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Abstract: In the paper, some special linear combinations of the terms of rational cycles of
generalized Collatz sequences are studied. It is proved that for specific choice of the coefficients
these linear combinations are integers. The discussed results are demonstrated on some examples.
In some particular cases the obtained results can be used to explain some patterns of digits in
p-adic representations of the terms of the rational cycles.
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1 Introduction

Collatz conjecture or the 3x + 1 problem claims that for any positive integer x0, the recursive
sequence defined for n ≥ 0 by xn+1 = S(xn) =

3xn + 1

2
if xn is odd and xn+1 = T (xn) =

xn

2
if

xn is even, there is a positive integer N such that xN = 1 [12]. It is known that this holds true
for almost all x0 in the sense of some density over the set of positive integers. For the works in
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this direction, see [5,9,22], which culminated in the very important work of T. Tao [21]. Another
approach would be to find all cycles of this recursive sequence. It is conjectured that there are
only finitely many such cycles. The only known cycle is the one generated by x0 = 1. There are
more cycles if x0 is allowed to be zero or a negative integer but it is conjectured that their number
is also finite (The Finite Cycles Conjecture [11,12]). The only known non-positive integer cycles
are the ones generated by x0 = 0, x0 = −1, x0 = −5, and x0 = −17. If a sequence of functions
consisted of several S and T is given, then one can speak about rational cycles [1]. There is a
rational number x0 such that if the functions S and T are applied in the given order, then the final
result is again x0. Rational cycles generated by such x0 have some interesting properties [3, 11].
Many generalizations of Collatz conjecture were considered by replacing functions S and T by
more general Sk(x) =

pix+ k

q
. One can find such generalizations in [7, 14, 17, 18]. In [4, 13]

similar generalizations are used to prove some results related to undecidability properties. In
[10,20] these generalizations are considered in the context of 2-adic numbers and q based numeral
systems. Weaker versions of the 3x + 1 problem attracted some attention recently and were
discussed in problem-solving columns of various journals [8, 15, 16, 19]. A. O. Gelfond [6] and
A. G. Kurosh considered functions similar to Sk(x) above in the context of the separation of the
set of the positive integers into classes of numbers connected via compositions of such functions.

In this paper we focus on properties of the terms of rational cycles xi, which show that these
rational numbers are similar to the integers. A linear combination with integer coefficients of two
integers is obviously always an integer. In the paper it is proved that there are special integer linear
combinations of rational numbers xi and xi+b, for all i. In general, it is not surprising that there
are integer linear combinations of rational numbers. One can, for example, take the coefficients
of the linear combination as the denominators of the rational numbers. The surprising fact in the
following results is that the coefficiens of these linear combinations are either fixed or involve
product of several consecutive pi, while i changes. Two worked out examples demonstarting
the results on particular cases are given. The results of the current paper were first discovered
experimentally by observing patterns of digits in p-adic representations of these rational numbers
xi and given at the end of the paper as applications.

2 Notations and lemmas

Consider composition P = B0 ◦ B1 ◦ · · · ◦ Bn−1 of functions Bi(x) =
pix+ ki

q
, where n > 1,

ki are integers, pi, q are non-zero integers such that (pi, q) = 1 for i = 0, 1, . . . , n − 1. When
it is necessary to extend the index i, beyond the interval [0, n − 1], we suppose that Bi = Bj if
i ≡ j (mod n). Consider equation B0 ◦B1 ◦ · · · ◦Bn−1(x) = x, which can also be written as

p0

p1

pn−2
pn−1x+kn−1

q
+ kn−2

q
...
q

+ k1

q
+ k0

q
= x.
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Note that its solution x0 is a rational number (cf. [11, Formulas 1.2 and 1.3]):

x0 =
p0p1 · · · pn−2kn−1 + p0p1 · · · pn−3kn−2q + · · ·+ p0k1q

n−2 + k0q
n−1

qn − p0p1 · · · pn−1

.

