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Abstract: Let {A′
n} be the Apéry numbers given by A′

n =
∑n

k=0

(
n
k

)2(n+k
k

)
. For any prime p ≡ 3

(mod 4) we show that

A′
p−1
2

≡ p2

3
(
(p−3)/2
(p−3)/4

)2 (mod p3).

Let {tn} be given by t0 = 1, t1 = 5 and tn+1 = (8n2 + 12n+ 5)tn − 4n2(2n+ 1)2tn−1 (n ≥ 1).

We also establish the congruences for tp (mod p3), tp−1 (mod p2) and t p−1
2

(mod p2), where p

is an odd prime.
Keywords: Apéry number, Congruence, Combinatorial identity, Binary quadratic form, Euler
number.
2020 Mathematics Subject Classification: 11A07, 05A10, 05A19, 11B68, 11E25.

1 Introduction

For s > 1 let ζ(s) =
∑∞

n=1
1
ns . In 1979, in order to prove that ζ(3) and ζ(2) are irrational,

Apéry [2] introduced the Apéry numbers {An} and {A′
n} given by

An =
n∑

k=0

(
n

k

)2(
n+ k

k

)2

and A′
n =

n∑
k=0

(
n

k

)2(
n+ k

k

)
.
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The first few values of An and A′
n are shown below:

A1 = 5, A2 = 73, A3 = 1445, A4 = 33001, A5 = 819005, A6 = 21460825,

A′
1 = 3, A′

2 = 19, A′
3 = 147, A′

4 = 1251, A′
5 = 11253, A′

6 = 104959.

It is well known (see [4]) that

(n+ 1)3An+1 = (2n+ 1)(17n(n+ 1) + 5)An − n3An−1 (n ≥ 1),

(n+ 1)2A′
n+1 = (11n(n+ 1) + 3)A′

n + n2A′
n−1 (n ≥ 1).

Let Z+ denote the set of positive integers. In [3] Beukers showed that for any prime p > 3

and m, r ∈ Z+,

Ampr−1 ≡ Ampr−1−1 (mod p3r), A′
mpr−1 ≡ A′

mpr−1−1 (mod p3r).

In [4] Beukers conjectured that for any odd prime p,

A′
p−1
2

≡

4x2 − 2p (mod p2), if 4 | p− 1 and so p = x2 + 4y2 (x, y ∈ Z),
0 (mod p2), if p ≡ 3 (mod 4).

(1.1)

This was proved by several authors including Ishikawa [7] (p ≡ 1 (mod 4)), Van Hamme [19]
(p ≡ 3 (mod 4)) and Ahlgren [1].

In Section 2, we establish the congruence for A′
p−1
2

modulo p3, where p is an odd prime. In
particular, we prove that

A′
p−1
2

≡ p2

3
(
(p−3)/2
(p−3)/4

)2 (mod p3) for any prime p ≡ 3 (mod 4), (1.2)

which was conjectured by the author in [13].
In Section 3, we investigate the identities and congruences for {tn}, where the sequence {tn}

is given by

t0 = 1, t1 = 5 and tn+1 = (8n2 + 12n+ 5)tn − 4n2(2n+ 1)2tn−1 (n ≥ 1). (1.3)

The initial values of tn are shown below:

t1 = 5, t2 = 89, t3 = 3429, t4 = 230481, t5 = 23941125, t6 = 3555578025.

We show that

t2n = −(2n+ 1)!2
2n+1∑
k=0

(
2n+ 1 + k

2k

)(
2k

k

)2
1

(−4)k

k∑
i=1

1

(2i− 1)2
(n = 0, 1, 2, . . .),

and obtain the congruences for tp (mod p3), tp−1 (mod p2) and t p±1
2

(mod p2), where p is an odd
prime. For example,

tp ≡
(
1 + 4(−1)

p−1
2

)
p2 (mod p3) and t p−1

2
≡ pBp−1 − p+ 2p−1 − 1 (mod p2),
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where {Bn} are the Bernoulli numbers given by B0 = 1 and
∑n−1

k=0

(
n
k

)
Bk = 0 (n ≥ 2). We also

prove that for any prime p > 3 of the form 4k + 3,

A′
p−1
2

≡ 4

3
p2t2p−3

4

(mod p3),

which can be viewed as the connection between A′
n and tn.

Throughout this paper, the harmonic numbers {Hn} are given by

H0 = 0 and Hn = 1 +
1

2
+ · · ·+ 1

n
(n ≥ 1),

the Fermat quotient qp(a) = (ap−1 − 1)/p, and the Euler numbers {En} are defined by

E2n−1 = 0, E0 = 1 and E2n = −
n−1∑
k=0

(
2n

2k

)
E2k (n ≥ 1).

