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Abstract: Many authors investigated the problem about the linear combination of two polygonal
numbers being a perfect square, i.e., the Diophantine equation

mPk(x) + nPk(y) = z2,

where Pk(x) denotes the x-th k-polygonal number and m,n are positive integers. In this note, we
continue the study of this problem in another direction and consider three Diophantine equations

mPk(x)− 1 = z2, mPk(x)− nPk(y) = z2, mPk(x)− nPk(y) = 1.

By the theory of Pell equations and congruences, we obtain some conditions such that the above
three Diophantine equations have infinitely many positive integer solutions.
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1 Introduction

The x-th k-polygonal number [3, p. 5] is given by the formula

Pk(x) =
x ((k − 2)(x− 1) + 2)

2
,

where x ≥ 1, k ≥ 3. In the first chapter of [4] and D3 of [7], the authors collected many results
and properties about the polygonal numbers.

In 2005, Bencze [1] asked a question: find all positive integers n such that 1 + 9
2
n(n + 1) =

1 + 9P3(n) is a perfect square. In 2007, Le [11] answered Bencze’s problem and obtained all
such n which are

1

2

(
1

6

(
a2i+1 + b2i+1

)
− 1

)
,

where a = 3 +
√
8, b = 3−

√
8, and i ∈ Z+. In 2013, Hu [8] studied the Diophantine equation

1 + nP3(y − 1) = z2,

where

n =



t2 ± 1

2
, t ≡ 1 (mod 2), t ≥ 3,

t2 ± 2

2
, t ≡ 0 (mod 2), t ≥ 2,

t(t− 1)

2
, t ≥ 2.

There are more research in this direction, we can refer to [2, 6, 13–15].
In 2019, Peng [12] showed that if 2n is not a perfect square, then 1 + nP3(y − 1) = z2 has

infinitely many positive integer solutions. Meanwhile, she studied the problem about the linear
combination of two triangular numbers is a perfect square, i.e., the Diophantine equation

mP3(x− 1) + nP3(y − 1) = z2,

where m,n ∈ Z+. Under some conditions, she obtained an infinity of positive integer solutions
of the above Diophantine equation.

In 2020, Jiang and Li [9] considered the linear combination of two polygonal numbers is a
perfect square and gave a positive answer to Question 4.1 of Peng [12]. They showed that if
k ≥ 5, 2(k − 2)n is not a perfect square, and there is a positive integer solution (Y ′, Z ′) of
Y 2 − 2(k − 2)nZ2 = (k − 4)2n2 − 8(k − 2)n satisfying

Y ′ + (k − 4)n ≡ 0 (mod 2(k − 2)n), Z ′ ≡ 0 (mod 2),

then the Diophantine equation 1+nPk(y) = z2 has infinitely many positive integer solutions (y, z).
Moreover, they studied the Diophantine equation

mPk(x) + nPk(y) = z2,

where m,n ∈ Z+, and proved that when ntr
2

is a perfect square, where t = r(k − 2) − 1, there
exist infinitely many pairs (a, b) of positive integers such that mPk(x) + nPk(y) = z2 has integer
parametric solutions (x, ax + b, u(cx + d)), where k ≥ 5. Further, they obtained two general
results:

737



1) If k ≥ 5, 2(k − 2)(m+ n) is not a perfect square, r ∈ Z, and the Pellian equation

X2 − 2(k − 2)(m+ n)Z2 = (k − 4)2(m+ n)2 − 4(k − 2)2mnr2

has a positive integer solution (X0, Z0) satisfying

X0 − 2(k − 2)nr + (k − 4)(m+ n) ≡ 0 (mod 2(k − 2)(m+ n)), Z0 ≡ 0 (mod 2),

then mPk(x) + nPk(y) = z2 has infinitely many positive integer solutions.

2) Let k ≥ 5, m = 2(u2 − 4u− 4)2, n = 2(u2 + 4u− 4)2. If 2(k− 2) is not a perfect square,
and the Pell equation X2−8(k−2)(u2+4)2Z2 = 1 has a positive integer solution (U0, V0)

satisfying U0 − 1 ≡ 0 (mod 2(k − 2)), then mPk(x) + nPk(y) = z2 has infinitely many
positive integer solutions.

