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Abstract: The work considers the set £ of all n x n binary matrices having the same number
of k units in each row and each column. The article specifically focuses on the matrices whose
rows and columns are sorted lexicographically. We examine some particular cases and special
properties of this matrices. Finally, we demonstrate the relationship between the Fibonacci
numbers and the cardinality of two classes of £¥-matrices with lexicographically sorted rows
and columns.
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1 Preliminaries and notations

A binary (or Boolean, or (0,1)-matrix) is a matrix whose all elements belong to the set B = {0, 1}.
Let m and n be positive integers. With B, ,,, we will denote the set of all n X m binary matrices
and with B,, we will denote the set of all binary n-vectors.

If n and k£ are integers such that n > 2, 0 < k < n, then we will call L’fL—mam’ces alln xn
binary matrices in each row and each column of which there are exactly £ unity elements. The
set £¥ is well known as the set of adjacency matrices of bipartite k-regular graphs of order n.
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The set
LY C Buyn

is the set of all £L¥-matrices.
Let A = (a;;) € B,xm. With 7(A) we will denote the ordered n-tuple

T(A) = <I‘1,$2, ... 7'Tn>7

where 0 < x; < 2™ —1,7=1,2,,...n and z; are nonnegative integers written in binary notation
with the help of the i-th row of A, i.e.,

m
€T; = E aiij_], i:1,2,,...n.
J=1

Similarly, with ¢(A) we will denote the ordered m-tuple

C(A> = <y17y27 B 7ym>7

where 0 < y; < 2" —1,j =1,2,...m and y; are nonnegative integers written in binary notation
with the help of the j-th column of A, i.e.,

yi=> 2", j=12...m
=1

Let A € Byym, 7(A) = (x1,29,...,2,) and c¢(A) = (y1,Y2,--.,Ym). Then by &, ,, and
with ©,,.,, we will denote the sets:

€nxm:{A€BnXm‘xlngS"'Smn and ylSyZSSym}CBnme
anm:{AEBnXm|x12w2>"'zxn and ylzyQZzym}Canm

In other words, A € €,,.,, if and only if the rows and columns of A are sorted in lexicographical
nondecreasing order and A € 9,,«,, if and only if the rows and columns of A are sorted in
lexicographical nonincreasing order.

Example 1.1.
0111
A=11 0 1 1 | € €4y, because r(A) = (7,11,12) and c¢(A) = (3,5, 6, 6).
1100
1 000
B=10 11 0 | € D3x4 because r(B) = (8,6,1) and c(A) = (4,2,2,1).
0001

We define the sets
FfL — Qan ﬂ ;Cf“

AF =, nck
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and the functions
v(n, k) = |Tk|,

5(n, k) = | Ak

In this paper we will demonstrate the relationship between the functions -, é and the Fibonacci
numbers.

As is well known (see for example [1] or [3]), the sequence { fn}zozo of Fibonacci numbers is
defined by the recurrence relation

fOZfl:17 fn:fn—l+fn—2 for n=2.3,...

2 Some properties of the sets I'* and A®

In general,
v(n, k) # 6(n, k)

Indeed, according to [7, Sequence A229162] and [5], some values of the integer sequence,
obtained using a computer program are

{y(n, k)}°, = 4229162 = {0,0,1,1,3,25,272, 4070, 79221, 1906501} .

It is not difficult to see that all ['3-matrices are as follows:

00111 00111 00111
00111 01011 01011
11001, 10011 and 10101
11010 11100 1 1010
11100 11100 1 1100

On the other hand, according to [7, Sequence A181344] all Ag-matrices are as follows:

11100 11100 11100
11010 11100 11010
110011, 100111, 10101 /[,
00111 01 011 01011
00111 00111 00111
11100 1 1100
11010 100 11
10011 and 10011
01 101 01 110
00111 01 101
So v(5,3) = 3 and 4(5, 3) = 5, which proves that in general v(n, k) # d(n, k). .
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Proposition 2.1. Let A = (a;j) € €, xm. Then there exist integers s,t, such that 1 < s < m,
1 <t<nand

ap = ajp = -+ = ays = 0, A1541 = Al 542 = = Q1m = 1, (1)
ayp =ag = =a; =0, Q11 =021 =" =a, = L. )

