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Abstract: In this paper, we introduce the novel concepts of split Narayana quaternions and
split Narayana–Lucas quaternions within the innovative framework of hybrid numbers. We
explore their deep connections with Narayana and Narayana–Lucas quaternions, uncovering new
perspectives in this mathematical domain. Furthermore, we establish several fundamental
properties, including recurrence relations, Binet formulas, generating functions, exponential
generating functions, and other significant identities associated with these newly defined
quaternions. Finally, to better illustrate these theoretical findings, we also provide a numerical
simulation of split Narayana quaternions and split Narayana–Lucas hybrid quaternions.
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1 Introduction

Number theory is one of the most interesting and prominent areas of research in the field of
mathematics. One can observe numerous applications of this fascinating area of research across
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various disciplines such as cryptography, computer science, quantum physics, and many others
[16]. In recent years, many researchers and scientists have shown their keen interest in the study
of number sequences [21, 23]. Number theory and quaternions share an interesting connection
through the exploration of certain number-theoretic properties within the context of an algebraic
framework. Specifically, number theory provides a foundation for understanding the arithmetic
properties of quaternions formed due to the sequences. Hamilton [9] was the first to introduce the
concept of quaternions as:

H = {p+ iq + jr + ks |p, q, r, s ∈ R, i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j}.

where i, j, k are the quaternionic units and are non-commutative under the multiplication rule.
In applied mathematics, quaternions are particularly useful in the fields of computer science,
physics, differential geometry, quantum physics, engineering, algebra, and the computation of
rotating motions in three dimensions. Numerous research works have explored the connections
between the algebra of sequences and quaternions or octonions, and for more details, one can
refer to [2, 3, 6–12, 15, 18–20, 26, 27].

Quaternions and split quaternions are both extensions of the concept of complex number
sequences, but they differ in their algebraic properties and structure. The concept of a split
quaternion or co-quaternion is based upon the four-dimensional non-commutative associative
algebra, which was first put forth by James Cockle [4]. Split quaternions contain nilpotent
elements, non-trivial idempotent, and zero divisors, unlike the Hamilton quaternions algebra.

The split quaternions q′ may be represented as:

q
′
= {p+ iq + jr + ks |p, q, r, s ∈ R, i2 = −1, j2 = k2 = 1,

ij = −ji = k, jk = −kj = −i, ki = −ik = j}.

where i, j, k are the split quaternionic units and are non-commutative under multiplication rule.
In this context, the vector and scalar components of split quaternions are denoted by
V⃗q′ = iq + jr + ks and Sq′ = p, respectively. As a result, q′

= Sq′ + V⃗q′ can be used to
represent a split quaternion. Define q

′
n = pn + iqn + jrn + ksn, (n = 0, 1).

Therefore the addition, subtraction and Multiplication of split quaternions are, respectively,
defined as:

q
′

0 ∓ q
′

1 = (p0 + iq0 + jr0 + ks0)∓ (p1 + iq1 + jr1 + ks1)

= (p0 ∓ p1) + i(q0 ∓ q1) + j(r0 ∓ r1) + k(s0 ∓ s1)

q
′

0.q
′

1 = (p0 + iq0 + jr0 + ks0).(p1 + iq1 + jr1 + ks1)

= (p0p1 − q0q1 + r0r1 + s0s1) + i(p0q1 + q0p1 − r0s1 + s0r1)

+j(p0r1 − q0s1 + r0p1 + s0q1) + k(p0s1 + q0r1 − r0q1 + s0p1)

= Sq
′
0
Sq

′
1
+ g(V⃗q

′
0
, ⃗Vq

′
1
) + Sq

′
0
V⃗q

′
1
+ Sq

′
1
V⃗q

′
0
+ V⃗q

′
0
∧ V⃗q

′
1
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where g(V⃗q
′
0
, V⃗q

′
1
) = −q0q1 + r0r1 + s0s1 and

V⃗q
′
0
∧ V⃗q

′
1
=

∣∣∣∣∣∣∣
−i j k

q0 r0 s0
q1 r1 s1

∣∣∣∣∣∣∣
A split quaternions conjugate q′ is given by

q′ = p− iq − jr − ks.

The formula for a norm of split quaternions Nq′ is defined as:

Nq′ = q
′ · q′ = p2 + q2 − r2 − s2.

A particular class of quaternionic numbers connected to the Narayana sequence and Narayana–
Lucas sequences are referred to as split Narayana and Narayana–Lucas quaternions, respectively.
These quaternions are distinguished by having split components, which means that one or more of
the quaternion components have fictional values. They are useful in quaternion algebra and have
uses in many branches of mathematics and physics. Tokeşer et al. [28] introduced the concept
of split Pell and Pell–Lucas quaternions along with several identities related to these quaternions.
Additionally, a number of researchers have conducted investigations on other split quaternion
sequence types; these might be consulted [1, 5, 22].

Recently, Özdemir [17] introduced the concept of hybrid numbers, which are a combination
of real, complex, dual and hyperbolic numbers. The set of hybrid numbers H is defined as:

H = {z = a+ bι+ cϵ+ dh; a, b, c, d ∈ R} (1)

where ι, ϵ, h are operators such that ι2 = −1, ϵ2 = 0, h2 = 1, ιh = −hι = ϵ + ι. The conjugate
of hybrid numbers z is defined as: z = a+ bι+ cϵ+ dh = a− bι− cϵ− dh. The character of
hybrid number z is defined as the real number C(z) = zz = zz = a2+b2−2bc−d2 and the norm
of hybrid number z is defined as

√
|C(z)| and denoted by ∥z∥ [17]. In the development of science

and technology, integer sequences have played a significant role. Consequently, it is extensively
used, particularly in mathematics and various other fields of science. Many areas of mathematics
can benefit from the use of hybrid numbers. In addition, these numbers have been widely utilized
in science, design, and hypothetical physical science. These sequences have many applications
in different fields, like linear algebra, kinematics, number theory, and geometry. Hybrid numbers
with various sequences have earned a lot of interest in recent years [14, 21, 24, 25].