2 Main results

We consider the positive integer solutions of the following Diophantine equations

mPk(x)− 1 = z2, (1)

and
mPk(x)− nPk(y) = z2, (2)

where k ≥ 3 and k,m, n ∈ Z+.
By the theory of Pell equation, we have the following theorems.

Theorem 2.1. If k ≥ 3, 2(k− 2)m is not a perfect square, and there is a positive integer solution
(X ′, Z ′) of the Pell equation X2 − 2(k − 2)mZ2 = (k − 4)2m2 + 8(k − 2)m satisfying the
congruence condition

X ′ ≡ (k − 4)m (mod 2(k − 2)m), Z ′ ≡ 0 (mod 2),

then Equation (1) has infinitely many positive integer solutions (x, z). In particular, if k ≥ 3, m =

r2+1, and 2(r2+1)(k−2) is not a perfect square, then Equation (1) has infinitely many positive
integer solutions (x, z).

Theorem 2.2. When k ≥ 3 and n = (r(k− 2)+ 1)m, if (r(k−2)+1)mr
2

is a perfect square, denoted
by u2, then there exist infinitely many pairs (a, b) such that Equation (2) has integer parametric
solutions (ay + b, y, u(cy + d)), where y and a are positive integers, b is an integer.

Moreover, we obtain

Theorem 2.3. If k ≥ 3, 2(k − 2)(a2m − n) > 0 is not a perfect square, a, b ∈ Z+, and the Pell
equation

Y 2 − 2(k − 2)(a2m− n)Z2 = (k − 4)2(am− n)2 + 4bmn(k − 2)(ak + bk − 4a− 2b− k + 4)

has a positive integer solution (Y ′, Z ′) satisfying the congruence condition

Y ′ ≡ 2abm(k − 2)− (k − 4)(am− n) (mod 2(k − 2)(a2m− n)), Z ′ ≡ 0 (mod 2),

then Equation (2) has infinitely many positive integer solutions (ay + b, y, z).
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If we fix z = 1 in Equation (2), we get another interesting Diophantine equation

mPk(x)− nPk(y) = 1. (3)

By the same method, we have

Theorem 2.4. If k ≥ 3, mn is not a perfect square, and there is a positive integer solution
(X ′, Y ′) of the Pell equation X2 −mnY 2 = (k − 4)2m2 − ((k − 4)2n − 8k + 16)m satisfying
the congruence condition

X ′ ≡ −(k − 4)m (mod 2(k − 2)m), Y ′ ≡ −(k − 4) (mod{2(k − 2)),

then Equation (3) has infinitely many positive integer solutions (x, y). In particular, if k ≥ 3,
n = m− 1, then Equation (3) has infinitely many positive integer solutions (x, y).

3 Preliminaries

To prove these theorems, it needs some results about the solutions of Pell equation.

Lemma 3.1. [10] Let D be a positive integer which is not a perfect square, then the Pell equation
x2 −Dy2 = 1 has infinitely many positive integer solutions. If (U, V ) is the least positive integer
solution of the Pell equation x2 −Dy2 = 1, then all positive integer solutions are given by

xs + ys
√
D =

(
U + V

√
D
)s

,

where s is an arbitrary integer.

Lemma 3.2. [10] Let D be a positive integer which is not a perfect square, N be a nonzero
integer, and (U, V ) is the least positive integer solution of x2 −Dy2 = 1. If (x0, y0) is a positive
integer solution of x2 −Dy2 = N, then an infinity of positive integer solutions are given by

xs + ys
√
D =

(
x0 + y0

√
D
)(

U + V
√
D
)s

,

where s is an arbitrary integer.

Lemma 3.3. [5] Let D be a positive integer which is not a perfect square, m1,m2 are positive
integers, and N be a nonzero integer. If the Pell equation x2 − Dy2 = N has a positive integer
solution satisfying

u0 ≡ a (mod m1), v0 ≡ b (mod m2),

then it has infinitely many positive integer solutions satisfying

u ≡ a (mod m1), v ≡ b (mod m2).

