bt + 6t + b) (17bt + 6¢t + b)(9bt + 6¢t + b)c

Y7 (070t + 6et + bY(5bt + 6et + 1) T 16632 ’

where t is a rational number.

Proof. When G = (z + y)z — 2xy and f(x) = ax + b+ ca~!, the Diophantine system (2) is
equivalent to
(y — 2)* (aby?z* + 3acy’z — 2%y + ?z) = 0. (12)

Since y = z is trivial, we only need to consider the rational points on the curve
Cs : aby*2* + 3acy®z — 2%y + ¢*2 = 0.
By the map ¢3:

A(aby*z + 2acy® + ¢2) A (aby® + aby?z + 3acy?® + %)

X = " . Y = " , (13)
with the inverse map o3 ':
)= A(Y + abc?) e 2¢%(Y — abc4)7 (14)
(X +ac®)(X — 2ac?) (X + ac?)?

we can transform C; into the elliptic curve
E3: Y? = X% —3a*X — a*c®(2ac — b?).
The discriminant of &3 is
A3(E) = 27a*c*b*(4ac — b%).

Hence, if 4ac — b* # 0, then Az(E) # 0, so &; is non-singular. Therefore, (13) and (14) give
a bijection between (G, I') and the elliptic curve &, so (G, F) is birationally equivalent to the
elliptic curve &;.

When 4ac — b* = 0, the Diophantine system (2) is equivalent to

VP22 + 3b%cy’z — 8cPy + 4c*z = 0. (15)

The curve given by (15) is a curve of genus 0, and its parameterization is given by

8ct(9bt + 6t + b) (17bt + 6¢t + b)(9bt + 6¢t + b)c
= z = —
Y= (170t + 6ct + b)(5bt + 6ct + b)’ 16652 ’
where ¢ is a rational number. This completes the proof. ]
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Theorem 2.6. When b* # kac (k = 2L, 20), the elliptic curve E; has a positive rank. When

b = kac (k = %, %) the rank of the elliptic curve &5 is 0.

Proof. 1t is easy to check that the elliptic curve & contains the following rational point
P = (2ac®, —abc®).

By the group law, we get the following eight points

The point P is as follows

ac®(8lac — 16b%) c*a(729a%c* — 216ab*c + 8b*)
2P = , .
4h? 8b3

We omit the expressions for the other seven points because they will not be used directly. It is
easy to verify that when b # kac (k = 2, 27), the points P and £[i]P, i = 2, ..., 9, are different.
By Mazur’s theorem (see p. 58 of [5]) about the quantity of rational points and the rank of elliptic
curve: If an elliptic curve E defined over (Q has more than 16 different rational points, then it has
infinitely many rational points and its rank has at least one. Therefore, &3 has a positive rank, and
thus there are infinitely many rational points on &s.

When b? = kac (k = %7, %7), we have a = g, and then

3btct bect(k — 2)

rv2 3
Eg.Y_X—k2X+ 13 .
By the transformation
Y X
U=%a V- (10
we get
3 k—2
1) When k£ = %, we get
64 704
Eory: UP=V3— —V 4 ——.
(F) 243" " 19683

Using the package of Magma, the rank of & 21 1s 0.
2) When k = %, we get

16 304
Eom U2 =V3_ 2y
(%) 513" T 10683

The rank of 5(%) is 0.

Therefore, when v*> # kac (k = %7, 2?7), the elliptic curve &3 has a positive rank. When

b? = kac (k = %, 2I), the rank of the elliptic curve &; is 0. O
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Theorem 2.7. Let G = (z +y)z — 2xy and f(x) = z(az* + bx + ¢) € Q[z] with abc # 0. When
ac—b*#0,3ac—b* # 0 and 4ac —b* # 0, (G, F) is birationally equivalent to the elliptic curve

E,:Y? = X? —3a5*X — a®(2ac — b*)(a®c? — 4ab’c + b*).

When ac — b* = 0, (G, F) is a curve with genus 0 and its parameterization is given by

2P +6t+3) (28 +6t+3)
B 3t+1b T T 3b(t+1)2

where t is a rational number. When 3ac — b? = 0, (G, F) is the union of two curves, which are

2¢ y(by + 2¢)

2=—=—", 2= ———".

b c

When 4ac — b* = 0, (G, F) is a curve with genus 0 and its parameterization is given by
2ct(bt + 6ct + 3b) 4(2bt 4 6¢t + 3b)ct
= — z = —
Y 3(bt 4 2ct 4 b)(2ct 4+ b)’ 3(bt + 2ct + )2 7

where t is a rational number.

