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1 Introduction and motivation

Cr)=r

for n > 0 is a fundamental concept in combinatorics, probability and statistics, and many areas

The central binomial coefficient

of mathematics. Their generating function is given by

1 = [2n\
—_— = x".
V1 —A4zx ; ( n )
Further properties and applications of central binomial coefficient have extensively been studied
in the literature (see Gould [4], Lehmer [6] and Zucker [7], for example).
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The infinite series identities for central binomial coefficients have been studied for a long time.
Denoting as usual by Z" the set of natural numbers, the aim of this paper is to examine, for an
integer number \ € Z*, the following two infinite series involving central binomial coefficients:

S ) NN
U, = nz_; o T i and Vy=>_ )

n+A n=1 n

Throughout the paper, we shall utilize Wallis’ integral formulae (cf. Bhandari [1]):

5 o1 92m—1
/0 sin“™" " xdr = m, (1)
% c.2m (2721)71-
; Sin rdx = W; (2)

and two known trigonometric formulae (see Gradshteyn [5, §1.32]):

m—1
1 2 1/2
sin®™ g = 5o { (—1)m+k< ;n) cos(2m — 2k)x + 3 ( 77?) }, 3)

k=0

I & 2m + 1
sin?ty = Z(—1)m+k( mt ) sin(2m — 2k + 1)z. )

2 Evaluation of U,

In this section, we shall examine the series U). A general summation theorem will be proved and
several explicit formulae will be presented as consequences.
According to the Wallis’ integral formula (1), U, can be rewritten as

oo (2”) 92n+2A
n

1
Uy = 92X—1 Z 22n(2n + 1) (n + )\)<2n+2/\)

n=0 n+A—1

1 C (2:) g s 2n+4+2X2—1
= PP Z (20 + 1) /0 sin zdz.

n=0

Making use of the following identity (cf. Chu [2] and Lehmer [6]):

= (2,? ) 2n _ arcsin 2¢

— (2n+1) 2

n

the above expression can be evaluated as

1 S (2:> s 2n4+22—1
Uy = 92A 1 Z 22 (2n 1 1) /0 sin xdx

n=0
= L : sin?A 2 i n dx
2 A (2n+1) 22»

1 s
/2 z sin? 2 zdz. 5
0

~ 921

It is obvious that U, is convergent only when A > 1.
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According to (3), we can further proceed with

1 L
Ur= 7 /2 zsin® 2 vdx
2 0
= : . X — 1 At+k—1 2V -2 I\ — 2% — 2 20— 2 d
= ; 94x—4 kzg(_ ) I COS( — — ) _|_2 N X
A2 .
2\ —2 >\+’f 2\ — 5
24)\ ( ) Z 24)\ 4 ( ) / l'COS(Q)\ — 2]{,’ — 2)$daj

k=0 0

By means of integration by parts, the rightmost integral can be explicitly calculated:

3 1 3
xcosQ)\—Qk—Qa:dx:—/ xzdsin(2\ — 2k — 2)x
/0 ( ) 20 -2k -2 J, ( )
1 /
= —— sin(2\ — 2k — 2)xdx
20 =2k -2 J,
! A2k — 2|
= cos(2\ — 2k — 2)x
(2N — 2k — 2)2 0

T 2h— 21k —2)2 {(_DHH N 1}‘

Remark 1. The integral in (5) can also be evaluated as

™ ™
/ rsin? 2 zde = / zsin? % zdr — / zsin? % xdx
0 0 z

2

T oag 2w . on—o (T
=  sin xdr — (— + x) sin (— + J:) dx
0 o \2 2
T o z 22—2 T2 22—2
= 2 sin xdr — Z COoS xdr — 5 CoS rdx.
0 0 0

The above three integrals are known: the first two of these can be found in Gradshteyn and
Ryzhik’s book [5, §3.821.1 and §3.821.3]; while the third one is a Wallis’ integral.

[NIE]

Finally, we establish, after substitution, the following summation formula.

Theorem 2. For \ € 7, the following equality holds:

00 (2n)
=2 G D - >\) (M)

n=0
2

2)\—2 DAF 2N —2
T\ - 2‘“2 )\ k:—l k '

For other small \ € Z*, the following interesting formulae are recorded as examples.
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Corollary 3. For \ € Z™, there hold explicit formulae:

. ) ”
1= n = T
= (2n+1)(n+1) (2%*12) 16

- () 1w

U; = % (2n+1)(n—|—2)(2n+4) ~ 39 +1_287

Us = i ) 1 n 3
b S~ (2n+1)(n+3)(F) 128 2048
N ) 17 e
Ui= ; 2n+1)(n+4)(27F) 9216 " To3s1’
— N (2:) 1 3572
e ; (2n+1)(n+5)(*"71%) 2304 521288’
N () 21 6372