4 Proofs of the Theorems

Proof of Theorem 2.1. 1) Multiplying Equation (1) by 8(k − 2)m, we have

(m(2(k − 2)x− (k − 4)))2 − 2(k − 2)m(2z)2 = (k − 4)2m2 + 8(k − 2)m.

Setting X = m(2(k − 2)x− (k − 4)), Z = 2z, we get the Pell equation

X2 − 2(k − 2)mZ2 = (k − 4)2m2 + 8(k − 2)m. (4)
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By Lemma 3.1, if k ≥ 3 and 2(k − 2)m is not a perfect square, the Pell equation
X2−2(k−2)mZ2 = 1 always has an infinite number of positive integer solutions. By Lemma 3.2,
if Equation (4) has a positive integer solution, it has infinitely many positive integer solutions.
Assume that Equation (4) has a positive integer solution (X ′, Z ′) satisfying the congruence
condition

X ′ ≡ (k − 4)m (mod 2m(k − 2)), Z ′ ≡ 0 (mod 2).

By Lemma 3.3, Equation (4) has infinitely many positive integer solutions (X,Z) satisfying the
above condition, which leads to infinitely many x, z ∈ Z+. Hence, under the above conditions
Equation (1) has infinitely many positive integer solutions (x, z).

2) When m = r2 + 1, Equation (4) becomes

X2 − 2(k − 2)(r2 + 1)Z2 = k2(r2 + 1)2 − 2(k − 2)(r2 + 1)(2r)2. (5)

It is easy to see that (X ′, Z ′) = (k(r2+1), 2r) is an integer solution of Equation (5). And suppose
(u, v) is the least positive integer solution of X2 − 2(k − 2)(r2 + 1)Z2 = 1. By Lemma 3.2, an
infinity of positive integer solutions of Equation (5) are given by

Xs + Zs

√
2(k − 2)(r2 + 1) =

(
k(r2 + 1) + 2r

√
2(k − 2)(r2 + 1)

)
×
(
u+ v

√
2(k − 2)(r2 + 1)

)s

, s ≥ 0.

Then{
Xs = 2uXs−1 −Xs−2, X0 = k(r2 + 1), X1 = (4krv + ku− 8rv)(r2 + 1),

Zs = 2uZs−1 − Zs−2, Z0 = 2r, Z1 = kr2v + kv + 2ru.

From X = (r2 + 1)(2(k − 2)x− (k − 4)), Z = 2z, we have
xs = 2uxs−1 − xs−2 −

(k − 4)(u− 1)

k − 2
, x0 = 1, x1 =

4krv + ku− 8rv + k − 4

2(k − 2)
,

zs = 2uzs−1 − zs−2, z0 = r, z1 =
kr2v + kv + 2ru

2
.

Using the recurrence relations of xs and zs twice, we getxs+2 = 2(2u2 − 1)xs − xs−2 −
2(u2 − 1)(k − 4)

k − 2
,

zs+2 = 2(2u2 − 1)zs − zs−2.

By u2 − 2(k − 2)(r2 + 1)v2 = 1, we get{
xs+2 = 2(2u2 − 1)xs − xs−2 − 4(k − 4)(r2 + 1)v2,

zs+2 = 2(2u2 − 1)zs − zs−2.

Replacing s by 2s, we have
x2s+2 = 2(2u2 − 1)x2s − x2s−2 − 4(k − 4)(r2 + 1)v2, x0 = 1,

x2 = 2(r2 + 1)kv2 + 4ruv + 1,

z2s+2 = 2(2u2 − 1)z2s − z2s−2, z0 = r,

z2 = 2ru2 + kv(r2 + 1)u− r.

Thus, if k ≥ 3, m = r2+1, and 2(k−2)(r2+1) is not a perfect square, Equation (1) has infinitely
many positive integer solutions (x2s, z2s), s ≥ 0.
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Example 4.1. When k = 5, r = 2, m = 22+1 = 5, then 2(k−2)m = 30 is not a perfect square.
(u, v) = (11, 2) is the least positive integer solution of X2 − 30Z2 = 1. (X ′, Z ′) = (25, 4) is the
least positive integer solution of X2 − 30Z2 = 145, then{

Xs = 22Xs−1 −Xs−2, X0 = 25, X1 = 515,

Zs = 22Zs−1 − Zs−2, Z0 = 4, Z1 = 94.