A significant aspect of this study is that it extends the rapidly growing body of research on
quaternionic sequences. Earlier works have examined Fibonacci quaternions [2, 10, 12, 18, 26],
Pell and Pell–Lucas quaternions [3, 28], and more recently split variants such as split Fibonacci
quaternions and split k-Fibonacci and k-Lucas quaternions [1, 22]. Similarly, hybrid numbers
have been studied in the context of Jacobsthal, Mersenne, and other classical sequences
[5, 19, 24]. To the best of our knowledge, however, no prior work has addressed split Narayana
and Narayana–Lucas hybrid quaternions. The present study fills this gap by introducing these
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novel constructs, integrating the Narayana and Narayana–Lucas sequences into the quaternionic
hybrid framework. By deriving recurrence relations, Binet formulas, generating functions, and
exponential generating functions, we provide explicit identities analogous to those known for
Fibonacci and Pell–Lucas quaternions, thereby enriching the catalogue of algebraic structures
in this domain. In doing so, this work not only bridges a gap in the literature but also opens
avenues for future research where Narayana sequences, hybrid numbers, and quaternionic algebra
intersect.

2 Preliminaries

In order to address the problem in hand related to the construction of split Narayana and Narayana–
Lucas hybrid quaternions, here in this preliminary section we are providing certain definitions
which will serve as a foundational framework for the subsequent analysis and interpretation of
the results.

Definition 2.1. [23] The Narayana sequence Nn and Narayana–Lucas sequence Un are defined,
as follows:

Nn+3 = Nn+2 +Nn, N0 = 0, N1 = 1, N2 = 1, (2)

Un+3 = Un+2 + Un, U0 = 3, U1 = 1, U2 = 1, (3)

for n ≥ 3, respectively.

Definition 2.2. [13] The Narayana hybrid sequence NHn and Narayana–Lucas hybrid sequence
UHn are defined as follows:

NHn = Nn + ιNn+1 + ϵNn+2 + hNn+3, (4)

UHn = Un + ιUn+1 + ϵUn+2 + hUn+3, (5)

where ι, ϵ, h are operators such that ι2 = −1, ϵ2 = 0, h2 = 1, ιh = −hι = ϵ+ ι.

To establish a foundation for understanding the concept of split Narayana and Narayana–Lucas
quaternions, we will commence by providing definitions for two essential quaternionic structures:
Narayana quaternions and Narayana–Lucas quaternions. The ensuing definitions serve as a
precursor to the introduction of split Narayana and Narayana–Lucas quaternions.

Definition 2.3. Let Zn and Tn be the Narayana quaternions and Narayana–Lucas quaternions,
respectively, which can be defined as:

Zn = Nn + iNn+1 + jNn+2 + kNn+3, (6)

Tn = Un + iUn+1 + jUn+2 + kUn+3, (7)

respectively, where i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
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3 Split Narayana and Narayana–Lucas quaternions

In this section, we present the concepts of split Narayana quaternions and split Narayana–Lucas
quaternions by employing the preliminary definitions as outlined in the preceding Section 2.
We substantiate our discussion with theorems and provide valuable identities pertaining to these
newly formed split Narayana and Narayana–Lucas quaternions.

Definition 3.1. Let Zn and Tn be the split Narayana quaternions and split Narayana–Lucas
quaternions, respectively, which can be defined as:

Zn = Nn + iNn+1 + jNn+2 + kNn+3, (8)

Tn = Un + iUn+1 + jUn+2 + kUn+3, (9)

where Nn denotes the n-th Narayana numbers and Un denotes the n-th Narayana–Lucas numbers
and i, j, k denote the split quaternionic units which satisfy the non commutative multiplication
rules:

i2 = −1, j2 = k2 = 1, ij = −ji = k, jk = −kj = −i, ki = −ik = j. (10)

The scalar and vector parts of split Narayana quaternions Zn are defined as SZn = Nn and
V⃗ Zn = iNn+1 + jNn+2 + kNn+3, respectively. If SZn = 0, then Zn is a pure split Narayana
quaternion.

Let us consider the two split Narayana quaternions Zn and Kn as:

Zn = Nn + iNn+1 + jNn+2 + kNn+3, (11)

Kn = Xn + iXn+1 + jXn+2 + kXn+3. (12)

The addition, subtraction and multiplication of split quaternions can be defined as:

(Zn ∓Kn) = (Nn ∓Xn) + i(Nn+1 ∓Xn+1) + j(Nn+2 ∓Xn+2) + k(Nn+3 ∓Xn+3), (13)

(Zn.Kn) = (Nn + iNn+1 + jNn+2 + kNn+3).(Xn + iXn+1 + jXn+2 + kXn+3). (14)

The conjugate of split Narayana quaternions Zn and split Narayana–Lucas quaternions Tn can be
defined as:

Zn = Nn − iNn+1 − jNn+2 − kNn+3, (15)

Tn = Un − iUn+1 − jUn+2 − kUn+3. (16)

The norm of split Narayana quaternions can be defined as:

NZq′ = Zq′ · Zq′ = N2
q′
+N2

q′+1
−N2

q′+2
−N2

q′+3
. (17)

Lemma 3.1. Let Zn and Tn be the split Narayana quaternions and split Narayana–Lucas
quaternions, respectively, then the recurrence relations for these quaternions can be defined as:

Zn = Zn−1 + Zn−3,

Tn = Tn−1 + Tn−3.
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Proof. From Equation (8), we have

Zn−1 + Zn−3 = Nn−1 + iNn + jNn+1 + kNn+2 + (Nn−3 + iNn−2 + jNn−1 + kNn),

= (Nn−1 +Nn−3) + i(Nn +Nn−2) + j(Nn+1 +Nn−1) + k(Nn+2 +Nn),

Zn−1 + Zn−3 = Zn.

Similarly from Equation (9), we obtained that

Tn = Tn−1 + Tn−3.

Thus, we can state the following theorems by taking into account the aforementioned results
related to split quaternions.

Theorem 3.1. For n ≥ 1, the following relations hold between Narayana quaternions and split
Narayana quaternions as:

Zn−1 + Zn+1 = Zn+2,

Zn − iZn+1 − jZn+2 − kZn+3 = −5Nn+1 − 3Nn−1 − 2Nn.

