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Abstract: We prove that if F' is a completely multiplicative function and k& € {2, 3} such that the
equation F'(n* — 1) = 1 holds for every n € N, n > 1, then F is the identity function. A similar
result is proved for the equation F'(n* — 1) = 1 assuming a suitable conjecture concerning prime
numbers. The equation F'(n® + 1) = 1 is also studied.
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1 Introduction

Let P, N, Z and C denote the set of primes, positive integers, integers and complex numbers,
respectively. Let N; := N\ {1}. We denote by M and M* the set of all complex-valued
multiplicative and completely multiplicative functions, respectively. For each a € Z and p € P
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let (%) be the Legendre symbol. We denote by /() the largest prime divisor of m € N and by py,
the k-th prime number. For fixed integers a4, as, ..., ar € Z \ {0} let

l(ay,as, ... a) = {p€7?| (%) = (%) — = (%) :_1}

and
H(ay,ag, ... ax) :=P\l(ay,az, ..., a;).

Let E(n) = 1 for every n € N.
For s(z) € Z[x] such that 3¢(n) € N for all sufficiently large n € N, we study the equation:

F(5(n)) = D forevery n € N, where D € C\ {0}, F € M". (1)
In particular, we examine the cases where:
xn)e{n? -1, n*+1,n* -1, n* -1, n®+1}.

In this paper, we present four main theorems addressing these equations. Under specific
conjectures regarding prime numbers, we derive further results characterizing the identity function
among completely multiplicative functions.

For the case »(n) = n?+1, it was proved in Theorem 1 (a) [2] thatif F € M* and D € C\{0}
satisfy

F(n®>+1) = D forevery n € N,

then D =1, F(2) = 1 and F(p) = 1 foreveryp € P,p =1 (mod 4).
In [1], for 5¢(n) = n® + 1 and »(n) = n* — 1, the following conjectures were proposed:

Conjecture 1. [1, Conjecture 1.3.] If the function F' € M* satisfies
F(n®+1) =1 for everyn € N,
then FF =E.
Conjecture 2. [1, Conjecture 1.2.] If the function F' € M* satisfies
F(n* —1) =1 for everyn € Ny,
then ' =E.
In this note, we prove the following results.

Theorem 1. Assume that the function F € M* and D € C\ {0} satisfy
F(n* —1) = D for everyn € Ny,

then D = 1 and F' = E.

Theorem 2. Assume that the function F € M* and D € C\ {0} satisfy
F(n® —1) = D for everyn € Ny,

then D = 1and F' = E.
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For »(n) = n® + 1 and »(n) = n* — 1, we prove Conjecture 1 and Conjecture 2 under a
suitable assumption concerning the sets [(—2, —3) and [(—1, —3, —7) of prime numbers.
In [2], we also proposed:

Conjecture 3. Let p € P and p > pg3 = 487. Then there exists such an m € N for which

41
P(m ><p.
p

For the proof of our result concerning s(n) = n* — 1, we require the following weaker

p|m?—1and

conjecture:

Conjecture 4. Let p € P, p > p3g = 167 and p € I[(—1,—3, —7). Then there exists suchat € N
for which p | t> — 1 and
th—1
P( ) < p.
p

Using Maple, we have verified that Conjecture 3 holds for every py, 93 < k < 10° and in the

interval of integers k € {1,...,93}, we cannot check that Conjecture 3 holds for p = pj, where
ke F:={1,2,3,4,5,6,11,13,14,15,16, 18, 24, 25, 28, 29, 30, 33, 39, 56, 67, 74, 93} .

Let
Fi=FNI(~1,-3,-7) = {pis = 47, pzo = 167}.

Then Conjecture 4 were verified for all p = p;,39 < k < 10° and in the interval of integers
k€ {1,...,39}, Conjecture 4 holds for every k except for p = p;, € F.

Theorem 3. Assume that the function F € M* and D € C\ {0} satisfy
F(n* —1) = D foreveryn € Ny,
then D = 1. Moreover, if Conjecture 4 holds, then F' = E.
For the proof of our result concerning s(n) = n® + 1, we require the following conjecture:

Conjecture 5. For every prime p > p15s = 47 and p € [(—2, —3), there exists a positive integer |

such thatp | | + 1 and
B+1
P( + )<p.
D

It is clear to show that
[(=2,-3) ={peP|p=23(mod 24)}.