So {
x2s+2 = 482x2s − x2s−2 − 80, x0 = 1, x2 = 377,

z2s+2 = 482z2s − z2s−2, z0 = 2, z2 = 1032.

Therefore, Equation (1) has infinitely many positive integer solutions (x2s, z2s), s ≥ 0.

Proof of Theorem 2.2. Taking n = tm and x = ay + b, then Equation (2) reduces to

m(k − 2)(a2 − t)

2
y2 +

m (2(k − 2)ab− (k − 4)(a− t))

2
y

+
mb((k − 2)b− (k − 4))

2
= z2.

(6)

Consider

g(y) =
m(k − 2)(a2 − t)

2
y2 +

m(2(k − 2)ab− (k − 4)(a− t))

2
y +

mb((k − 2)b− (k − 4))

2

as a quadratic polynomial of y, if g(y) = 0 has a root with multiplicity 2, the discriminant of g(y)
is zero, i.e.,

m2

4

(
4t(k − 2)2b2 + 4t(k − 2)(k − 4)(a− 1)b+ (k − 4)2(a− t)2

)
= 0.

Solving it for b, we get

b =

(
−at+ t+

√
t(t− 1)a2 − t2(t− 1)

)
(k − 4)

2(k − 2)t
.

To find b ∈ Z, we take t(t− 1)a2 − t2(t− 1) = v2, then

v2 − t(t− 1)a2 = −t2(t− 1). (7)

It is easy to see that the pair (v′, a′) = (t(t − 1), t) is a solution of Equation (7), and the pair
(v, a) = (2t− 1, 2) solves the Pell equation v2− t(t− 1)a2 = 1. So an infinity of positive integer
solutions of Equation (7) are given by

vs + as
√

t(t− 1) =
(
t(t− 1) + t

√
t(t− 1)

)(
2t− 1 + 2

√
t(t− 1)

)s

, s ≥ 0.

Thus, {
vs = 2(2t− 1)vs−1 − vs−2, v0 = t(t− 1), v1 = t(4t− 1)(t− 1),

as = 2(2t− 1)as−1 − as−2, a0 = t, a1 = t(4t− 3).
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According to the recurrence relation of as, we have

as ∈ Z+.

Then

bs =
(−t(as − 1) + vs)(k − 4)

2(k − 2)t
.

Further, we get

bs = 2(2t− 1)bs−1 − bs−2 −
2(t− 1)(k − 4)

k − 2
, b0 = 0, b1 = −(k − 4)(t− 1)

k − 2
.

According to the recurrence relation of bs, we have

bs ≡ 0 (mod t− 1).

In order for bs to be an integer, we need t ≡ 1 (mod k − 2). Taking t = r(k − 2) + 1, we have

b0 = 0, b1 = −r(k − 4),

so bs is an integer for each s ≥ 0.
Equation (6) now becomes

(r(k − 2) + 1)mr

2
(cy + d)2 = z2,

where c, d are determined by g(y).
If k ≥ 3 and (r(k−2)+1)mr

2
is a perfect square, denoted by u2, then there exist infinitely many

pairs (a, b) such that Equation (2) has integer parametric solutions (ay + b, y, u(cy + d)), where
y and a are positive integers, b is an integer.

Example 4.2. When k = 5, r = 1, m = 2, n = 8, (r(k−2)+1)mr
2

= 4 is a perfect square. Taking
a0 = 4, b0 = −1, Equation (2) has integer parametric solutions (4y − 1, y, 3y − 1), where y is a
positive integer.

Proof of Theorem 2.3. Letting x = ay + b, a, b ∈ Z+, Equation (2) equals

(2(k − 2)(a2m− n)y+2abm(k − 2)− (k − 4)(am− n))2 − 2(k − 2)(a2m− n)(2z)2

= (k − 4)2(am− n)2 + 4bmn(k − 2)(ak + bk − 4a− 2b− k + 4).