Proof. From Equations (8) and (10), we get

Zn−1 + Zn+1 = (Nn−1 + iNn + jNn+1 + kNn+2) + (Nn+1 + iNn+2 + jNn+3 + kNn+4),

= (Nn−1 +Nn+1) + i(Nn +Nn+2) + j(Nn+1 +Nn+3) + k(Nn+2 +Nn+4),

= Nn+2 + iNn+3 + jNn+4 + kNn+5,

which shows that

Zn−1 + Zn+1 = Zn+2. (18)

From Equations (2), (8) and (10), we get

Zn − iZn+1 − jZn+2 − kZn+3 = (Nn + iNn+1 + jNn+2 + kNn+3)− i(Nn+1 + iNn+2

+jNn+3 + kNn+4)− j(Nn+2 + iNn+3 + jNn+4

+kNn+5)− k(Nn+3 + iNn+4 + jNn+5 + kNn+6),

= Nn +Nn+2 −Nn+4 −Nn+6,

which shows that

Zn − iZn+1 − jZn+2 − kZn+3 = −5Nn+1 − 3Nn−1 − 2Nn. (19)

This completes the proof.

Theorem 3.2. Let Zn and Tn be split Narayana quaternions and split Narayana–Lucas
quaternions, respectively, then the following relations hold:

Zn + 3Zn−2 = Tn,

3Zn+1 − 2Zn = Tn.
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Proof. From Equation (8) and (10), it follows that

Zn + 3Zn−2 = Nn + iNn+1 + jNn+2 + kNn+3 + 3(Nn−2 + iNn−1 + jNn + kNn+1),

= (Nn + 3Nn−2) + i(Nn+1 + 3Nn−1) + j(Nn+2 + 3Nn) + k(Nn+3 + 3Nn+1),

by using the identity of Narayana numbers Un = Nn + 3Nn−2 (see [23]) in the above equation,
we obtain

Zn + 3Zn−2 = Un + iUn+1 + jUn+2 + kUn+3,

Zn + 3Zn−2 = Tn, n ≥ 2. (20)

In a similar manner, we can see that

3Zn+1 − 2Zn = 3(Nn+1 + iNn+2 + jNn+3 + kNn+4)− 2(Nn + iNn+1 + jNn+2 + kNn+3),

= (3Nn+1−2Nn) + i(3Nn+2−2Nn+1) + j(3Nn+3−2Nn+2) + k(3Nn+4−2Nn+3),

and by utilising the identity Un = 3Nn+1 − 2Nn (see [23]) in the above equation, this equation
reduces to the following form

3Zn+1 − 2Zn = Un + iUn+1 + jUn+2 + kUn+3,

3Zn+1 − 2Zn = Tn. (21)

This completes the proof.

Theorem 3.3. Let Zn and Zn be split Narayana quaternions and conjugate of Zn, respectively,
then the following relations hold:

ZnZn = N2
n +N2

n+1 −N2
n+2 −N2

n+3,

Zn + Zn = 2Nn,

Z2
n = 2ZnNn − ZnZn.

Proof. From Equation (8),(10) and (15), we have

ZnZn = (Nn + iNn+1 + jNn+2 + kNn+3)(Nn − iNn+1 − jNn+2 − kNn+3),

ZnZn = N2
n +N2

n+1 −N2
n+2 −N2

n+3. (22)

In a similar manner, we can see that

Zn + Zn = (Nn + iNn+1 + jNn+2 + kNn+3) + (Nn − iNn+1 − jNn+2 − kNn+3),

Zn + Zn = 2Nn. (23)

From Equation (23), it follows that

Z2
n = ZnZn = Zn(2Nn − Zn) = 2ZnNn − ZnZn. (24)

This completes the proof.

The characteristics equation of the relation (18) can be written as:

t3 − t2 − 1 = 0. (25)
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If µ, ν and λ are the roots of this characteristic Equation (25), then they can be written as:

µ =
1

3
+

(
29

54
+

√
31

108

) 1
3

+

(
29

54
−
√

31

108

) 1
3

,

ν =
1

3
+ w

(
29

54
+

√
31

108

) 1
3

+ w2

(
29

54
−
√

31

108

) 1
3

,

λ =
1

3
+ w2

(
29

54
+

√
31

108

) 1
3

+ w

(
29

54
−
√

31

108

) 1
3

,

where

w =
−1 + ι

√
3

2
= exp(

2πι

3
).

For the split Narayana quaternions Zn and Zn−2, we get

µZn + Zn−2 = µ(Nn + iNn+1 + jNn+2 + kNn+3) + (Nn−2 + iNn−1 + jNn + kNn+1),

= (µNn +Nn−2) + i(µNn+1 +Nn−1) + j(µNn+2 +Nn) + k(µNn+3 +Nn+1),

where n ≥ 0. Putting the relation µn = µNn +Nn−2 in the above equation, we get

µZn + Zn−2 = µn + iµn+1 + jµn+2 + kµn+3

= (1 + iµ1 + jµ2 + kµ3)µn,

µZn + Zn−2 = µ
′
µn, (26)

where µ
′
= (1 + iµ+ jµ2 + kµ3).

In a similar manner, by considering the relation νn = νNn +Nn−2, in the same way as
Equation (26), we get

νZn + Zn−2 = ν
′
νn, (27)

where ν
′
= (1 + iν + jν2 + kν3).

In a similar manner, by considering the relation λn = λNn +Nn−2, in the same way as
Equation (26), we get

λZn + Zn−2 = λ
′
λn, (28)

where λ
′
= (1 + iλ+ jλ2 + kλ3).

Theorem 3.4. Let Zn and Tn be the split Narayana quaternions and split Narayana–Lucas
quaternions, respectively, then the Binet formulas can be defined as:

Zn =
µ

′
µn+1

(µ− ν)(µ− λ)
+

ν
′
νn+1

(ν − µ)(ν − λ)
+

λ
′
λn+1

(λ− µ)(λ− ν)
,

Tn = µ
′
µn + ν

′
νn + λ

′
λn.
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Proof. Let Zn be the split Narayana quaternions. From Equation (8), we have

Zn = Nn + iNn+1 + jNn+2 + kNn+3.