Using Maple, we verified that Conjecture 5 holds for every py, € I(—2, —3), where 15 < k < 10°
and in the range k € {1,..., 15}, we cannot check that Conjecture 5 holds for

pP=Dk € {]99 =23, p15 = 47}
Theorem 4. Assume that the function F € M* and D € C\ {0} satisfy
F(n®+1) = D foreveryn € N,

then D = 1. Moreover, if Conjecture 5 holds, then F' = .
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2 Proof of Theorem 1

First we note that if s(n) = n*+ An+ B (A, B € Z), then
#(n)sx(n +1) = s(n + x(n)).
Assume that ' € M*, D € C\ {0} and »(n) = n* — 1 satisfy
F(n* —1) = F(5(n)) = D forevery n € Nj.
Together with (2), this implies that
D? = F(¢(n))F(s(n+1)) = F(3¢(n + (n))) = D,

therefore D = 1 and
F(n* —1) = F(»(n)) = 1 forevery n € Ny,

2)

For each square-free (Q, it is well-known that the Pell equation 22 — Qy? = 1 has infinitely

many solutions. Let us fix one such solution and write
u? — Qu? = 1.
Then it follows that

(u 4 v/Qu)(14+/Q) = (u+ Qv) + V/Q(u +v)
and
(u+Qu)* = Qu+v)*=1-Q.
Hence,
(u+Qu)?—1=0Q((u+v)*—1),

which shows that the equation
B —1=Q(*—1)

has infinitely many solutions in k, ¢ € N. Then

F(Q)=F(QF(*-1)=Fk*-1)=1.

Since () was arbitrary square-free and ' € M*, it follows that F'(n) = 1 forall n € N.

This completes the proof of Theorem 1.

3 Proof of Theorem 2
Assume that ' € M* and D € C\ {0} satisfy
F(n® —1) = D forevery n € N.

Substitute n = m + 1 into Equation (3). Then

D= F((m+ 1)3 — 1) - F(m)F<(m+ 12+ (m+1) + 1),

which implies F'(m) # 0 for all m € N, since D # 0.
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Let 5¢(n) = n? + n + 1. Using the identity
F(n®—1)=F(n—1)F(x(n)) = D,
we solve for F'(s(n)):

D
F(%(TL)) = m forall n € Nl. (4)
Using (2) and (4), we compute that

D D D D

Fin—1)F(n) Fmn2+2n) Fn)F(n+2)

which leads to
F(n+2)=CF(n—1) foralln € Ny, 5)
where C = 5.
Substitute n = 3k + 1 into (5):
FBk+3)=CF(3k), soF(k+1)=CF(k).
This recurrence yields:
F(2)=C, F(4)=CF(3)=C?F(2)=C"

Therefore,

which implies C' = 1and D = 1.
Finally, from the recurrence F'(k + 1) = CF (k) = F(k), we obtain that F'(k) = 1 for all
k € N. Thus we proved F' = [E and the proof of Theorem 2 is finished. U

4 Proof of Theorem 3

Assume that ' € M* and D € C\ {0} satisfy

F(n*—1)=D foralln € N;.
According to Theorem 1.2(a) in [1], this implies that D = 1, so we have

F(n*—1)=1 foralln € N. (6)
Substituting n = m + 1 into (6), we have

1=F((m+1)*=1)=Fm)F(m+2)F((m+ 1) +1),
which implies
F(m)#0 forallm e N. (7)

Let »(n) = n? + 1. From Equation (6), we also obtain:
1
Fn—1)F(n+1)

Using this and Identity (2), we compute:
1 1 1

Fn—1)F(n+1)F(n)F(n+2) Fn)Fn+1)F(n>4+n+2)’

F(x(n)) =

for all n € Njy. (8)
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which simplifies to
Fn*+n+2)=Fn—-1)F(n+2) foralln € N. )
Now let »(n) = n? + n + 2. Using Identity (2) and Equation (9), we deduce:
Fin—1)F(n+2)F(n)F(n+3)=F(n+1)?F(n*+2n +4).

