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1 Introduction and motivation

The central binomial coefficient (
2n

n

)
=

(2n)!

n!n!

for n ≥ 0 is a fundamental concept in combinatorics, probability and statistics, and many areas
of mathematics. Their generating function is given by

1√
1− 4x

=
∞∑
n=0

(
2n

n

)
xn.

Further properties and applications of central binomial coefficient have extensively been studied
in the literature (see Gould [4], Lehmer [6] and Zucker [7], for example).
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The infinite series identities for central binomial coefficients have been studied for a long time.
Denoting as usual by Z+ the set of natural numbers, the aim of this paper is to examine, for an
integer number λ ∈ Z+, the following two infinite series involving central binomial coefficients:

Uλ =
∞∑
n=0

(
2n
n

)
(2n+ 1)(n+ λ)

(
2n+2λ
n+λ

) and Vλ =
∞∑
n=1

(
2n+2λ
n+λ

)
n2
(
2n
n

) .
Throughout the paper, we shall utilize Wallis’ integral formulae (cf. Bhandari [1]):∫ π

2

0

sin2m−1 xdx =
22m−1

m
(
2m
m

) , (1)∫ π
2

0

sin2m xdx =

(
2m
m

)
π

22m+1
; (2)

and two known trigonometric formulae (see Gradshteyn [5, §1.32]):

sin2m x =
1

22m−1

{
m−1∑
k=0

(−1)m+k

(
2m

k

)
cos(2m− 2k)x+

1

2

(
2m

m

)}
, (3)

sin2m+1 x =
1

22m

m∑
k=0

(−1)m+k

(
2m+ 1

k

)
sin(2m− 2k + 1)x. (4)

2 Evaluation of Uλ

In this section, we shall examine the series Uλ. A general summation theorem will be proved and
several explicit formulae will be presented as consequences.

According to the Wallis’ integral formula (1), Uλ can be rewritten as

Uλ =
1

22λ−1

∞∑
n=0

(
2n
n

)
22n(2n+ 1)

22n+2λ

(n+ λ)
(
2n+2λ
n+λ−1

)
=

1

22λ−1

∞∑
n=0

(
2n
n

)
22n(2n+ 1)

∫ π
2

0

sin2n+2λ−1 xdx.

Making use of the following identity (cf. Chu [2] and Lehmer [6]):
∞∑
n=0

(
2n
n

)
(2n+ 1)

t2n =
arcsin 2t

2t
,

the above expression can be evaluated as

Uλ =
1

22λ−1

∞∑
n=0

(
2n
n

)
22n(2n+ 1)

∫ π
2

0

sin2n+2λ−1 xdx

=
1

22λ−1

∫ π
2

0

sin2λ−2 x
∞∑
n=0

(
2n
n

)
(2n+ 1)

sin2n+1 x

22n
dx

=
1

22λ−1

∫ π
2

0

x sin2λ−2 xdx. (5)

It is obvious that Uλ is convergent only when λ ≥ 1.
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According to (3), we can further proceed with

Uλ =
1

22λ−1

∫ π
2

0

x sin2λ−2 xdx

=

∫ π
2

0

x

24λ−4

{
λ−2∑
k=0

(−1)λ+k−1

(
2λ− 2

k

)
cos(2λ− 2k − 2)x+

1

2

(
2λ− 2

λ− 1

)}
dx

=
π2

24λ

(
2λ− 2

λ− 1

)
−

λ−2∑
k=0

(−1)λ+k

24λ−4

(
2λ− 2

k

)∫ π
2

0

x cos(2λ− 2k − 2)xdx.

By means of integration by parts, the rightmost integral can be explicitly calculated:∫ π
2

0

x cos(2λ− 2k − 2)xdx =
1

2λ− 2k − 2

∫ π
2

0

xd sin(2λ− 2k − 2)x

= − 1

2λ− 2k − 2

∫ π
2

0

sin(2λ− 2k − 2)xdx

=
1

(2λ− 2k − 2)2
cos(2λ− 2k − 2)x

∣∣∣∣π2
0

=
1

(2λ− 2k − 2)2

{
(−1)λ−k−1 − 1

}
.

Remark 1. The integral in (5) can also be evaluated as∫ π
2

0

x sin2λ−2 xdx =

∫ π

0

x sin2λ−2 xdx−
∫ π

π
2

x sin2λ−2 xdx

=

∫ π

0

x sin2λ−2 xdx−
∫ π

2

0

(π
2
+ x

)
sin2λ−2

(π
2
+ x

)
dx

=

∫ π

0

x sin2λ−2 xdx−
∫ π

2

0

x cos2λ−2 xdx− π

2

∫ π
2

0

cos2λ−2 xdx.