By using the Binet formulas for the Narayana sequence [23] and the definition of split Narayana
quaternions from Equation (8) we have,

Zn =

(
µn+1

(µ− ν)(µ− λ)
+

νn+1

(ν − µ)(ν − λ)
+

λn+1

(λ− µ)(λ− ν)

)
+i

(
µn+2

(µ− ν)(µ− λ)
+

νn+2

(ν − µ)(ν − λ)
+

λn+2

(λ− µ)(λ− ν)

)
+j

(
µn+3

(µ− ν)(µ− λ)
+

νn+3

(ν − µ)(ν − λ)
+

λn+3

(λ− µ)(λ− ν)

)
+k

(
µn+4

(µ− ν)(µ− λ)
+

νn+4

(ν − µ)(ν − λ)
+

λn+4

(λ− µ)(λ− ν)

)
,

=
µn+1

(µ− ν)(µ− λ)
(1 + iµ+ jµ2 + kµ3) +

νn+1

(ν − µ)(ν − λ)
(1 + iν + jν2 + kν3)

+
λn+1

(λ− µ)(λ− ν)
(1 + iλ+ jλ2 + kλ3),

Hence,

Zn =
µn+1

(µ− ν)(µ− λ)
µ

′
+

νn+1

(ν − µ)(ν − λ)
ν

′
+

λn+1

(λ− µ)(λ− ν)
λ

′
. (29)

Moreover, from Equation (9) we have

Tn = Un + iUn+1 + jUn+2 + kUn+3.

By using the Binet formulas for the Narayana–Lucas sequence [23] and the definition of split
Narayana–Lucas quaternions from Equation (9) we have,

Tn = µn + νn + λn + i(µn+1 + νn+1 + λn+1) + j(µn+2 + νn+2 + λn+2)

+ k(µn+3 + νn+3 + λn+3),

= µn(1 + iµ+ jµ2 + kµ3) + νn(1 + iµ+ jµ2 + kµ3) + λn(1 + iµ+ jµ2 + kµ3),

Tn = µ
′
µn + ν

′
νn + λ

′
λn. (30)

This completes the proof.

Theorem 3.5. Let Zn and Tn be the split Narayana quaternions and split Narayana–Lucas
quaternions, respectively, then the generating functions can be defined as:

G(t) =
∞∑
n=0

Znt
n =

Z0 + t(Z1 − Z0) + t2(Z2 − Z1)

1− t− t3
,

G(t) =
∞∑
n=0

Tnt
n =

T0 + t(T1 − T0) + t2(T2 − T1)

1− t− t3
.
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Proof. Let us consider the following formal power series to be the generating function for the
split Narayana quaternions as:

G(t) =
∞∑
n=0

Znt
n = Z0 + Z1t+ Z2t

2 + · · ·

Then we have

tG(t) = Z0(r)t+ Z1(r)t
2 + Z2t

3 + · · · ,
t3G(t) = Z0t

3 + Z1t
4 + Z2t

5 + · · ·

Therefore, we get

G(t)− tG(t)− t3G(t) = (Z0 + Z1t+ Z2t
2 + · · · )− (Z0t+ Z1t

2 + Z2t
3 + · · · )

− (Z0t
3 + Z1t

4 + Z2t
5 + · · · ),

G(t)(1− t− t3) = Z0 + (Z1 − Z0)t+ (Z2 − Z1)t
2,

G(t) =
∞∑
n=0

Znt
n =

Z0 + t(Z1 − Z0) + t2(Z2 − Z1)

(1− t− t3)
. (31)

Thus the proof is completed for the split Narayana quaternions.
In a similar manner, we can also prove the following generating function for split Narayana–

Lucas quaternions as:

G(t) =
∞∑
n=0

Tnt
n =

T0 + t(T1 − T0) + t2(T2 − T1)

1− t− t3
. (32)

This completes the proof.

Theorem 3.6. Let Zn and Tn be the split Narayana quaternions and split Narayana–Lucas
quaternions, respectively, then the exponential generating functions can be defined as:

∞∑
n=0

Zn
tn

n!
=

µ
′
µ

(µ− ν)(µ− λ)
eµt +

ν
′
ν

(ν − µ)(ν − λ)
eνt +

λ
′
λ

(λ− µ)(λ− ν)
eλt,

∞∑
n=0

Tn
tn

n!
= µ

′
µeµt + ν

′
νeνt + λ

′
λeλt.

Proof. By using the Binet formulas for the split Narayana quaternions (which we already defined
in (29)) and the definition of exponential generating function we obtained as:

∞∑
n=0

Zn
tn

n!
=

∞∑
n=0

[ µ
′
µn+1

(µ− ν)(µ− λ)
+

ν
′
νn+1

(ν − µ)(ν − λ)
+

λ
′
λn+1

(λ− µ)(λ− ν)

] tn
n!
,

=
µ

′
µ

(µ− ν)(µ−λ)

∞∑
n=0

(µt)n

n!
+

ν
′
ν

(ν−µ)(ν − λ)

∞∑
n=0

(νt)n

n!
+

λ
′
λ

(λ−µ)(λ− ν)

∞∑
n=0

(λt)n

n!
,

∞∑
n=0

Zn
tn

n!
=

µ
′
µ

(µ− ν)(µ− λ)
eµt +

ν
′
νn

(ν − µ)(ν − λ)
eνt +

λ
′
λn

(λ− µ)(λ− ν)
eλt. (33)
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Thus the proof is completed for the exponential generating function for the split Narayana quaternions.
In a similar manner, we can also prove the following exponential generating function for split

Narayana–Lucas quaternions as:

∞∑
n=0

Tn
tn

n!
= µ

′
µeµt + ν

′
νeνt + λ

′
λeλt. (34)

This completes the proof.

3.1 Numerical simulation for split Narayana quaternions

To better illustrate or visualize the theoretical findings, we present a numerical simulation of the
newly introduced split Narayana quaternions. Table 1 reports the numerical values for Narayana
sequence and the norm of split Narayana quaternions N (Zn) for indices 0 ≤ n ≤ 20. Then
Figure 1 is plotted with the help of Table 1.

Table 1. Numerical values for Narayana sequence
and norm of split Narayana quaternion N (Zn).

n Nn Nn+1 Nn+2 Nn+3 N (Zn)

0 0 1 1 1 −1

1 1 1 1 2 −3

2 1 1 2 3 −11

3 1 2 3 4 −20

4 2 3 4 6 −39

5 3 4 6 9 −92

6 4 6 9 13 −198

7 6 9 13 19 −413

8 9 13 19 28 −895

9 13 19 28 41 −1935

10 19 28 41 60 −4136

11 28 41 60 88 −8879

12 41 60 88 129 −19104

13 60 88 129 189 −41018

14 88 129 189 277 −88065

15 129 189 277 406 −189203

16 189 277 406 595 −406411

17 277 406 595 872 −872844

18 406 595 872 1278 −1874807

19 595 872 1278 1873 −4024004

20 872 1278 1873 2745 −8649486

706



0 2 4 6 8 10 12 14 16 18 20

n

-3

-2.5

-2

-1.5

-1

-0.5

0
10

6

Figure 1. Norm of split Narayana quaternion N (Zn) vs n.