Proof. Let r(A) = (x1,x9,...x,) and c(A) = (y1,Y2,...Ym). We assume that there exist
integers p and ¢, such that 1 < p < ¢ < m, a;, = 1 and a;, = 0. In this case, y, > y,,
which contradicts the condition that columns of A are sorted in lexicographical non decreasing
order. We have proven (1). Similarly, we prove (2) as well. [l

Corollary 2.1. Let A = (aij) € €xm. Then there exist integers s,t, 0 < s < m, 0 <t < n,
such that

1'1:28—1

and
= 2t - ]-7

where s equals the number of units in the first row and t equals the number of units in the first
column of A.

Numbers of the form M,, = 2" — 1, for a positive integer n, are generally known as Mersenne
numbers. [2]

Proposition 2.2 (Dual of Proposition 2.1). Let A = (a;;) € ®,,xm. Then there exist integers s, 1,
suchthatl <s<m,1<t<nand

a1 = Qg =+ = ays = 1, A1,541 = A1 542 = = ° = Q1m = 0, (3)

= ag = -+ = ay = 1, Q411 = Ag421 = = = Qp1 = 0. 4)

Corollary 2.2 (Dual of Corollary 2.1). Let A = (a;;) € Dynxm. Then there exist integers s,t,
0<s<m,0<t<n, such that

371 — (28 _ 1)2mfs — 2m _ 2m75

and
Y1 = (2t - 1)2n—t — 2n - 27L—t7

where s equals the number of units in the first row and t equals the number of units in the first

column of A.

Theorem 2.1. Let n and k, be integers, such thatn > 1, 0 < k < n. Then
y(n,n —k)=0d(n,k).
Proof. Leta € B = {0, 1}. Then with @ we will denote
_ 1, if a=0;
a =
0, if a=1.
Obviously @ = a.
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Ifu = (ui,ug,...,u,) €B,, then withw we will denote @ = (Uy, Us, . .., Uy). If A = (a;5) €
B,,xm then with A we will denote A = (a;;).

Let u = (uy, ug,...,up), v = (v, 02,...,0,) € B,. Then it is easy to see that u < v if and
only if 7 > v. Therefore, a matrix A = (a;;) € €,y if and only if the matrix A = (a@;;) € D,,xm-

Finally, we take into account the fact that the matrix A = (a;;) € L£I* if and only if the
matrix A = (@;;) € L. O

Theorem 2.2. Let n be an integer; n > 2 and let A = (a;;) € A2 C L2. Then A has the form:

B O
-(29)

where B and C' are square binary matrices,
) ; (6)

B:<1
1

—_ =

or B has the form:*

110 0 0 0 0
101 0 O 0 0
010 1 0 00
coo1 0 1 --- 00
B=1{. .. . . . . .| (7
coo0oo0-.-- 1 0 10
o000 - 0 1 01
o000 -+~ 0 0 11

C € A% C L2 for some s such that 2 < s < n — 2, or C does not exist. All the elements of
matrices O' and O", which are outside of the submatrices B and C, are equal to 0.

Proof. From A € ﬁi and from Proposition 2.2 it follows that a;; = a19 = a9 = 1, a;; = 0 and
ap; = 0for3 <i,5 <n.

i) If ags = 1, then B has the form (6). If the matrix C' exists, then it is easy to see that
C e ,C L2 ,matrix.

ii) Let age = 0, i.e., A is of the form

—_ =
o =
S o
w
(@]

0
Let c(A) = (y1, Y2, - - -, Ym). We suppose that azs = 0. Since A € L2, there exists an integer
t such that 3 < t < nand as; = 1. In this case, it is easy to see that y3 < v;, which is impossible

“In other words, B is a tridiagonal matrix.
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because A € 9,,,. Therefore, ay3 = 1. Similarly, az, = 1. Therefore, when ayy = 0, A is
represented as