The above three integrals are known: the first two of these can be found in Gradshteyn and
Ryzhik’s book [5, §3.821.1 and §3.821.3]; while the third one is a Wallis’ integral.

Finally, we establish, after substitution, the following summation formula.

Theorem 2. For λ ∈ Z+, the following equality holds:

Uλ =
∞∑
n=0

(
2n
n

)
(2n+ 1)(n+ λ)

(
2n+2λ
n+λ

)
=

π2

24λ

(
2λ− 2

λ− 1

)
+

1

24λ−2

λ−2∑
k=0

1 + (−1)λ+k

(λ− k − 1)2

(
2λ− 2

k

)
.

For other small λ ∈ Z+, the following interesting formulae are recorded as examples.
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Corollary 3. For λ ∈ Z+, there hold explicit formulae:

U1 =
∞∑
n=0

(
2n
n

)
(2n+ 1)(n+ 1)

(
2n+2
n+1

) =
π2

16
,

U2 =
∞∑
n=0

(
2n
n

)
(2n+ 1)(n+ 2)

(
2n+4
n+2

) =
1

32
+

π2

128
,

U3 =
∞∑
n=0

(
2n
n

)
(2n+ 1)(n+ 3)

(
2n+6
n+3

) =
1

128
+

3π2

2048
,

U4 =
∞∑
n=0

(
2n
n

)
(2n+ 1)(n+ 4)

(
2n+8
n+4

) =
17

9216
+

5π2

16384
,

U5 =
∞∑
n=0

(
2n
n

)
(2n+ 1)(n+ 5)

(
2n+10
n+5

) =
1

2304
+

35π2

524288
,

U6 =
∞∑
n=0

(
2n
n

)
(2n+ 1)(n+ 6)

(
2n+12
n+6

) =
21

204800
+

63π2

4194304
.

3 Evaluation of Vλ

This section will be devoted to another series Vλ. A general summation theorem will be shown
that includes several explicit formulae as special cases.

Taking into account Wallis’ formula (2), we have

Vλ = 22λ
∞∑
n=1

22n

n2
(
2n
n

) (2n+2λ
n+λ

)
22n+2λ

=
22λ+1

π

∞∑
n=1

22n

n2
(
2n
n

) ∫ π
2

0

sin2n+2λ xdx.

In view of a known identity (cf. Chu [2] and Edwards [3])
∞∑
n=1

(2t)2n

n2
(
2n
n

) = 2(arcsin t)2,

we can deduce the following expression:

Vλ =
22λ+1

π

∞∑
n=1

22n

n2
(
2n
n

) ∫ π
2

0

sin2n+2λ xdx

=
22λ+1

π

∫ π
2

0

sin2λ x
∞∑
n=1

22n

n2
(
2n
n

) sin2n xdx

=
22λ+2

π

∫ π
2

0

x2 sin2λ xdx.

By applying (4) and the integration by parts, we can reformulate

Vλ =
22λ+2

π

∫ π
2

0

x2 sin2λ xdx

=
8

π

∫ π
2

0

x2

{
λ−1∑
k=0

(−1)λ+k

(
2λ

k

)
cos(2λ− 2k)x+

1

2

(
2λ

λ

)}
dx

=
π2

6

(
2λ

λ

)
+

8

π

λ−1∑
k=0

(−1)λ+k

(
2λ

k

)∫ π
2

0

x2 cos(2λ− 2k)xdx.
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Evaluating the last integral∫ π
2

0

x2 cos(2λ− 2k)xdx =
1

2λ− 2k

∫ π
2

0

x2d sin(2λ− 2k)x

=
2

(2λ− 2k)2

∫ π
2

0

xd cos(2λ− 2k)x

=
(−1)λ−kπ

(2λ− 2k)2
− 2

(2λ− 2k)2

∫ π
2

0

cos(2λ− 2k)xdx

=
(−1)λ−kπ

(2λ− 2k)2
,

we arrive at the general formula in the following theorem.

Theorem 4. For λ ∈ Z+, the following equality holds:

Vλ =
∞∑
n=1

(
2n+2λ
n+λ

)
n2
(
2n
n

) =
π2

6

(
2λ

λ

)
+

λ−1∑
k=0

2

(λ− k)2

(
2λ

k

)
.

For 1 ≤ λ ≤ 5, the corresponding closed formulae are displayed as follows.