Similarly, consider equations Bi ◦ Bi+1 ◦ · · · ◦ Bi+n−1(x) = x for i = 0, 1, . . . , n− 1. Note that
their solutions xi are also rational numbers:

xi =
pipi+1 · · · pi+n−2ki−1 + pipi+1 · · · pi+n−3ki−2q + · · ·+ piki+1q

n−2 + kiq
n−1

qn − p0p1 · · · pn−1

,

where all the indices are taken modulo n. In the following, it is assumed that xi = xj if

i ≡ j (mod n). Consider also numbers Ui =
qi

qn − p0p1 · · · pn−1
, for i = 0, 1, . . . , n. Note that

Un = p0p1 · · · pn−1U0 + 1. Note also that

xi = pipi+1 · · · pi+n−2ki−1U0 + pipi+1 · · · pi+n−3ki−2U1 + · · ·+ piki+1Un−2 + kiUn−1.

Note that there are infinitely many pairs of non-zero integers α, β and integers b, such that
0 < b < n and αU0 + βUb is an integer or equivalently, qn − p0p1 · · · pn−1|α + βqb. Indeed,
one can take, for example, α = k, β = −kqϕ(|q

n−p0p1···pn−1|)−1, and b = 1, where k = 1, 2, . . .

and ϕ is Euler’s totient function. If α and β are fixed, then one can ask if such b exists. The
answer to this question depends on the choice of α and β . For example, if q = 2, n = 4, p0 = 3,
p1 = p2 = p3 = 1, then qn − p0p1p2p3 = 13. If α = 1, β = 1, then such b (0 < b < 4) does not
exist. But if α = 9, β = 1 then b = 2 satisfies the condition.

Lemma 2.1. If αU0 + βUb is an integer, then p0p1 · · · pn−1βU0 + αUn−b is also an integer.

Proof. Our claim is equivalent to prove that if qn − p0p1 · · · pn−1|α + βqb, then

qn − p0p1 · · · pn−1|p0p1 · · · pn−1β + αqn−b.

Indeed, since (q, qn − p0p1 · · · pn−1) = 1 and

qb(p0p1 · · · pn−1β + αqn−b) = p0p1 · · · pn−1βq
b + αqn,

it is sufficient to show that

qn − p0p1 · · · pn−1|p0p1 · · · pn−1βq
b + αqn,

which follows from

p0p1 · · · pn−1βq
b + αqn = p0p1 · · · pn−1(α + βqb) + α(qn − p0p1 · · · pn−1).

Lemma 2.2. If αU0 + βUb is an integer, then for i = 0, 1, 2, . . . the numbers αUi + βUi+b and
p0p1 · · · pn−1βUi + αUn+i−b are also integers.

Proof. By multiplying αU0 + βUb and p0p1 · · · pn−1βU0 + αUn−b, which are both integers, by
integer qi, we obtain that both of the numbers αUi + βUi+b and p0p1 · · · pn−1βUi + αUn+i−b are
integers.
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3 Main results

Theorem 3.1. If αU0+βUb is an integer, then for any i, satisfying 0 ≤ i < i+ b < n, the number
αxi + βpipi+1 · · · pi+b−1xi+b is also an integer.

Proof. Note that we can write

αxi + βpipi+1 · · · pi+b−1xi+b

= α(pipi+1 · · · pi+n−2ki−1U0 + pipi+1 · · · pi+n−3ki−2U1 + · · ·+ piki+1Un−2 + kiUn−1)

+ βpipi+1 · · · pi+b−1(pi+bpi+b+1 · · · pi+b+n−2ki+b−1U0

+ pi+bpi+b+1 · · · pi+b+n−3ki+b−2U1 + · · ·+ pi+bki+b+1Un−2 + ki+bUn−1)

= k0M0 + k1M1 + · · ·+ kn−1Mn−1,

where

Mj =


pipi+1 · · · pj−1(αUn+i−1−j + βp0p1 · · · pn−1Ui+b−1−j), if i ≤ j < i+ b,

pipi+1 · · · pn+j−1(αUi−1−j + βUi+b−1−j), if 0 ≤ j < i,

pipi+1 · · · pj−1(αUn+i−1−j + βUn+i+b−1−j), if i+ b ≤ j < n.

By Lemma 2.1 and Lemma 2.2, all Mj , for j = 0, 1, . . . n−1, are integers and therefore the claim
is true.

