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Abstract: The work considers the set Lk
n of all n × n binary matrices having the same number

of k units in each row and each column. The article specifically focuses on the matrices whose
rows and columns are sorted lexicographically. We examine some particular cases and special
properties of this matrices. Finally, we demonstrate the relationship between the Fibonacci
numbers and the cardinality of two classes of Lk

n-matrices with lexicographically sorted rows
and columns.
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1 Preliminaries and notations

A binary (or Boolean, or (0,1)-matrix) is a matrix whose all elements belong to the set B = {0, 1}.
Let m and n be positive integers. With Bn×m we will denote the set of all n×m binary matrices
and with Bn we will denote the set of all binary n-vectors.

If n and k are integers such that n ≥ 2, 0 ≤ k ≤ n, then we will call Lk
n-matrices all n × n

binary matrices in each row and each column of which there are exactly k unity elements. The
set Lk

n is well known as the set of adjacency matrices of bipartite k-regular graphs of order n.
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The set
Lk

n ⊂ Bn×n

is the set of all Lk
n-matrices.

Let A = (aij) ∈ Bn×m. With r(A) we will denote the ordered n-tuple

r(A) = ⟨x1, x2, . . . , xn⟩,

where 0 ≤ xi ≤ 2m−1, i = 1, 2, , . . . n and xi are nonnegative integers written in binary notation
with the help of the i-th row of A, i.e.,

xi =
m∑
j=1

aij2
m−j, i = 1, 2, , . . . n.

Similarly, with c(A) we will denote the ordered m-tuple

c(A) = ⟨y1, y2, . . . , ym⟩,

where 0 ≤ yj ≤ 2n − 1, j = 1, 2, . . .m and yj are nonnegative integers written in binary notation
with the help of the j-th column of A, i.e.,

yj =
n∑

i=1

aij2
n−i, j = 1, 2, , . . .m.

Let A ∈ Bn×m, r(A) = ⟨x1, x2, . . . , xn⟩ and c(A) = ⟨y1, y2, . . . , ym⟩. Then by Cn×m and
with Dn×m we will denote the sets:

Cn×m = {A ∈ Bn×m | x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ ym} ⊂ Bn×m,

Dn×m = {A ∈ Bn×m | x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ ym} ⊂ Bn×m.

In other words, A ∈ Cn×m if and only if the rows and columns of A are sorted in lexicographical
nondecreasing order and A ∈ Dn×m if and only if the rows and columns of A are sorted in
lexicographical nonincreasing order.

Example 1.1.

A =

 0 1 1 1

1 0 1 1

1 1 0 0

 ∈ C3×4, because r(A) = ⟨7, 11, 12⟩ and c(A) = ⟨3, 5, 6, 6⟩.

B =

 1 0 0 0

0 1 1 0

0 0 0 1

 ∈ D3×4, because r(B) = ⟨8, 6, 1⟩ and c(A) = ⟨4, 2, 2, 1⟩.

We define the sets
Γk
n = Cn×n ∩ Lk

n,

∆k
n = Dn×n ∩ Lk

n
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and the functions
γ(n, k) =

∣∣Γk
n

∣∣ ,
δ(n, k) =

∣∣∆k
n

∣∣ .
In this paper we will demonstrate the relationship between the functions γ, δ and the Fibonacci

numbers.
As is well known (see for example [1] or [3]), the sequence {fn}∞n=0 of Fibonacci numbers is

defined by the recurrence relation

f0 = f1 = 1, fn = fn−1 + fn−2 for n = 2, 3, . . .

2 Some properties of the sets Γk
n and ∆k

n

In general,
γ(n, k) ̸= δ(n, k)

Indeed, according to [7, Sequence A229162] and [5], some values of the integer sequence,
obtained using a computer program are

{γ(n, k)}10n=1 = A229162 = {0, 0, 1, 1, 3, 25, 272, 4070, 79221, 1906501} .

It is not difficult to see that all Γ3
5-matrices are as follows:

0 0 1 1 1

0 0 1 1 1

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

 ,


0 0 1 1 1

0 1 0 1 1

1 0 0 1 1

1 1 1 0 0

1 1 1 0 0

 and


0 0 1 1 1

0 1 0 1 1

1 0 1 0 1

1 1 0 1 0

1 1 1 0 0


On the other hand, according to [7, Sequence A181344] all ∆3

5-matrices are as follows:
1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

0 0 1 1 1

0 0 1 1 1

 ,


1 1 1 0 0

1 1 1 0 0

1 0 0 1 1

0 1 0 1 1

0 0 1 1 1

 ,


1 1 1 0 0

1 1 0 1 0

1 0 1 0 1

0 1 0 1 1

0 0 1 1 1

 ,


1 1 1 0 0

1 1 0 1 0

1 0 0 1 1

0 1 1 0 1

0 0 1 1 1

 and


1 1 1 0 0

1 0 0 1 1

1 0 0 1 1

0 1 1 1 0

0 1 1 0 1


So γ(5, 3) = 3 and δ(5, 3) = 5, which proves that in general γ(n, k) ̸= δ(n, k). .
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Proposition 2.1. Let A = (aij) ∈ Cn×m. Then there exist integers s, t, such that 1 ≤ s ≤ m,
1 ≤ t ≤ n and

a11 = a12 = · · · = a1s = 0, a1,s+1 = a1,s+2 = · · · = a1m = 1, (1)

a11 = a21 = · · · = at1 = 0, at+1,1 = at+2,1 = · · · = an1 = 1. (2)