@

" ; (2n +1)(n+6)(*7?) ~ 204300 © 4104304

3 Evaluation of V

This section will be devoted to another series V. A general summation theorem will be shown
that includes several explicit formulae as special cases.
Taking into account Wallis’ formula (2), we have

00 2n (2027 221 2n z
V, = 22,\23 2 ( n+A ) _ 2 Z 2 /2 S22 1 dy
n2 (2:) 22n+2)\ T n2 (2n) 0

n=1 n

In view of a known identity (cf. Chu [2] and Edwards [3])

0 2t)2n
Z< ) = 2(arcsint)?,

n=1 n2 (2’:)

we can deduce the following expression:

22)\+1 > 22n

us
2
Vi = E 7y / sin?" 2 rdx
0

T n2(

=1 n
22>\+1 5

= / sin? a:E szn rdx
T

22)\+2
= / 22 sin? zdx.
0

™

By applying (4) and the integration by parts, we can reformulate

22>\+2
V, = / 2% sin® xdx

™

1

22 0 . {AZ A+k )005(2)\ 2k)x—|—2(2;\> }dm

0
7r 2)\> 8 = Hk(zx)/ )

= — — x” cos(2\ — 2k)xdx.
s(0) e 0
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Evaluating the last integral

3 1 3
/0 2% cos(2\ — 2k)zdx =% ok /o r2dsin(2)\ — 2k)x
2 : dcos(2A\ — 2k
—m /0 X COS( — ).’L‘
(=DM 2 /2
A2k oA kR ), cos(2\ — 2k)xdx
(~1)*
(2\ — 2k)%’

we arrive at the general formula in the following theorem.

Theorem 4. For \ € Z, the following equality holds:

ney G2 S ()

n=1

For 1 < A\ <5, the corresponding closed formulae are displayed as follows.

Corollary 5. For A € Z™, there hold explicit formulae:

T LT I
n? (%) 3

Vy = f: (2’%4; 177 +

v, i (2%48; 93(2)9 . 353%27

(i) a3
Vs —Z n2(2") = 00 + 4277,

n=1 n

There are two exceptional cases that are worth mentioning. First, for A = 0, the corresponding

formula is well known: .

1 2
When A = —1, we can evaluate V_; as
[e'e) (2n 2 00 1

V_ = = 1n2,
since

(1 o ) 1xn > xanl xZn . .

= 1) = —_— —1 < <

n(l+2) ;( ) n ;(Zn—l Qn)’ r=50

and

(3) =z ()
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4 Concluding comments

By utilizing the formulae (1) and (2), as well as the generalized binomial coefficient, which is
defined as

( nl) with n,m € Z,
m+ 5

the following identity can be derived

x 2n+1
LR 92n+1 (T:;% )7r
sin xdr = o = i

0 (TZ + 1) ( n+1 )

It brings about

(2n+1) 4 o
n+s3/) wEn+ 1))

In this case, U) converges for A a half integer with A > 0, while V, converges for A a half integer
with A > —1, since

1 H 22A—2 R 2 i 2X
U, = / rsin“ “xdr and V, = / r“sin“? xdzx.
0 0

222-1 T

When the absolute value of A is small, some interesting results can be obtained. For example,
letting \ = % and \ = % in U,, we have the following results:

00 n 2 2n\ 2
4G n 1
I B SR
= (2n + 1 24n T 1)224n g
where G is Catalan’s constant, since (cf. Gradshteyn [5, §3.747.2])

3 3
/ ——dz = 2G  and / rsinxdr = 1.
o sinx 0

Letting A\ = —% in V,, the following identity can be established

N _i(i"__ﬁ)_ii gtn _g/’fi iy
= n2() 2w s 7y sinm -

2n)2
n=1 (n

Taking into account the following Fourier series (cf. Bhandari [1])

(2k 2t
Intant = —22 %,

we have

2 z T
/ / dlntan— = —2/ z lntan —dx
smx 0 0 2
/’5 f: zcos(2k + 1
0 = 2k+1
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Recalling integration by parts, it is obtained that

/2 pa r=4) ——0 % — / wdsin(2k + 1)z
0 k=0
_ 0 1 3
= 2%2— - 42—/ sin(2k + 1)xdx
prd (2k +1)2 prd (2k+1)2 J,
”,; (2k + 1)2 ; (2k + 1)3
= 2nG — L(3),

where G = > 7, o +)1)2 is Catalan’s constant and ((3) = > ;- k% is Riemann zeta function.

This leads to the followmg interesting identity:

e 24n
Y —— = 8G —14((3).

n=1 ”3(77)
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