Thus,
Fn—1)F(n)F(n+2)F(n+ 3)

F(n®>+2n+4) =
(n® +2n +4) Fnt 1)

Replacing n with n — 1 yields:
Fn—=2)F(n—1)F(n+1)F(n+2)
F(n)?

LetT;, = F(n*—1)— 1. Then (6) shows that T}, = 0 for every n € N. Consider the following
system of equations

F(n®+3) =

for all n > 2. (10)

T©2) =FB)F(5)—1=0

T(3) =FQ2)F(5)—1=0

T(4) =FB)FG)F17)—-1=0

T(5) =FQ21FB3)F(13)—1=

T(7) =FQPFB3)F(5)?—1=

T(8) = FB3)2FG)F(T)F(13)—1=0
|T(21) = FQ}F(B)F(I1)F(13)F(1T) — 1 =0.

F2)=F@3)=F()=F(7)=F(11) = F(13) = F(17) = 1.
Proceeding by induction, assume that F'(n) = 1 for all n < P, and let us prove F'(P) = 1.

If P ¢ P, then trivially F'(P) = 1.
Now consider P € P. We distinguish two cases: P € H(—1,—3,—7)or P € [(—1,—3,-7).

Case I. P € H(—1,—3,—7). Then at least one of the following holds:
() (#) =1,
() () =1,
(o) () = 1.
1

(Ia) First consider the case <%) = 1. Then there is a positive integer n < P such that

n>+1 = 0 (mod P). Thenn? +1 = PQ with Q € N,Q < P. Since P > 17 and
n?>+1 = 0 (mod P), we have n < P — 2. Consequently F(Q) = 1, F(n) = 1 and
F(n + 1) = 1. Thus we infer from (8) that

F(P)=F(P)F(Q) = F(PQ)=F(n*+1) = Fn 1)1F(n = 1

Hence, the case (Ia) is proved.
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(Ib)

(Ie)

Now we consider the case (%3) = 1. Thus there is a positive integer n < P such that
n?>+3 = 0 (mod P). Then n? +3 = PQ with Q € N,Q < P. Since P > 17 and

n?+3 =0 (mod P), we have n < P — 2, consequently
F(Q =1, Fn—-2)=1, Fn—1)=1, F(n)=1, Fn+1) =1, F(n+2) = 1.

Thus we infer from (10) that

F(n—2)F(n—1)F(n + 1)F(n +2)

F(P) = F(P)F(Q) = F(PQ) = F(n*+3) = F(n)

= 1.

Thus, the proof of the case (Ib) is complete.
Finally we consider the case (%) = 1. Since
n*+n+2=0 (mod P) & (2n+1)>=-7 (mod P),

there is a positive integer n < P such that n?4+n+2 =0 (mod P). Then n?+n+2 = PQ
with @ € N,Q < P. Since P > 17and n?> + n +2 =0 (mod P), we have n < P — 2,
consequently

FQ) =1 Fin-1)=1, F(n+2)=1.

Thus we infer from (9) that
F(P)=F(P)F(Q)=F(PQ)=Fn*+n+2)=Fn—-1)F(n+2)=1.

This completes the proof of the case (Ic).

Therefore the case P € H is proved.

CaseIl. P € [(—1,—3,—7). Assume that P € [(—1,—3,—7) and F'(n) = 1 forevery n € N,

n < P. We can apply Conjecture 5 provided that we verify F'(P)=1 for P € {p;5 =47, p3o=167}.
If P = 47, then we infer from

and

F(27) = F(2)*F(5)F(T)F(13)F(73) =1 =10

T(46) = F(3)*F(5)F(29)F(47)F(73) — 1 = 0.

These imply that F/(73) = 1 and F'(47) = 1.
If P = 167, then from our assumption, the following relations

T(81) = F(2)°F(5)F(17)F(41)F(193) — 1 = 0,
T(192) = F(5)F(73)F(101)F(191)F(193) — 1 =0

and the relation

T(2673) = F(2)SF(5)F(7)F(13)F(17)F(53) F(61)F(167)F(191)) — 1 = 0

imply that

F(193) = 1, F(191) = 1 and F(167) = 1.