Proof. Let r(A) = ⟨x1, x2, . . . xn⟩ and c(A) = ⟨y1, y2, . . . ym⟩. We assume that there exist
integers p and q, such that 1 ≤ p < q ≤ m, a1p = 1 and a1q = 0. In this case, yp > yq,
which contradicts the condition that columns of A are sorted in lexicographical non decreasing
order. We have proven (1). Similarly, we prove (2) as well.

Corollary 2.1. Let A = (aij) ∈ Cn×m. Then there exist integers s, t, 0 ≤ s ≤ m, 0 ≤ t ≤ n,
such that

x1 = 2s − 1

and
y1 = 2t − 1,

where s equals the number of units in the first row and t equals the number of units in the first
column of A.

Numbers of the form Mn = 2n− 1, for a positive integer n, are generally known as Mersenne
numbers. [2]

Proposition 2.2 (Dual of Proposition 2.1). Let A = (aij) ∈ Dn×m. Then there exist integers s, t,
such that 1 ≤ s ≤ m, 1 ≤ t ≤ n and

a11 = a12 = · · · = a1s = 1, a1,s+1 = a1,s+2 = · · · = a1m = 0, (3)

a11 = a21 = · · · = at1 = 1, at+1,1 = at+2,1 = · · · = an1 = 0. (4)

Corollary 2.2 (Dual of Corollary 2.1). Let A = (aij) ∈ Dn×m. Then there exist integers s, t,
0 ≤ s ≤ m, 0 ≤ t ≤ n, such that

x1 = (2s − 1)2m−s = 2m − 2m−s

and
y1 = (2t − 1)2n−t = 2n − 2n−t,

where s equals the number of units in the first row and t equals the number of units in the first
column of A.

Theorem 2.1. Let n and k, be integers, such that n ≥ 1, 0 ≤ k ≤ n. Then

γ(n, n− k) = δ(n, k).

Proof. Let a ∈ B = {0, 1}. Then with a we will denote

a =

{
1, if a = 0;

0, if a = 1.

Obviously a = a.
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If u = ⟨u1, u2, . . . , un⟩ ∈ Bn, then with u we will denote u = ⟨u1, u2, . . . , un⟩. If A = (aij) ∈
Bn×m, then with A we will denote A = (aij).

Let u = ⟨u1, u2, . . . , un⟩, v = ⟨v1, v2, . . . , vn⟩ ∈ Bn. Then it is easy to see that u < v if and
only if u > v. Therefore, a matrix A = (aij) ∈ Cn×m if and only if the matrix A = (aij) ∈ Dn×m.

Finally, we take into account the fact that the matrix A = (aij) ∈ Ln−k
n if and only if the

matrix A = (aij) ∈ Lk
n.

Theorem 2.2. Let n be an integer, n ≥ 2 and let A = (aij) ∈ ∆2
n ⊂ L2

n. Then A has the form:

A =

(
B O′

O′′ C

)
, (5)

where B and C are square binary matrices,

B =

(
1 1

1 1

)
, (6)

or B has the form:*

B =



1 1 0 0 0 · · · 0 0

1 0 1 0 0 · · · 0 0

0 1 0 1 0 · · · 0 0

0 0 1 0 1 · · · 0 0
...

...
... . . . . . . . . . ...

...
0 0 0 · · · 1 0 1 0

0 0 0 · · · 0 1 0 1

0 0 0 · · · 0 0 1 1


. (7)

C ∈ ∆2
s ⊂ L2

s for some s such that 2 ≤ s ≤ n − 2, or C does not exist. All the elements of
matrices O′ and O′′, which are outside of the submatrices B and C, are equal to 0.

Proof. From A ∈ L2
n and from Proposition 2.2 it follows that a11 = a12 = a21 = 1, ai1 = 0 and

a1j = 0 for 3 ≤ i, j ≤ n.
i) If a22 = 1, then B has the form (6). If the matrix C exists, then it is easy to see that

C ∈ ∆2
n−2 ⊂ L2

n−2 matrix.
ii) Let a22 = 0, i.e., A is of the form

1 1 0 · · · 0

1 0 a23
0 a32
...
0

 .

Let c(A) = ⟨y1, y2, . . . , ym⟩. We suppose that a23 = 0. Since A ∈ L2
n, there exists an integer

t such that 3 < t ≤ n and a2t = 1. In this case, it is easy to see that y3 < yt, which is impossible

——————
*In other words, B is a tridiagonal matrix.
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because A ∈ Dn×n. Therefore, a23 = 1. Similarly, a32 = 1. Therefore, when a22 = 0, A is
represented as

A =


1 1 0 · · ·
1 0 1

0 1 a33
...

 .