Taking Y = 2(k − 2)(a2m− n)y + 2abm(k − 2)− (k − 4)(am− n), Z = 2z, we get

Y 2−2(k−2)(a2m−n)Z2 = (k−4)2(am−n)2+4bmn(k−2)(ak+bk−4a−2b−k+4). (8)

By Lemma 3.1, if 2(k − 2)(a2m− n) is not a perfect square, the Pell equation

Y 2 − 2(k − 2)(a2m− n)Z2 = 1

has infinitely many positive integer solutions. By Lemma 3.2, if Equation (8) has a positive
integer solution, it has an infinite number of positive integer solutions. Assume that Equation (8)
has a positive integer solution (Y ′, Z ′) satisfying the congruence condition

Y ′ ≡ 2abm(k − 2)− (k − 4)(am− n) (mod 2(k − 2)(a2m− n)), Z ′ ≡ 0 (mod 2).
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By Lemma 3.3, Equation (8) has infinitely many positive integer solutions (Y, Z) satisfying the
above condition, which leads to infinitely many y, z ∈ Z+. Then there exist infinitely many
x = ay + b ∈ Z+. Hence, under the above conditions Equation (2) has an infinite number of
positive integer solutions (ay + b, y, z).

Example 4.3. 1) When k = 5, a = 1, b = 2, m = 5, n = 2, Equation (8) becomes

Y 2 − 18Z2 = 1449. (9)

It has a positive integer solution (Y ′, Z ′) = (93, 20) satisfying

Y ′ ≡ 57 (mod 18), Z ′ ≡ 0 (mod 2).

Note that (u, v) = (17, 4) is the least positive integer solution of Y 2− 18Z2 = 1. By Lemma 3.3,
Equation (9) has infinitely many positive integer solutions (Y, Z) satisfying the above condition,
which leads to infinitely many y, z ∈ Z+. Then there are infinitely many x = y+2 ∈ Z+. Hence,
Equation (2) has an infinite number of positive integer solutions (y + 2, y, z).

2) When k = 5, a = 2, b = 1, m = 4, n = 3, Equation (8) becomes

Y 2 − 78Z2 = 601. (10)

It has a positive integer solution (Y ′, Z ′) = (43099, 4880) satisfying

Y ′ ≡ 43 (mod 78), Z ′ ≡ 0 (mod 2).

Note that (u, v) = (53, 6) is the least positive integer solution of Y 2− 78Z2 = 1. By Lemma 3.3,
Equation (10) has infinitely many positive integer solutions (Y, Z) satisfying the above condition,
which leads to infinitely many y, z ∈ Z+. Then there are infinitely many x = 2y + 1 ∈ Z+.

Hence, Equation (2) has an infinite number of positive integer solutions (2y + 1, y, z).

Proof of Theorem 2.4. 1) Multiplying Equation (3) by 8(k − 2)m, we have

(2m(k−2)x−m(k−4))2−mn(2(k−2)y− (k−4))2 = (k−4)2m2− ((k−4)2n−8k+16)m.

Setting X = 2m(k − 2)x−m(k − 4), Y = 2(k − 2)y − (k − 4), we get the Pell equation

X2 −mnY 2 = (k − 4)2m2 − ((k − 4)2n− 8k + 16)m. (11)

By Lemma 3.1, if mn is not a perfect square, the Pell equation X2 − mnY 2 = 1 always has
an infinite number of positive integer solutions. By Lemma 3.2, if Equation (11) has a positive
integer solution, it has infinitely many positive integer solutions. Assume that Equation (11) has
a positive integer solution (X ′, Y ′) satisfying the congruence condition

X ′ ≡ −(k − 4)m (mod 2(k − 2)m), Y ′ ≡ −(k − 4) (mod 2(k − 2)).

By Lemma 3.3, Equation (11) has infinitely many positive integer solutions (X, Y ) satisfying the
above condition, which leads to infinitely many x, y ∈ Z+. Hence, under the above conditions
Equation (3) has infinitely many positive integer solutions (x, y).
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2) When n = m− 1, Equation (11) reduces to

X2 −m(m− 1)Y 2 = k2m. (12)

It is easy to see that (X, Y ) = (2m − 1, 2) is the least positive integer solution of X2 −m(m −
1)Y 2 = 1. Note that (X ′, Y ′) = (km, k) is a positive integer solution of Equation (12) and
satisfies the congruence condition

X ′ ≡ −(k − 4)m (mod 2(k − 2)m), Y ′ ≡ −(k − 4) (mod 2(k − 2)).