Corollary 5. For λ ∈ Z+, there hold explicit formulae:

V1 =
∞∑
n=1

(
2n+2
n+1

)
n2
(
2n
n

) = 2 +
π2

3
,

V2 =
∞∑
n=1

(
2n+4
n+2

)
n2
(
2n
n

) =
17

2
+ π2,

V3 =
∞∑
n=1

(
2n+6
n+3

)
n2
(
2n
n

) =
299

9
+

10π2

3
,

V4 =
∞∑
n=1

(
2n+8
n+4

)
n2
(
2n
n

) =
9209

72
+

35π2

3
,

V5 =
∞∑
n=1

(
2n+10
n+5

)
n2
(
2n
n

) =
49133

100
+ 42π2.

There are two exceptional cases that are worth mentioning. First, for λ = 0, the corresponding
formula is well known:

V0 = ζ(2) =
∞∑
n=0

1

n2
=

π2

6
.

When λ = −1, we can evaluate V−1 as

V−1 =
∞∑
n=1

(
2n−2
n−1

)
n2
(
2n
n

) =
∞∑
n=1

1

2n(2n− 1)
=

∞∑
n=1

(
1

2n− 1
− 1

2n

)
= ln 2,

since

ln(1 + x) =
∞∑
n=1

(−1)n−1x
n

n
=

∞∑
n=1

(
x2n−1

2n− 1
− x2n

2n

)
, −1 < x ≤ 1,

and (
2n− 2

n− 1

)
=

n

2(2n− 1)

(
2n

n

)
.
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4 Concluding comments

By utilizing the formulae (1) and (2), as well as the generalized binomial coefficient, which is
defined as (

n

m+ 1
2

)
with n,m ∈ Z,

the following identity can be derived∫ π
2

0

sin2n+1 xdx =
22n+1

(n+ 1)
(
2n+2
n+1

) =

(
2n+1
n+ 1

2

)
π

22n+2
.

It brings about (
2n+ 1

n+ 1
2

)
=

4

π

24n

(2n+ 1)
(
2n
n

) .
In this case, Uλ converges for λ a half integer with λ > 0, while Vλ converges for λ a half integer
with λ > −1, since

Uλ =
1

22λ−1

∫ π
2

0

x sin2λ−2 xdx and Vλ =
22λ+2

π

∫ π
2

0

x2 sin2λ xdx.

When the absolute value of λ is small, some interesting results can be obtained. For example,
letting λ = 1

2
and λ = 3

2
in Uλ, we have the following results:

∞∑
n=0

(
2n
n

)2
(2n+ 1)24n

=
4G

π
and

∞∑
n=0

n
(
2n
n

)2
(2n− 1)224n

=
1

π
,

where G is Catalan’s constant, since (cf. Gradshteyn [5, §3.747.2])∫ π
2

0

x

sinx
dx = 2G and

∫ π
2

0

x sinxdx = 1.

Letting λ = −1
2

in Vλ, the following identity can be established

V− 1
2
=

∞∑
n=1

(
2n−1
n− 1

2

)
n2
(
2n
n

) =
1

2π

∞∑
n=1

24n

n3
(
2n
n

)2 =
2

π

∫ π
2

0

x2

sinx
dx.

Taking into account the following Fourier series (cf. Bhandari [1])

ln tan t = −2
∞∑
k=0

cos(2k + 1)2t

2k + 1
,

we have ∫ π
2

0

x2

sinx
dx =

∫ π
2

0

x2d ln tan
x

2
= −2

∫ π
2

0

x ln tan
x

2
dx

= 4

∫ π
2

0

∞∑
k=0

x cos(2k + 1)x

2k + 1
dx.
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Recalling integration by parts, it is obtained that∫ π
2

0

x2

sinx
dx = 4

∞∑
k=0

1

(2k + 1)2

∫ π
2

0

xd sin(2k + 1)x

= 2π
∞∑
k=0

(−1)k

(2k + 1)2
− 4

∞∑
k=0

1

(2k + 1)2

∫ π
2

0

sin(2k + 1)xdx

= 2π
∞∑
k=0

(−1)k

(2k + 1)2
− 4

∞∑
k=0

1

(2k + 1)3

= 2πG− 7

2
ζ(3),

where G =
∑∞

k=0
(−1)k

(2k+1)2
is Catalan’s constant and ζ(3) =

∑∞
k=0

1
k3

is Riemann zeta function.
This leads to the following interesting identity:

∞∑
n=1

24n

n3
(
2n
n

)2 = 8πG− 14ζ(3).
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