We consider again the two possible cases for a33: a33 = 1 or a33 = 0. When a33 = 1, the
statement is proved. When a33 = 0, we do the same reasoning as above. This process cannot
continue indefinitely, since n is a finite integer. Therefore, there exists an integer t, 2 ≤ t ≤ n

such that at t = at−1 t = at t−1 = 1, i.e., in the upper left corner of A there is a submatrix of the
form (7). And in this case, it is easy to see that if the matrix C exists, then C ∈ ∆2

s ⊂ L2
s for

some s such that 2 ≤ s ≤ n− 2.

Corollary 2.3. Let n be an integer, n ≥ 2. Then

δ(n, 2) = γ(n, n− 2) = number of all ordered s−tuples of integers

⟨p1, p2, . . . , ps⟩, 1 ≤ s ≤
[n
2

]
,

such that 2 ≤ pi ≤ n, i = 1, 2, . . . s and

p1 + p2 + · · ·+ ps = n.

A similar theorem can be formulated and proved for the set Γn−2
n ⊂ Ln−2

n , n ≥ 2.

Example 2.1. The following matrices will play a crucial role in the inductive proof of Theorem 3.1,
which we will present in Section 3.

i) There is only one ∆2
2 matrix: (

1 1

1 1

)
.

ii) There is only one ∆2
3 matrix:  1 1 0

1 0 1

0 1 1

 .

iii) There are two ∆2
4 matrices:

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

 and


1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

 .

iv) There are three ∆2
5 matrices:

1 1 0 0 0

1 1 0 0 0

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

 ,


1 1 0 0 0

1 0 1 0 0

0 1 1 0 0

0 0 0 1 1

0 0 0 1 1

 and


1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 1


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3 ∆k
n and Γk

n matrices in relation to the Fibonacci numbers

Theorem 3.1. Let n be a nonnegative integer. Then

fn = δ(n+ 2, 2), (8)

where fn is the n-th element of the Fibonacci sequence.

Proof. For n = 0, 1, 2 and 3, see Example 2.1.
Let n be an integer, n ≥ 2 and let A = (aij) ∈ ∆2

n+2. From Theorem 2.2 it follows that A
is presented in the form (5) and the set ∆2

n+2 is a partition into two disjoint subsets M1 and M2

such that the set M1 consists of matrices A whose upper left corner is a submatrix B of the type
(6) and the set M2 consists of matrices A whose upper left corner is a submatrix B of the type
(7).

M1 ∩M2 = ∅, M1 ∪M2 = ∆2
n+2.

Therefore, ∣∣∆2
n+2

∣∣ = |M1|+ |M2| . (9)

i) Let A ∈ M1. In A, we remove the first and second rows and the first and second columns.
We obtain the matrix C ∈ L2

n. From Theorem 2.2 it follows that C ∈ ∆2
n.

Conversely, let C = (ci j) ∈ ∆2
n, n ≥ 2. From C we obtain the matrix A = (aij) ∈ L2

n+2 as
follows: a11 = a12 = a21 = a22 = 1, a1j = a2j = 0 for 3 ≤ j ≤ n + 2 and ai1 = ai2 = 0 for
3 ≤ i ≤ n + 2. For each i, j ∈ {3, 4, . . . , n + 2} we assume aij = ci−2 j−2. It is easy to see that
the so obtained matrix A ∈ ∆2

n+2.
Therefore,

|M1| = δ(n, 2) (10)

for any integer n ≥ 2.
ii) Let A ∈ M2, i.e., A ∈ ∆2

n+2 is of the form

A =



1 1 0 0 · · · 0

1 0 1 0 · · · 0

0 1

0 0
...

...
0 0


.

We change a22 from 0 to 1 and remove the first row and the first column of A. In this way we
obtain a matrix, which can be easily seen to belong to the set ∆2

n+1.
Conversely, let D = (di j) ∈ ∆2

n+1. According to Proposition 2.1, d11 = d12 = d21 = 1.
We change d11 from 1 to 0. In D, we add a first row and a first column and get the matrix
A = (aij) ∈ L2

n+2, such that a11 = a12 = a21 = 1, a1j = 0 for j = 3, 4, . . . , n + 2, αi1 = 0

for i = 3, 4, . . . , n + 2 and as+1 t+1 = dst for s, t ∈ {1, 2, . . . , n + 1}. It is easy to see that the
resulting matrix A ∈ M2 ⊂ ∆2

n+2.
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Therefore,
|M2| = δ(n+ 1, 2) (11)

for every integer n ≥ 2.
From (9), (10) and (11) it follows that when n ≥ 2

δ(n+ 2, 2) =
∣∣∆2

n+2

∣∣ = |M1|+ |M2| = δ(n, 2) + δ(n+ 1, 2).

This completes the proof.

Corollary 3.1. [6] From Theorem 3.1 and Theorem 2.1 it follows:

fn = γ(n+ 2, n), (12)

where fn is the n-th element of the Fibonacci sequence.

Equations (8) and (12) obviously are different. Thus, the result obtained in this paper differs
from the result defined and proven in [6] concerning similar problem.
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