2 Congruences for A′
p−1
2

modulo p3

Let {Dn} be defined by D0 = 0 and

Dn = 2
∑

1≤i<j≤n

1

(2i− 1)(2j − 1)
=

( n∑
i=1

1

2i− 1

)2

−
n∑

i=1

1

(2i− 1)2
(n ≥ 1).

Lemma 2.1. For n = 0, 1, 2, . . . we have

n∑
k=0

(
n

k

)
(−1)k

(
2k
k

)
4k

Dk =

(
2n
n

)
4n

Dn.

Proof. Let

S1(n) =
n∑

k=0

(
n

k

)
(−1)k

(
2k
k

)
4k

Dk and S2(n) =

(
2n
n

)
4n

Dn.

Then S0(0) = 0 = S2(0), S1(1) = 0 = S2(1), S1(2) =
1
4
= S2(2). Using the software Sigma

we find that for i = 1, 2,

8(n+ 1)(n+ 2)(n+ 3)Si(n+ 3)− 12(n+ 1)(n+ 2)(2n+ 3)Si(n+ 2)

+ 2(n+ 1)(12n2 + 24n+ 13)Si(n+ 1)− (2n+ 1)3Si(n) = 0 (n = 0, 1, 2, . . .).

Hence, S1(n) = S2(n) for n = 0, 1, 2, . . .. This proves the lemma.

Lemma 2.2 ([11, Theorem 2.2]). Let {an} be a sequence satisfying

n∑
k=0

(
n

k

)
(−1)kak = an (n = 0, 1, 2, . . .).

Then
n∑

k=0

(
n

k

)(
n+ k

k

)
(−1)kak = 0 (n = 1, 3, 5, . . .).
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Lemma 2.3. Let p be an odd prime. Then

A′
p−1
2

≡ 1 +

(p−1)/2∑
k=1

(
2k
k

)3
64k

(
1− p

k∑
i=1

1

2i− 1

+
p2

2

(( k∑
i=1

1

2i− 1

)2

− 3
k∑

i=1

1

(2i− 1)2

))
(mod p3).

Proof. Clearly

A′
p−1
2

− 1

=

p−1
2∑

k=1

(p−1
2
)2(p−1

2
− 1)2 · · · (p−1

2
− k + 1)2

k!2
·
(p−1

2
+ 1)(p−1

2
+ 2) · · · (p−1

2
+ k)

k!

=

p−1
2∑

k=1

(p− 1)(p− 3) · · · (p− (2k − 1)) · (p2 − 12)(p2 − 32) · · · (p2 − (2k − 1)2)

23k · k!3

≡
(p−1)/2∑
k=1

(1 · 3 · · · · (2k − 1))3

23k · k!3
(
1− p

k∑
i=1

1

2i− 1
+

p2

2
Dk

)(
1− p2

k∑
i=1

1

(2i− 1)2

)
≡

(p−1)/2∑
k=1

(
2k
k

)3
64k

(
1− p

k∑
i=1

1

2i− 1
+

p2

2

(( k∑
i=1

1

2i− 1

)2

− 3
k∑

i=1

1

(2i− 1)2

))
(mod p3).

Lemma 2.4 ([14, Theorem 4.1]). Let p be an odd prime. Then

p−1∑
k=0

(
2k
k

)3
64k

≡

4x2 − 2p− p2

4x2 (mod p3), if p = x2 + 4y2 ≡ 1 (mod 4),

−p2

4

(
(p−3)/2
(p−3)/4

)−2
(mod p3), if p ≡ 3 (mod 4).

For an odd prime p and rational p-integer x, the p-adic Gamma function Γp(x) is defined by

Γp(0) = 1, Γp(n) = (−1)n
∏

k∈{1,2,...,n−1}
p∤k

k for n = 1, 2, 3, . . .

and
Γp(x) = lim

n∈{0,1,...}
|x−n|p→0

Γp(n).

Lemma 2.5 ([18, (9)]). Let p be an odd prime. Then

Γp

(1
4

)4

≡


− 1

2p−1

( p−1
2

p−1
4

)2(
1− p2

2
Ep−3

)
(mod p3), if 4 | p− 1,

2p−3(16 + 32p+ (48− 8Ep−3)p
2)
( p−3

2
p−3
4

)−2

(mod p3), if 4 | p− 3.