The results reveal that all norms are negative, which decrease steadily as n increases. Starting
with N (Z0) = −1, the norm decreases gradually, reaching N (Z10) = −4136, and then drops
sharply at higher indices, attaining N (Z20) = −8649486. This sharp decrease indicates that
the quadratic form defined by the norm, N (Zn) = N2

n + N2
n+1 − N2

n+2 − N2
n+3, is significantly

dominated by the negative terms as n grows. In other words, the components {Nn+2, Nn+3}
grow faster than the components {Nn, Nn+1}, causing the overall norm to shrink. In geometrical
interpretation, a sharp decrease suggests that the quaternion’s trajectory in its four-dimensional
space moves more intensively toward a light-like region. As the norm becomes extremely small
(or extremely negative), it may lead to instability in encryption, signal modeling, or physical
interpretation where these split quaternions are applied.

4 Split Narayana and Narayana–Lucas hybrid quaternions

In this section, we introduce the concept of hybrid numbers within the context of split Narayana
quaternions and split Narayana–Lucas quaternions (as discussed in Section 3). Additionally, we
have presented certain theorems along with their proofs, and identities associated with these
newly introduced hybrid quaternions.

Definition 4.1. Let ZHn be the n-th split Narayana hybrid quaternions can be defined as:

ZHn = NHn + iNHn+1 + jNHn+2 + kNHn+3,

= (Nn + ιNn+1 + ϵNn+2 + hNn+3) + i(Nn+1 + ιNn+2 + ϵNn+3 + hNn+4)

+ j(Nn+2 + ιNn+3 + ϵNn+4 + hNn+5) + k(Nn+3 + ιNn+4 + ϵNn+5 + hNn+6),

where ι, ϵ, h are hybrid units and i, j, k are split quaternionic units.

ZHn = Zn + ιZn+1 + ϵZn+2 + hZn+3. (35)
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Definition 4.2. Let THn be the n-th split Narayana–Lucas hybrid quaternions can be defined
as:

THn = UHn + iUHn+1 + jUHn+2 + kUHn+3,

= (Un + ιUn+1 + ϵUn+2 + hUn+3) + i(Un+1 + ιUn+2 + ϵUn+3 + hUn+4)

+ j(Un+2 + ιUn+3 + ϵUn+4 + hUn+5) + k(Un+3 + ιUn+4 + ϵUn+5 + hUn+6),

where ι, ϵ, h are hybrid units and i, j, k are split quaternionic units.

THn = Tn + ιTn+1 + ϵTn+2 + hTn+3. (36)

Lemma 4.1. Let ZHn and THn be the split Narayana hybrid quaternions and split Narayana–
Lucas hybrid quaternions, respectively, then the recurrence relation for these quaternions can be
defined as:

ZHn = ZHn−1 + ZHn−3,

THn = THn−1 + THn−3.

Proof. From Equation (35), we have

ZHn−1 + ZHn−3 = Zn−1 + ιZn + ϵZn+1 + hZn+2 + (Zn−3 + ιZn−2 + ϵZn−1 + hZn),

= (Zn−1 + Zn−3) + ι(Zn + Zn−2) + ϵ(Zn+1 + Zn−1) + h(Zn+2 + Zn),

ZHn−1 + ZHn−3 = ZHn.

Similarly, from Equation (36), we obtain

THn = THn−1 + THn−3.

Theorem 4.1. Let ZHn and THn be the split Narayana hybrid quaternions and split Narayana–
Lucas hybrid quaternions, respectively, then the Binet formulas for these quaternions can be
defined as:

ZHn =
µ

′
µn+1

(µ− ν)(µ− λ)
eµ +

ν
′
νn+1

(ν − µ)(ν − λ)
eν +

λ
′
λn+1

(λ− µ)(λ− ν)
eλ,

THn = µ
′
µneµ + ν

′
νneν + λ

′
λneλ.

Proof. Let ZHn be the split Narayana hybrid quaternions. From Equation (35), we have

ZHn = Zn + ιZn+1 + ϵZn+2 + hZn+3.

Therefore, utilising above relation in Equation (29), we have

ZHn =

(
µ

′
µn+1

(µ− ν)(µ− λ)
+

ν
′
νn+1

(ν − µ)(ν − λ)
+

λ
′
λn+1

(λ− µ)(λ− ν)

)
+ι

(
µ

′
µn+2

(µ− ν)(µ− λ)
+

ν
′
νn+2

(ν − µ)(ν − λ)
+

λ
′
λn+2

(λ− µ)(λ− ν)

)
+ϵ

(
µ

′
µn+3

(µ− ν)(µ− λ)
+

ν
′
νn+3

(ν − µ)(ν − λ)
+

λ
′
λn+3

(λ− µ)(λ− ν)

)
+h

(
µ

′
µn+4

(µ− ν)(µ− λ)
+

ν
′
νn+4

(ν − µ)(ν − λ)
+

λ
′
λn+4

(λ− µ)(λ− ν)

)
,
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=
µ

′
µn+1

(µ− ν)(µ− λ)
(1 + ιµ+ ϵµ2 + hµ3) +

ν
′
νn+1

(ν − µ)(ν − λ)
(1 + ιν + ϵν2 + hν3)

+
λ

′
λn+1

(λ− µ)(λ− ν)
(1 + ιλ+ ϵλ2 + hλ3),

Hence,

ZHn =
µ

′
µn+1

(µ− ν)(µ− λ)
eµ +

ν
′
νn+1

(ν − µ)(ν − λ)
eν +

λ
′
λn+1

(λ− µ)(λ− ν)
eλ, (37)

where eµ = (1 + ιµ+ ϵµ2 + hµ3), eν = (1 + ιν + ϵν2 + hν3), eλ = (1 + ιλ+ ϵλ2 + hλ3).

Moreover, from Equation (36), we have

THn = Tn + ιTn+1 + ϵTn+2 + hTn+3.