Corollary 3.1. If αU0+βUb is an integer, then for any i, the number αxi+βpipi+1 · · · pi+b−1xi+b

is also an integer.

Proof. Since it was assumed that xi = xj if i ≡ j (mod n), without loss of generality, we can
suppose that 0 ≤ i < n. The case i+ b < n was considered in Theorem 3.1. So, we can suppose
that i + b ≥ n. Since 0 < b < n, we have 0 ≤ i + b − n < i, and therefore xi+b = xi+b−n.
Consequently,

αxi + βpipi+1 · · · pi+b−1xi+b = αxi + βpipi+1 · · · pi+b−1xi+b−n.

Multiply this number by pi+b−npi+b−n+1 · · · pi−1, which is relatively prime to qn − p0p1 · · · pn−1,
and therefore can not change the property of being or not being an integer for the number αxi +

βpipi+1 · · · pi+b−1xi+b, we obtain

βp0p1 · · · pn−1xi+b−n + αpi+b−npi+b−n+1 · · · pi−1xi,

which is an integer by Lemma 2.1 and Theorem 3.1.

Remark 1. The above results are trivially true for the cases when b = 0 and b = n. Indeed,
for the case when b = 0, if (α + β)U0 is an integer, then (qn − p0p1 · · · pn−1)|(α + β), and
therefore (α + β)xi is also an integer for i = 0, 1, . . . , n − 1. For the case when b = n, if
αU0 + βUn = αU0 + βp0p1 · · · pn−1U0 + β is an integer, then (α + βp0p1 · · · pn−1)U0 is also an
integer (β is an integer), and therefore (qn − p0p1 · · · pn−1)|(α + p0p1 . . . pn−1β). Consequently
(α + βp0p1 · · · pn−1)xi is an integer for i = 0, 1, . . . , n− 1.
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Remark 2. If we denote the denominator of xi by di, then it is possible to prove that di = di+1

by using the fact that all integers di are coprime with q and with any of the pj , since they divide
qn − p0p1 · · · pn−1 (cf. [11, p. 39]). In the following two corollaries this is proved using the main
results of the current paper.

Corollary 3.2. If one of the numbers xj (j ∈ {0, 1, . . . , n − 1}) is a fraction with denominator
d in its simplest form, then all of xi for i = 0, 1, . . . , n − 1, are like fractions with the same
denominator d.

Proof. It was mentioned earlier that one can always take α = 1, β = −qϕ(|q
n−p0p1···pn−1|)−1, and

b = 1. Then by the main result, the number xi + βpixi+1 is an integer for i = 0, 1, . . . , n − 1.
Note that d is a divisor of qn − p0p1 · · · pn−1, and therefore d is relatively prime to β and all pi
for i = 0, 1, . . . , n− 1. Since xj is a fraction with denominator d, the other numbers xj−1, xj−2,
xj−3, . . . are all like fractions with the same denominator d in their simplest forms.

Corollary 3.3. If one of the numbers xj (j ∈ {0, 1, . . . , n − 1}) is an integer, then all of xi for
i = 0, 1, . . . , n− 1, are integers.

4 Examples

Let us take q = 3. Consider composition of functions P = B0 ◦ B1 ◦ B2 ◦ B3, where B0(x) =
−5x−2

3
, B1(x) =

2x+1
3

, B2(x) =
7x+6
3

, B3(x) =
−x+3

3
. Here n = 4, p0 = −5, k0 = −2, p1 = 2,

k1 = 1, p2 = 7, k2 = 6, p3 = −1, k3 = 3, and qn − p0p1p2p3 = 34 − (−5) · 2 · 7 · (−1) = 11.
The solution of equation B0 ◦ B1 ◦ B2 ◦ B3(x) = x is the number x0 = −69/11. Note that

x0 = x4. We can also find the other numbers x1 = x5 = 37/11, x2 = 50/11, x3 = 12/11, by
solving the equations B1◦B2◦B3◦B0(x) = x, B2◦B3◦B0◦B1(x) = x, B3◦B0◦B1◦B2(x) = x,
respectively. We also find the numbers Ui = 2i/11 (i = 0, 1, 2, 3, 4). Note that 4U0 + 2U2 = 2

is an integer, which is equivalent to say that 11|(4 + 2 · 32). So, we can take α = 4, β = 2, and
b = 2. We observe that 4xi + 2pipi+1xi+2 is an integer for each of i = 0, 1, 2, 4. Indeed,