We consider again the two possible cases for ass: az3 = 1 or azgz = 0. When azz = 1, the
statement is proved. When as; = 0, we do the same reasoning as above. This process cannot
continue indefinitely, since n is a finite integer. Therefore, there exists an integer ¢, 2 < t < n
such that a;; = a;_1; = a;;—1 = 1, i.e., in the upper left corner of A there is a submatrix of the
form (7). And in this case, it is easy to see that if the matrix C' exists, then C' € A2 C L2 for
some s suchthat 2 < s <n— 2. ]

Corollary 2.3. Let n be an integer, n > 2. Then
d(n,2) = v(n,n — 2) = number of all ordered s—tuples of integers
(p1,p2,...,ps), 1<s< [g} :
suchthat2 <p, <n,i1=1,2,...sand
P1+Dp2+ e+ ps=n.

A similar theorem can be formulated and proved for the set FQ‘Q C 52_2, n > 2.

Example 2.1. The following matrices will play a crucial role in the inductive proof of Theorem 3.1,

(1)

which we will present in Section 3.

i) There is only one A3 matrix:

ii) There is only one A2 matrix:

110
1 01
0 11
iii) There are two A} matrices:
1100 1100
1100 1 010
0011 |™ 0101
0 011 0011
iv) There are three A matrices:
110 00 11000 110 00
1 1.0 00 1 0100 101 00
00110, 01 100 and 01 010
00101 00011 00101
00011 00011 00011

733



3 AF and I'* matrices in relation to the Fibonacci numbers
Theorem 3.1. Let n be a nonnegative integer. Then

fo=0(n+2,2), 8
where f,, is the n-th element of the Fibonacci sequence.

Proof. Forn =0, 1, 2 and 3, see Example 2.1.
Let n be an integer, n > 2 and let A = (a;;) € A2 +o. From Theorem 2.2 it follows that A
is presented in the form (5) and the set A2, is a partition into two disjoint subsets M; and M
such that the set M consists of matrices A whose upper left corner is a submatrix B of the type
(6) and the set M consists of matrices A whose upper left corner is a submatrix B of the type
).
MiNMy =02, MiUM, =A2,,.

Therefore,

|Ai+2| = M|+ |Ma]. 9)

i) Let A € M. In A, we remove the first and second rows and the first and second columns.
We obtain the matrix C' € £2. From Theorem 2.2 it follows that C' € A2,

Conversely, let C = (¢;;) € A%, n > 2. From C' we obtain the matrix A = (a;;) € L2, as
follows: a1 = a1z = ag1 = ag = 1, a5 = ag; = 0for3 < 7 < n+2and a;; = a;z = 0 for
3<i<n+2 Foreachi,j€ {3,4,...,n+ 2} we assume a;; = ¢;_2;_o. It is easy to see that
the so obtained matrix A € A2 .

Therefore,

(M| = 6(n,2) (10)

for any integer n > 2.
ii) Let A € Mo, i.e., A € A2, is of the form

1100 --- 0

1010 -0
4 01
00

0 0

We change asy from 0 to 1 and remove the first row and the first column of A. In this way we
obtain a matrix, which can be easily seen to belong to the set A2 ;.

Conversely, let D = (d;;) € AZ,,. According to Proposition 2.1, di; = diz = ds1 = 1.
We change d;; from 1 to 0. In D, we add a first row and a first column and get the matrix
A = (a;) € L2, 5, suchthat a;; = a19 = asg = 1, a1 =0forj =3,4,...,n+2, a5 =0
fori =3,4,...,n+2and as11441 = dg for s,t € {1,2,...,n+ 1}. Ttis easy to see that the
resulting matrix A € My C A2 ,.
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Therefore,

Ma| = d(n+1,2) (11)

for every integer n > 2.
From (9), (10) and (11) it follows that when n > 2

5n+2,2) = [A2 ] = [My] + [ Ms| = 5(n,2) + 3(n + 1,2).
This completes the proof. ]

Corollary 3.1. [6] From Theorem 3.1 and Theorem 2.1 it follows:

where f,, is the n-th element of the Fibonacci sequence.

Equations (8) and (12) obviously are different. Thus, the result obtained in this paper differs
from the result defined and proven in [6] concerning similar problem.
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