Therefore, utilising the above relation in Equation (30), we have

THn = (µ
′
µn + ν

′
νn + λ

′
λn) + ι(µ

′
µn+1 + ν

′
νn+1 + λ

′
λn+1) + ϵ(µ

′
µn+2 + νn+2 + λ

′
λn+2)

+h(µ
′
µn+3 + ν

′
νn+3 + λn+3),

= µ
′
µn(1 + ιµ+ ϵµ2 + hµ3) + ν

′
νn(1 + ιν + ϵν2 + hν3) + λn(1 + ιλ+ ϵλ2 + hλ3),

THn = µ
′
µneµ + ν

′
νneν + λ

′
λneλ. (38)

This completes the proof.

Theorem 4.2. Let ZHn and THn be the split Narayana hybrid quaternions and split Narayana–
Lucas hybrid quaternions, respectively, then the generating functions for these quaternions can
be defined as:

G(t) =
∞∑
n=0

ZHnt
n =

ZH0 + t(ZH1 − ZH0) + t2(ZH2 − ZH1)

1− t− t3
,

G(t) =
∞∑
n=0

THnt
n =

TH0 + t(TH1 − TH0) + t2(TH2 − TH1)

1− t− t3
.

Proof. Let us consider the following formal power series to be the generating function for the
split Narayana hybrid quaternions as:

G(t) =
∞∑
n=0

ZHnt
n = ZH0 + ZH1t+ ZH2t

2 + · · ·

Then, we have

tG(t) = ZH0t+ ZH1t
2 + ZH2t

3 + · · · ,
t3G(t) = ZH0t

3 + ZH1t
4 + ZH2t

5 + · · ·
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Therefore, we get

G(t)− tG(t)− t3G(t) = (ZH0 + ZH1t+ ZH2t
2 + · · · )− (ZH0t+ ZH1t

2 + ZH2t
3 + · · · )

− (ZH0t
3 + ZH1t

4 + ZH2t
5 + · · · ),

G(t)(1− t− t3) = ZH0 + t(ZH1 − ZH0) + t2(ZH2 − ZH1),

G(t) =
ZH0 + t(ZH1 − ZH0) + t2(ZH2 − ZH1)

(1− t− t3)
,

G(t) =
∞∑

m=0

ZHnt
n =

ZH0 + t(ZH1 − ZH0) + t2(ZH2 − ZH1)

(1− t− t3)
. (39)

Thus the proof is completed for the generating functions for split Narayana hybrid quaternions.
In a similar manner, we can also prove the following generating function for split Narayana–Lucas

hybrid quaternions as:

G(t) =
∞∑
n=0

THnt
n =

TH0 + t(TH1 − TH0) + t2(TH2 − TH1)

1− t− t3
. (40)

This completes the proof.

Theorem 4.3. Let ZHn and THn be the split Narayana hybrid quaternions and split Narayana–
Lucas hybrid quaternions, respectively, then the exponential generating functions for these
quaternions can be defined as:

∞∑
n=0

ZHn
tn

n!
=

µ
′
µ

(µ− ν)(µ− λ)
eµeµt +

ν
′
ν

(ν − µ)(ν − λ)
eνeνt +

λ
′
λ

(λ− µ)(λ− ν)
eλeλt,

∞∑
n=0

THn
tn

n!
= µ

′
eµeµt + ν

′
eνeνt + λ

′
eλeλt.

Proof. By using the Binet formulas for the split Narayana and Narayana– Lucas hybrid quaternions
from Theorem 4.1, we obtain

∞∑
n=0

ZHn
tn

n!
=

∞∑
n=0

[ µ
′
µn+1

(µ−ν)(µ−λ)
(1 + ιµ+ ϵµ2 + hµ3) +

ν
′
νn+1

(ν−µ)(ν−λ)
(1 + ιν + ϵν2 + hν3)

+
λ

′
λn+1

(λ−µ)(λ−ν)
(1 + ιλ+ ϵλ2 + hλ3)

] tn
n!
,

=
µ

′
µ

(µ− ν)(µ− λ)
(1 + ιµ+ ϵµ2 + hµ3)

∞∑
n=0

(µt)n

n!
+

ν
′
ν

(ν − µ)(ν − λ)
(1 + ιν + ϵν2 + hν3),

∞∑
n=0

(νt)n

n!
+

λ
′
λ

(λ− µ)(λ− ν)
(1 + ιλ+ ϵλ2 + hλ3)

∞∑
n=0

(λt)n

n!
,

∞∑
n=0

ZHn
tn

n!
=

µ
′
µ

(µ− ν)(µ− λ)
eµeµt +

ν
′
ν

(ν − µ)(ν − λ)
eνeνt +

λ
′
λ

(λ− µ)(λ− ν)
eλeλt. (41)

Thus the proof is completed for the exponential generating function for the split Narayana
hybrid quaternions.
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In a similar manner, we can also prove the exponential generating function for split Narayana–
Lucas hybrid quaternions, we have

∞∑
n=0

THn
tn

n!
= µ

′
eµeµt + ν

′
eνeνt + λ

′
eλeλt. (42)

This completes the proof.

Theorem 4.4. Let m and n be any positive integers and m ≥ n, then the following relations hold
as:

ZHmTHn + THmZHn =
2e2λ(µ− ν)λ

′2λ2m+n+1 + νλ
′
µ

′
(λ− µ)

(
−eλ+µ

)
(µmλn + λmµn)

(λ− µ)(λ− ν)(µ− ν)

+
−2e2µ(λ− ν)µ′2µ2m+n+1 − λµ

′
ν

′
(µ− ν)eµ+ν (νmµn + µmνn) + 2e2ν(λ− µ)ν

′2ν2m+n+1

(λ− µ)(λ− ν)(µ− ν)
,

ZHmTHn − THmZHn =
λ

′
µ

′ (−eλ+µ
)
(2λµ− λν − µν) (µmλn − λmµn)

(λ− µ)(λ− ν)(µ− ν)

+
λ

′
ν

′
eλ+ν(−λµ+ 2λν − µν) (νmλn − λmνn)− µ

′
ν

′
eµ+ν(2µν − λ(µ+ ν)) (νmµn − µmνn)

(λ− µ)(λ− ν)(µ− ν)
.