Lemma 2.6 ([12, Theorem 2.8]). Let p be a prime of the form 4k + 1 and so p = x2 + 4y2 with
x, y ∈ Z. Then

1

2p−1

(p−1
2

p−1
4

)2(
1− p2

2
Ep−3

)
≡ 4x2 − 2p− p2

4x2
(mod p3).
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Lemma 2.7 ([17]). For any prime p > 3,

p−1∑
k=1

(
2k
k

)3
64k

k∑
i=1

1

2i− 1
≡

0 (mod p2), if p ≡ 1 (mod 4),

− p
12
Γp

(
1
4

)4
(mod p2), if p ≡ 3 (mod 4)

and
p−1∑
k=1

(
2k
k

)3
64k

k∑
i=1

1

(2i− 1)2
≡

1
2
Γp(

1
4
)4Ep−3 (mod p), if p ≡ 1 (mod 4),

− 1
16
Γp

(
1
4

)4
(mod p), if p ≡ 3 (mod 4).

Theorem 2.1. Let p be an odd prime.
(i) If p ≡ 3 (mod 4), then

A′
p−1
2

≡ p2

3
(
(p−3)/2
(p−3)/4

)2 (mod p3).

(ii) If p ≡ 1 (mod 4) and so p = x2 + 4y2 with x, y ∈ Z, then

A′
p−1
2

≡ 4x2 − 2p− p2

4x2
+ 3p2x2Ep−3 +

p2

2

(p−1)/2∑
k=1

(
2k
k

)3
64k

( k∑
i=1

1

2i− 1

)2

(mod p3).

Proof. Since A′
1 = 3, the result is true for p = 3. Now assume that p > 3. For p

2
< k < p we see

that p |
(
2k
k

)
. Thus, from Lemmas 2.5–2.7 we have

(p−1)/2∑
k=1

(
2k
k

)3
64k

k∑
i=1

1

2i− 1
≡

0 (mod p2), if 4 | p− 1,

− p
12

· 16 · 2p−3
(
(p−3)/2
(p−3)/4

)−2 ≡ −p
3

(
(p−3)/2
(p−3)/4

)−2
(mod p2), if 4 | p− 3

and
(p−1)/2∑
k=1

(
2k
k

)3
64k

k∑
i=1

1

(2i− 1)2

≡

1
2
(−4x2)Ep−3 = −2x2Ep−3 (mod p), if p ≡ 1 (mod 4),

−2p−3
(
(p−3)/2
(p−3)/4

)−2 ≡ −1
4

(
(p−3)/2
(p−3)/4

)−2
(mod p), if p ≡ 3 (mod 4).

By Lemmas 2.1 and 2.2,
n∑

k=0

(
n

k

)(
n+ k

k

) (
2k
k

)
(−4)k

Dk = 0 for n = 1, 3, 5, . . .. (2.1)

Note that
(
n
k

)(
n+k
k

)
=

(
2k
k

)(
n+k
2k

)
. By [10, Lemma 2.2],(p−1

2
+ k

2k

)
≡

(
2k
k

)
(−16)k

(mod p2) for k = 1, 2, . . . ,
p− 1

2
. (2.2)

Hence, for p ≡ 3 (mod 4),

(p−1)/2∑
k=0

(
2k
k

)3
64k

Dk ≡
(p−1)/2∑
k=0

(p−1
2

k

)(p−1
2

+ k

k

) (
2k
k

)
(−4)k

Dk = 0 (mod p2).
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Now, from the above and Lemmas 2.3 and 2.4 we deduce that for p ≡ 3 (mod 4),

A′
p−1
2

≡ 1 +

(p−1)/2∑
k=1

(
2k
k

)3
64k

(
1− p

k∑
i=1

1

2i− 1
+

p2

2

(
Dk − 2

k∑
i=1

1

(2i− 1)2

))
≡ −p2

4

(
(p− 3)/2

(p− 3)/4

)−2

+
p2

3

(
(p− 3)/2

(p− 3)/4

)−2

+
p2

4

(
(p− 3)/2

(p− 3)/4

)−2

=
p2

3

(
(p− 3)/2

(p− 3)/4

)−2

(mod p3),

and for p = x2 + 4y2 ≡ 1 (mod 4),

A′
p−1
2

≡ 1 +

(p−1)/2∑
k=1

(
2k
k

)3
64k

(
1− p

k∑
i=1

1

2i− 1
+

p2

2

(( k∑
i=1

1

2i− 1

)2

− 3
k∑

i=1

1

(2i− 1)2

))
≡ 4x2 − 2p− p2

4x2
+

p2

2

(p−1)/2∑
k=1

(
2k
k

)3
64k

( k∑
i=1

1

2i− 1

)2

− 3

2
p2(−2x2Ep−3) (mod p3).