By Lemma 3.3, Equation (12) has infinitely many positive integer solutions (X, Y ) satisfying the
above condition, which leads to infinitely many x, y ∈ Z+. Hence, when k ≥ 3, n = m − 1,
Equation (3) has infinitely many positive integer solutions (x, y).

Example 4.4. 1) When k = 3, n = m− 1, Equation (12) becomes

X2 −m(m− 1)Y 2 = 9m. (13)

By Lemma 3.2, an infinity of positive integer solutions of Equation (13) are given by

Xs + Ys

√
m(m− 1) =

(
3m+ 3

√
m(m− 1)

)(
2m− 1 + 2

√
m(m− 1)

)s

, s ≥ 0.

Then {
Xs = 2(2m− 1)Xs−1 −Xs−2, X0 = 3m, X1 = 3m(4m− 3),

Ys = 2(2m− 1)Ys−1 − Ys−2, Y0 = 3, Y1 = 12m− 3.

From X = 2mx+m, Y = 2y + 1, we have{
xs = 2(2m− 1)xs−1 − xs−2 + 2m− 2, x0 = 1, x1 = 6m− 5,

ys = 2(2m− 1)ys−1 − ys−2 + 2m− 2, y0 = 1, y1 = 6m− 2.

Thus, when k = 3, n = m − 1, Equation (3) has infinitely many positive integer solutions
(xs, ys), s ≥ 0.
When k = 4, 6, we can give the same results by the recurrence relation.

2) When k = 5, n = m− 1, Equation (12) reduces to

X2 −m(m− 1)Y 2 = 25m. (14)

By Lemma 3.2, an infinity of positive integer solutions of Equation (14) are given by

Xs + Ys

√
m(m− 1) =

(
5m+ 5

√
m(m− 1)

)(
2m− 1 + 2

√
m(m− 1)

)s

, s ≥ 0.

Then {
Xs = 2(2m− 1)Xs−1 −Xs−2, X0 = 5m, X1 = 5m(4m− 3),

Ys = 2(2m− 1)Ys−1 − Ys−2, Y0 = 5, Y1 = 20m− 5.

From X = 6mx−m, Y = 6y − 1, we have
xs = 2(2m− 1)xs−1 − xs−2 −

2m− 2

3
, x0 = 1, x1 =

10m− 7

3
,

ys = 2(2m− 1)ys−1 − ys−2 −
2m− 2

3
, y0 = 1, y1 =

10m− 2

3
.
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Although by Lemma 3.3, Equation (14) has infinitely many positive integer solutions (X ′, Y ′)

satisfying the congruence condition

X ′ ≡ −m (mod 6m), Y ′ ≡ −1 (mod 6).

However, for general positive integer m ≥ 2, we cannot obtain infinitely many positive integer
solutions by the similar way in 1).

When m = 3, n = 2, we have the recurrence relations
xs = 10xs−1 − xs−2 −

4

3
, x0 = 1, x1 =

23

3
,

ys = 10ys−1 − ys−2 −
4

3
, y0 = 1, y1 =

28

3
.

By the property of congruence, it is easy to check that

x6i−1, x6i ∈ Z+, y2i ∈ Z+.

So for k = 5, m = 3, n = 2, Equation (3) has an infinity of positive integer solutions (x6i, y6i),

i ≥ 1.

5 Conclusion

We continue the study about the linear combination of two polygonal numbers is a perfect
square [9, 12]. By the theory of Pell equation and congruence, we show that the following three
Diophantine equations

mPk(x)− 1 = z2, mPk(x)− nPk(y) = z2, mPk(x)− nPk(y) = 1

have infinitely many positive integer solutions under some conditions. This note extends the
ideas of the existing research and enriches the results of polygonal numbers and polynomial
Diophantine equations.
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