Proof. By using the Binet formulas from Theorem 4.1, we obtain

ZHmTHn + THmZHn

=

(
eν
(
ν

′
νm+1

)
(ν − λ)(ν − µ)

+
eµ
(
µ

′
µm+1

)
(µ− λ)(µ− ν)

+
eλ
(
λ

′
λm+1

)
(λ− µ)(λ− ν)

)(
ν

′
eννn + µ

′
eµµn + λ

′
eλλn

)
+
(
ν

′
eννm + µ

′
eµµm + λ

′
eλλm

)( eν
(
ν

′
νn+1

)
(ν − λ)(ν − µ)

+
eµ
(
µ

′
µn+1

)
(µ− λ)(µ− ν)

+
eλ
(
λ

′
λn+1

)
(λ− µ)(λ− ν)

)
,

ZHmTHn + THmZHn =
2e2λ(µ− ν)λ

′2λ2m+n+1 + νλ
′
µ

′
(λ− µ)

(
−eλ+µ

)
(µmλn + λmµn)

(λ− µ)(λ− ν)(µ− ν)

+
−2e2µ(λ− ν)µ′2µ2m+n+1 − λµ

′
ν

′
(µ− ν)eµ+ν (νmµn + µmνn) + 2e2ν(λ− µ)ν

′2ν2m+n+1

(λ− µ)(λ− ν)(µ− ν)
.

Similarly, we have

ZHmTHn − THmZHn

=

(
eν
(
ν

′
νm+1

)
(ν − λ)(ν − µ)

+
eµ
(
µ

′
µm+1

)
(µ− λ)(µ− ν)

+
eλ
(
λ

′
λm+1

)
(λ− µ)(λ− ν)

)(
ν

′
eννn + µ

′
eµµn + λ

′
eλλn

)

−
(
ν

′
eννm + µ

′
eµµm + λ

′
eλλm

)( eν
(
ν

′
νn+1

)
(ν − λ)(ν − µ)

+
eµ
(
µ

′
µn+1

)
(µ− λ)(µ− ν)

+
eλ
(
λ

′
λn+1

)
(λ− µ)(λ− ν)

)
,

ZHmTHn − THmZHn =
λ

′
µ

′ (−eλ+µ
)
(2λµ− λν − µν) (µmλn − λmµn)

(λ− µ)(λ− ν)(µ− ν)

+
λ

′
ν

′
eλ+ν(−λµ+ 2λν − µν) (νmλn − λmνn)− µ

′
ν

′
eµ+ν(2µν − λ(µ+ ν)) (νmµn − µmνn)

(λ− µ)(λ− ν)(µ− ν)
.

This completes the proof.
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Theorem 4.5. (Catalan’s identities) Let ZHn and THn be the split Narayana and Narayana–Lucas
hybrid quaternions, respectively. Therefore, for n ≥ 1, we have

ZHn+rZHn−r − (ZHn)
2 =

λ−rµ−rν−r((µ− λ)(λ− ν)λrµ
′
µn+1ν

′
νn+1eµ+ν (µr − νr)2)

(λ− µ)2(λ− ν)2(µ− ν)2

+
λ−rµ−rν−r((λ− µ)(µ− ν)µrλ

′
λn+1ν

′
νn+1eλ+ν(λr − νr)2)

(λ− µ)2(λ− ν)2(µ− ν)2

+
λ−rµ−rν−r((λ− ν)(µ− ν)νrλ

′
λn+1µ

′
µn+1

(
−eλ+µ

)
(λr − µr)2)

(λ− µ)2(λ− ν)2(µ− ν)2
,

THn+rTHn−r − (THn)
2 = λ−rµ−rν−r(λrµ

′
µnν

′
νneµ+ν (µr − νr)2 + µrλ

′
λnν

′
νneλ+ν (λr − νr)2

+ νrλ
′
λnµ

′
µneλ+µ (λr − µr)2).

Proof. By using the Binet formulas from Theorem 4.1, we obtain

ZHn+rZHn−r − (ZHn)
2

=

(
eν
(
ν

′
νn+r+1

)
(ν − λ)(ν − µ)

+
eµ
(
µ

′
µn+r+1

)
(µ− λ)(µ− ν)

+
eλ
(
λ

′
λn+r+1

)
(λ− µ)(λ− ν)

)

·

(
eν
(
ν

′
νn−r+1

)
(ν − λ)(ν − µ)

+
eµ
(
µ

′
µn−r+1

)
(µ− λ)(µ− ν)

+
eλ
(
λ

′
λn−r+1

)
(λ− µ)(λ− ν)

)

−

(
eν
(
ν

′
νn+1

)
(ν − λ)(ν − µ)

+
eµ
(
µ

′
µn+1

)
(µ− λ)(µ− ν)

+
eλ
(
λ

′
λn+1

)
(λ− µ)(λ− ν)

)2

= − 2λ
′
λn+1µ

′
µn+1eλ+µ

(λ− µ)(µ− λ)(λ− ν)(µ− ν)
− 2λ

′
λn+1ν

′
νn+1eλ+ν

(λ− µ)(λ− ν)(ν − λ)(ν − µ)
− 2µ

′
µn+1ν

′
νn+1eµ+ν

(µ− λ)(ν − λ)(µ− ν)(ν − µ)

+
eλ+µλ

′
λn+r+1µ

′
µn−r+1

(λ− µ)(µ− λ)(λ− ν)(µ− ν)
+

eλ+µλ
′
λn−r+1µ

′
µn+r+1

(λ− µ)(µ− λ)(λ− ν)(µ− ν)

+
eλ+νλ

′
λn+r+1ν

′
νn−r+1

(λ− µ)(λ− ν)(ν − λ)(ν − µ)
+

eλ+νλ
′
λn−r+1ν

′
νn+r+1

(λ− µ)(λ− ν)(ν − λ)(ν − µ)

+
eµ+νµ

′
µn−r+1ν

′
νn+r+1

(µ− λ)(ν − λ)(µ− ν)(ν − µ)
+

eµ+νµ
′
µn+r+1ν

′
νn−r+1

(µ− λ)(ν − λ)(µ− ν)(ν − µ)
.