Proof. When G = (z + y)z — 2xy and f(z) = z(ax® + bz + ¢), the Diophantine system (2) is
equivalent to

(y — 2)° (3a2y2z + 2aby® + 2abyz — abz® — 2acy + acz + 2b*y — bzz) =0. (17)
Since y = z is trivial, we only need to consider the rational points on the curve
Cy : 3a*y*z + 2aby® + 2abyz — abz? — 2acy + acz + 2%y — b*z = 0.

By the map ,:

v 2a3cy® — a*b*y? — a’bez + ab3z + a*c?® — 2ab*c + b

9

Y2
(ac — b*)Y; (18)

Y = /:

Y

where
Y: = 3adey? — a?b%y? + a®bPyz — a’bey — a*bez + abdy + abdz + a*c® — 2ab’c + b,
with the inverse map ¢ ':
(ac — b*)(—2a*bc + a®b® + Xab—Y)
(a3c — 2a20* + X)(—2a%c + a?b? + X)’
2(ac — b?)(—a*bc — a®b® + 2Xab —Y)
z= —
(a3c — 2a20* + X)? ’

we can transform Cy into the elliptic curve

y= —
(19)

Er: Y?=X3-3d°*X — a®(2ac — b?)(a*c® — 4ab’c + b*).
The discriminant of &, is

Ay(E) = 270"V (4ac — b*)(3ac — b*)*(ac — b*)*.
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Hence, if ac — b? # 0, 3ac — b* # 0 and 4ac — b* # 0, then Ay(E) # 0, so &, is non-singular.
Therefore, (18) and (19) give a bijection between (G, F') and the elliptic curve &, so (G, F') is
birationally equivalent to the elliptic curve &,.

When ac — b* = 0, the Diophantine system (2) is equivalent to

3byz + 2cy® + 2cyz — ezt = 0. (20)

The curve given by (20) is a curve of genus 0, and its parameterization is given by

o2 +6t+3) Z__c(2t2+6t+3)
L A A T Y COUE S PR

where ¢ is a rational number. When 3ac — b = 0, the Diophantine system (2) is equivalent to
(bz + 2¢)(by* + 2cy — cz) = 0,

which leads to
2c y(by +2¢)

Z2=——, 2= ——".

b c
When 4ac — b* = 0, the Diophantine system (2) is equivalent to

3b%y%2 + 8bey? + 8beyz — 4bez? + 24c%y — 12¢%2 = 0. 21

The curve given by (21) is a curve of genus 0, and its parameterization is given by

2ct(bt + 6ct + 3b) 4(2bt 4 6¢t + 3b)ct
= — z = —
Y 3(bt 4 2ct + b)(2ct 4+ b)’ 3(bt + 2ct + )2 7
where ¢ is a rational number. This completes the proof. ]

Theorem 2.8. When b? # %ac, the elliptic curve &4 has a positive rank. When b* = %ac, the rank
of the elliptic curve &, is 0.

Proof. 1t is easy to check that the elliptic curve &£, contains two rational points
Py = (2a°c — a*b*,0), P, = (—a’c,a’b(3ac — b?)).
By the group law, we get the following seven points

Py =[2]P, P3=[3|P, P,=I[4P,
Ps=hP+h, PB=h+h, P=k+FkR K=P+h

The point P is as follows
Py = (2a’c, —3cba®* + a’b?).

We omit the expressions for the other six points because they will not be used directly. It is easy
to verify that when b* # %ac, the points P and +[i|P, i = 2,...,9, are different. By Mazur’s
theorem (see p. 58 of [S]) about the quantity of rational points and the rank of elliptic curve: If
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an elliptic curve E defined over (Q has more than 16 different rational points, then it has infinitely
many rational points and its rank has at least one. Therefore, £, has a positive rank, and thus there
are infinitely many rational points on &j4.

2
When b2 = %ac, we have ¢ = %, and then

64b'2 70408

E Y= X3 — .
! 243" T 106830
By the transformation
Ay X
we get
64 704
", 2 _y3_ T
G Um=V"= 03V To6s

Using the package of Magma, the rank of £] is 0. Il
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