Thus we proved that P > p3g = 167.
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Now we deduce from Conjecture 5 that there is ¢ € N such that

tt—1
P|t2—1andP< = )<P.

Then .

t*—1

P -
P

and

tt—1 A

F(P) = F(P)F( = ) —Ft*—1)=1

The last relation proves Theorem 3. U

5 Proof of Theorem 4

Assume that ' € M* and D € C )\ {0} satisfy
F(n®+1) = D foreveryn € N.
According to Theorem 1.2(b) in [1], we have D = 1. Hence
F(n®+1) =1foreveryn € N. (11)

Similarly to earlier arguments, we conclude F'(n) # 0 forevery n € N. Define s(n) = n*—n+1.
Then from Identity (11) we obtain
1

F(»(n)) = FnsD) for every n € N. (12)
Using Identity (2), we derive from (12) that
1 1 1

Fin+1)F(n+2) F(n?*+2)
which implies
F(n®>+2) = F(n+1)F(n + 2) forevery n € N. (13)
We now aim to prove that F'(n) = 1 for every n < 13. From (11), define
Wn)=Fn+1)Fn*-n+1)—1=0.
We can compute W (n) forn € {1, 2, 3, 4, 8, 10, 12, 31}:

p

W) =F@2) —1=

W) =F@B3)?2-1=0

W(3) =F(Q2?2F(7)—1=0

W) =F(5)F(13)—1=0

W(8) = F(3)F(19)—1=0
W(10) = F(7)F(11)F(13) =1 =0
W(12) = F(7)F(13)F(19) —1 =0
W(31) = F(2)5F(7)2F(19) —1=0

\



Therefore, we have proved that F'(n) = 1M for every n < 13.

Now we proceed by induction and assume F'(n) = 1 for all n < P with P > 13. We prove
F(P)=1.
If P ¢ P, then F(P) = 1 trivially. Assume P € P.

@)

(1)

First we consider the case P ¢ [(—2, —3). Then (}3) =1lor (}3) = 1.

If (%) = 1, then there exist n, Q € N,n < P such that
n? +2 = PQ.

Since n < P and n?> + 2 = PQ, we have Q < Pn < P — 2, and so F(Q) = 1 and
F(n+ 1) = 1. We infer from (13 ) that

F(P)=F(P)F(Q)=Fn*+2)=F(n+1)F(n+2) =1,

which proves F'(P) = 1 for the case <’73> =1

If (}?) = 1, then there exist n, Q € N,n < P such that
n®* —n+1= PQ,

because
n*—n+1=0(mod P) < (2n —1)*> = —3 (mod P).

Sincen < Pandn? —n+1 = PQ, wehave Q < P,n < P —2,and so F(Q) = 1,
F(n+1)=1and F(n + 2) = 1. We infer from (12 ) that

F(P)=F(P)F(Q)=F(n*-n+1) = ﬁ =1,

which proves F'(P) = 1 for the case <_753> =1.

Now we consider the case P € [(—2, —3).

Since P € P and P > 13, we infer from Conjecture 5 that there exists a positive integer [
such that p | [ 4+ 1 and P(lgTH) < p.

To apply Conjecture 5, we first verify the special cases:
F(P)=1if P € {py = 23, p15 = 47}.
(al) If P = pg = 23, then from W (6) and W (68), we compute:
F(6) = F(7)F(31) — 1 = 0and W(68) = F(23)F(3)*F(7)*F(31) — 1 = 0.
Since F'(n) = 1 for all n < P = 23, the last relations imply that F'(31) = 1 and

F(23) = 1.
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(a2) If P = py5 = 47, then F'(n) = 1 for every n < 47. Thus we infer from Ey; and Fyg
that

W(14) = F(5)F(3)°F(61) — 1= F(61) =1 =0
and
W(563) = F(2)*F(3)*F(7)F(13)F(19)F(47)F(61) — 1 = F(47)F(61) — 0 = 0.

Consequently
F(61) =1and F(P) = F(47) = 1.

From now on, assume that P > 47. Then by Conjecture 5 there is [ such that P | [ + 1 and

P(%) < P. Thus, our assumptions imply that

P+1
P -
P
consequently
P41 5
F(P) = F(P)F( = ) —FP+1)=1

This completes the proof of Theorem 4. U
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