Hence,

ZHn+rZHn−r − (ZHn)
2 =

λ−rµ−rν−r((µ− λ)(λ− ν)λrµ
′
µn+1ν

′
νn+1eµ+ν (µr − νr)2)

(λ− µ)2(λ− ν)2(µ− ν)2

+
λ−rµ−rν−r((λ− µ)(µ− ν)µrλ

′
λn+1ν

′
νn+1eλ+ν(λr − νr)2)

(λ− µ)2(λ− ν)2(µ− ν)2

+
λ−rµ−rν−r((λ− ν)(µ− ν)νrλ

′
λn+1µ

′
µn+1

(
−eλ+µ

)
(λr − µr)2)

(λ− µ)2(λ− ν)2(µ− ν)2
,
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Similarly, we have

THn+rTHn−r − (THn)
2

=
(
ν

′
eννn+r + µ

′
eµµn+r + λ

′
eλλn+r

)(
ν

′
eννn−r + µ

′
eµµn−r + λ

′
eλλn−r

)
−
(
ν

′
eννn + µ

′
eµµn + λ

′
eλλn

)2
,

= −2λ
′
λnµ

′
µneλ+µ − 2λ

′
λnν

′
νneλ+ν − 2µ

′
µnν

′
νneµ+ν

+ eλ+µλ
′
λn+rµ

′
µn−r + eλ+µλ

′
λn−rµ

′
µn+r

+ eλ+νλ
′
λn+rν

′
νn−r + eλ+νλ

′
λn−rν

′
νn+r

+ eµ+νµ
′
µn−rν

′
νn+r + eµ+νµ

′
µn+rν

′
νn−r,

=λ−rµ−rν−r
(
λrµ

′
µnν

′
νneµ+ν(µr−νr)2+µrλ

′
λnν

′
νneλ+ν(λr−νr)2+νrλ

′
λnµ

′
µneλ+µ(λr−µr)2

)
.

This completes the proof.

Theorem 4.6. (Cassini’s identities) Let ZHn and THn be the split Narayana and Narayana–
Lucas hybrid quaternions, respectively. Therefore, for n ≥ 1, we have

ZHn+1ZHn−1 − (ZHn)
2 =

λ−1µ−1ν−1((µ− λ)(λ− ν)λµ
′
µn+1ν

′
νn+1eµ+ν (µ− ν)2)

(λ− µ)2(λ− ν)2(µ− ν)2

+
λ−1µ−1ν−1((λ− µ)(µ− ν)µλ

′
λn+1ν

′
νn+1eλ+ν(λ− ν)2)

(λ− µ)2(λ− ν)2(µ− ν)2

+
λ−1µ−1ν−1((λ− ν)(µ− ν)νλ

′
λn+1µ

′
µn+1

(
−eλ+µ

)
(λ− µ)2)

(λ− µ)2(λ− ν)2(µ− ν)2
,

THn+1THn−1 − (THn)
2 = λ−1µ−1ν−1

(
λµ

′
µnν

′
νneµ+ν (µ− ν)2 + µλ

′
λnν

′
νneλ+ν (λ− ν)2

+ νλ
′
λnµ

′
µneλ+µ (λ− µ)2

)
.

Proof. By substituting r = 1 in Theorem 4.5, this theorem can be easily proved.

4.1 Numerical simulation for split Narayana–Lucas hybrid quaternions

To better illustrate or visualize the theoretical findings, we present a numerical simulation of the
newly introduced split Narayana–Lucas hybrid quaternions. Table 2 reports the numerical values
for Narayana–Lucas hybrid sequence and norm of split Narayana–Lucas hybrid quaternions
N (THn) for indices 0 ≤ n ≤ 20. Then Figure 2 is plotted with the help of Table 2. The norm of
a split Narayana–Lucas hybrid quaternion is computed using the following relation:

N (THn) = U2
n + 2U2

n+1 − 2Un+1Un+2 − 2Un+2Un+3 − 3U2
n+3 + 2Un+3Un+4 − 2U2

n+4

+ 2Un+4Un+5 + U2
n+5 + U2

n+6.
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Table 2. Numerical values of Narayana–Lucas hybrid sequence
and norm of split Narayana–Lucas hybrid quaternions N (THn).

n UHn UHn+1 UHn+2 UHn+3 N (THn)

0 3 1 1 1 139

1 1 1 1 2 313

2 1 1 2 3 711

3 1 2 3 4 1468

4 2 3 4 6 3139

5 3 4 6 9 6673

6 4 6 9 13 14164

7 6 9 13 19 30079

8 9 13 19 28 63712

9 13 19 28 41 134923

10 19 28 41 60 285274

11 28 41 60 88 603607

12 41 60 88 129 1277425

13 60 88 129 189 2702122

14 88 129 189 277 5716903

15 129 189 277 406 12099034

16 189 277 406 595 25604293

17 277 406 595 872 54197467

18 406 595 872 1278 114756334

19 595 872 1278 1873 242958451

20 872 1278 1873 2745 648741012

The simulation results reveal a rapid growth in N (THn) as n increases. Starting with
N (TH0) = 139, the norm rises steadily, surpassing one million at n = 12 and ultimately reaching
N (TH20) = 6.487 × 108. According to the classification provided by Özdemir [17], the nature
of hybrid numbers and quaternions depends on the sign and growth of their norm. From Figure 2,
the geometrical interpretation of the norm of split Narayana–Lucas hybrid quaternions remains
strictly positive for all computed values of n, the corresponding hybrid quaternions are elliptic
in nature. As the norm increases, the split Narayana–Lucas hybrid quaternions exhibit stable
and elliptic behavior, which may lead to enhanced performance in image encryption, improved
convergence in hybrid differential systems, and greater stability in quantum like modeling.
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Figure 2. Norm of split Narayana–Lucas hybrid quaternion N (THn) vs. n.

5 Conclusion

In this study, we associate the concept of hybrid numbers in the context of split Narayana
quaternions as well as split Narayana–Lucas quaternions. We further explore their interrelationships
and derive Binet formulas, generating functions, exponential generating functions, and various
well-known identities respectively related to these newly introduced quaternions. Furthermore,
we provide a numerical simulation to illustrate the behaviour and implications of both split
Narayana quaternions and split Narayana–Lucas hybrid quaternions.

The novelty of this work lies in its potential to formulate hybrid wavelets, which can be
applied to solve both linear and nonlinear hybrid differential equations. The Caputo–Katugampola
derivative, Caputo–Fabrizio derivative, generalized Caputo fractional derivative, and several other
fractional derivative operators are significantly growing as fundamental tools in contemporary
fractional calculus. Earlier research has already applied these operators to quaternions, showing
that they work well for studying quaternionic systems. In the same way, our work expects the
extension of these concepts to quaternionic hybrid constructions, where the exploration of such
connections may provide interesting possibilities for future research. Besides this, the present
work may contribute well to the development of designing the new cryptographic protocols for
providing a robust security mechanism in real-world applications.
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