4x0 + 2p0p1x2 = 4 · (−69/11) + 2 · (−5) · 2 · (50/11) = −116,

4x1 + 2p1p2x3 = 4 · (37/11) + 2 · 2 · 7 · (12/11) = 44,

4x2 + 2p2p3x4 = 4 · (50/11) + 2 · 7 · (−1) · (−69/11) = 106,

4x3 + 2p3p4x5 = 4 · (12/11) + 2 · (−1) · (−5) · (37/11) = 38,

are all integers.
Now, note that −5U0−13U1 = −4 is also an integer, which is equivalent to say that 11|−44 =

−5 − 13 · 31. This means that we can take α = −5, β = −13, and b = 1. So, −5xi − 13pixi+1

should be an integer for each of i = 0, 1, 2, 3. Indeed,

−5x0 − 13p0x1 = −5 · (−69/11)− 13 · (−5) · (37/11) = 250,

−5x1 − 13p1x2 = −5 · (37/11)− 13 · 2 · (50/11) = −135,

−5x2 − 13p2x3 = −5 · (50/11)− 13 · 7 · (12/11) = −122,

−5x3 − 13p3x4 = −5 · (12/11)− 13 · (−1) · (−69/11) = −87,

are all integers. These observations are in perfect agreement with the main results of the current
paper.
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5 Applications

If pi ∈ {1, p}, where p is a nonzero integer and (p, q) = 1, then there are two type of functions
Sk(x) =

px+ k

q
and Tk(x) =

x+ k

q
. Let us denote by m the number of S functions in P . Then

Ui =
qi

qn − pm
, for i = 0, 1, . . . , n. Denote by σ(i, j) the number of S functions in the fragment

BiBi+1 · · ·Bj−1 of P . In particular, σ(i, i) = 0, because it corresponds to the empty fragment of
P . Let xi be the solution of the equation Bi ◦ Bi+1 ◦ Bi+2 ◦ · · · ◦ Bi+n−1(x) = x, where all the
indices are taken modulo n. Take α = pl for some non-negative integer l, and β = −1. For this
special case the main result of the current paper can be written as plxi − pσ(i,i+b)xi+b ∈ Z. This
can be visualized by writing xi as p-adic numbers in a table and noting that p-adic digits at the
corresponding place values of plxi and pσ(i,i+b)xi+b are identical, except for finitely many digits
at lower place values.

Let us demonstrate this with an example. Let q = 2, p = 11, P = B0◦B1◦B2◦B3◦B4◦B5◦B6,

where B0(x) = B1(x) = B2(x) = B3(x) = B5(x) = T0(x), B4(x) = S5(x), and B6(x) =

S3(x). Here n = 7, m = 2, qn − pm = 27 − 112 = 7 and Ui = 2i/7 (i = 0, 1, 2, . . .). Note that

U0 − U3 = −1, 11U0 − U2 = 1, 112U0 − U1 = 17, 113U0 − U0 = 190,

are all integers, which is equivalent to say that

7|(1− 23), 7|(11− 22), 7|(112 − 21), 7|(113 − 20),

respectively. By the main result of the current paper we can say that

xi − 11σ(i,i+3)xi+3, 11xi − 11σ(i,i+2)xi+2, 112xi − 11σ(i,i+1)xi+1, 113xi − xi,

are also integers for i = 0, 1, 2, . . .. The functions Bi, the numbers xi, their 11-adic representations
(letter A below means digit 10), and the patterns formed by the digits can be seen in Table 1.

Table 1. Illustrative computation of xi and associated sequences.

x0 = 53/7 = · · · 7 9 4 7 9 4 8 6 S3 = B6

x6 = 302/7 = · · · 9 4 7 9 4 7 9 8 7 T0 = B5

x5 = 151/7 = · · · 4 7 9 4 7 9 4 9 9 S5 = B4

x4 = 848/7 = · · · 7 9 4 7 9 4 7 A 4 8 T0 = B3

x3 = 424/7 = · · · 9 4 7 9 4 7 9 5 2 4 T0 = B2

x2 = 212/7 = · · · 4 7 9 4 7 9 4 8 1 2 T0 = B1

x1 = 106/7 = · · · 7 9 4 7 9 4 7 9 6 1 T0 = B0

x0 = 53/7 = · · · 9 4 7 9 4 7 9 4 8 6

More examples of such patterns and applications to the original 3x + 1 problem are given
in [1] and the references therein. In particular, the main results of the current paper can be
used to explain the appearance of the same patterns of digits in rational cycles corresponding
to compositions P with common number of S and T functions (m and n − m). These rational
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cycles also share common numbers Ui, whose digits enjoy the same patterns. If the functions
in composition P are permuted, then these patterns of digits can disappear and reappear again
depending on whether xi are integers or not. Better understanding of these patterns can be useful
for determination of all integer cycles. Note that these patterns are not limited to the periodic
digits of each xi individually. The patterns that interest us most involve two different numbers xi

and xi+b, and hold true for any choice of i, while l and b are fixed. In a certain sense, the pair of
numbers l and b is an invariant for the table formed by the digits of xi as in the above table. Note
that the digits of each number xi corresponding to some S function and all the numbers above it
need to be shifted to the left by 1 digit to make these patterns visible. In the above calculations,
this shift was implemented using function σ(i, i+ b).

The Finite Cycles Conjecture mentioned at the beginning of this paper claims that the only
integer cycles for 3x+ 1 problem are the ones generated by x0 = 0, x0 = −1, x0 = 1, x0 = −5,
and x0 = −17. These numbers correspond to compositions P1 = T , P2 = S, P3 = T ◦ S,
P4 = T ◦ S ◦ S, and P5 = T ◦ T ◦ T ◦ S ◦ S ◦ S ◦ T ◦ S ◦ S ◦ S ◦ S, where T = T0 and S = S1.
For these compositions q = 2, pi = 1 or 3, and the numbers in Table 2 are calculated.

Table 2. Values of x0, associated Pi, and corresponding expressions qn − p0p1 · · · pn−1.

x0 P n qn − p0p1 · · · pn−1

0 P1 1 21 − 1 = 1

−1 P2 1 21 − 3 = −1

1 P3 2 22 − 3 = 1

−5 P4 3 23 − 3 · 3 = −1

−17 P5 11 211 − 37 = −139

These compositions with integer x0 also show that the main results of the current paper,
namely Theorem 3.1 and Corollary 3.1 can not be written as “if and only if” statements. Indeed,
if the numbers xi (i ∈ {0, 1, . . . , n − 1}) are integers, then αxi + βpipi+1 · · · pi+b−1xi+b is an
integer for any choice of integers α, β, b, which is not the case for αU0 + βUb. Nevertheless,
Lemma 2.1 can be written as an “if and only if” statement.

The composition P5 is different from the others in the sense that qn − p0p1 · · · pn−1 ̸= ±1 but
x0 is still an integer. The compositions P k

i (i = 1, 2, . . . , 5; k = 1, 2, . . .), defined recursively
by P 1

i = Pi and P k+1
i = P k

i ◦ Pi (i = 1, 2, . . . , 5; k = 1, 2, . . .) also have integer x0, and
qn − p0p1 · · · pn−1 ̸= ±1 for i ≥ 2. It would be interesting to determine all such compositions
with integer x0 or prove that all other compositions correspond to non-integer rational x0. It would
also be interesting to generalize the results above by taking pi, ki, and q as Gaussian integers, and
then xi as Gaussian rationals.

Note that the main results of the current paper can also be proved using the method of
mathematical induction over each ki, where the base of induction corresponds to ki = 0 (cf. [2]).
A better understanding of the nature of rational cycles may be helpful in the future for attempting
to solve 3x+ 1 problem.
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6 Conclusion

In the paper some generalizations of Collatz conjecture or 3x + 1 problem are studied. Some
results are obtained proving that special linear combinations of the terms of rational cycles are
integers. Demonstrations of these results on some concrete examples are given. These results are
then used to explain some patterns of digits in p-adic representations of the rational cycles.
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