This completes the proof.

Conjecture 2.1. Let p be a prime of the form 4k + 1 and so p = x2 + 4y2 with x, y ∈ Z. Then
(p−1)/2∑
k=1

(
2k
k

)3
64k

( k∑
i=1

1

2i− 1

)2

≡ 2

3
x2Ep−3 (mod p).

Remark 2.1. In [15, Conjecture 22.36], the author conjectured that for any prime p = 4k + 1

= x2 + 4y2 (x, y ∈ Z),

A′
p−1
2

≡ 1

2p−1

(p−1
2

p−1
4

)2(
1 +

p2

3
Ep−3

)
≡ 4x2 − 2p+ p2

(10
3
x2Ep−3 −

1

4x2

)
≡ 5

3
· 1

2p−1

(p−1
2

p−1
4

)2

− 2

3

(
4x2 − 2p− p2

4x2

)
(mod p3).

3 Identities and congruences for tn

Let {tn} be defined by (1.3). In this section, we investigate the properties of tn.

Theorem 3.1. For n = 0, 1, 2, . . . we have

tn = (2n+ 1)!
n∑

k=0

(
2k
k

)
4k(2(n− k) + 1)

.

Proof. For |x| < 1 it is well known that

arctanh(x) =
1

2
ln

1 + x

1− x
=

∞∑
m=0

x2m+1

2m+ 1
,

1√
1− x2

=
∞∑
k=0

(
−1

2

k

)
(−x2)k =

∞∑
k=0

(
2k
k

)
4k

x2k.
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From [8, A028353],
arctanh(x)√

1− x2
=

∞∑
n=0

tn
x2n+1

(2n+ 1)!
(|x| < 1).

Thus,
∞∑
n=0

tn
x2n+1

(2n+ 1)!
=

( ∞∑
m=0

x2m+1

2m+ 1

)( ∞∑
k=0

(
2k
k

)
4k

x2k
)
.

Comparing the coefficients of x2n+1 on both sides yields the result.

Theorem 3.2. For n = 0, 1, 2, . . . we have

t2n = −(2n+ 1)!2
2n+1∑
k=0

(
2n+ 1 + k

2k

)(
2k

k

)2
1

(−4)k

k∑
i=1

1

(2i− 1)2

= −(2n+ 1)!2
2n+1∑
k=0

(
2n+ 1 + k

2k

)(
2k

k

)2
1

(−4)k

( k∑
i=1

1

2i− 1

)2

.

Proof. Set

S1(n) =
2n+1∑
k=0

(
2n+ 1 + k

2k

)(
2k

k

)2
1

(−4)k

k∑
i=1

1

(2i− 1)2
,

S2(n) = −
( n∑

k=0

(
2k
k

)
4k(2(n− k) + 1)

)2

.

It is easy to see that

S1(0) = −1 = S2(0), S1(1) = −25

36
= S2(1),

S1(2) = −
( 89

120

)2

= S2(2), S1(3) = −
(381
560

)2

= S2(3).

Using the Maple software doublesum.mpl and the method in [5], we find that for i = 1, 2 and
n = 0, 1, 2, . . .,

4(n+ 4)2(2n+ 7)2(2n+ 9)2(4n+ 9)(75 + 72n+ 16n2)Si(n+ 4)

− (2n+ 7)2(6913575 + 17355348n+ 18370228n2 + 10658464n3 + 3670400n4

+ 751872n5 + 84992n6 + 4096n7)Si(n+ 3)

+ (4n+ 11)(18889425 + 56173260n+ 72583012n2 + 53324832n3 + 24399376n4

+ 7128000n5 + 1299328n6 + 135168n7 + 6144n8)Si(n+ 2)

− 8(n+ 2)2(1254375 + 3543600n+ 4277038n2 + 2861712n3 + 1146240n4

+ 274560n5 + 36352n6 + 2048n7)Si(n+ 1)

+ 16(n+ 1)2(n+ 2)2(2n+ 3)2(4n+ 13)(163 + 104n+ 16n2)Si(n) = 0.

Hence, for n = 0, 1, 2, . . . we have S1(n) = S2(n). That is,( n∑
k=0

(
2k
k

)
4k(2(n− k) + 1)

)2

= −
2n+1∑
k=0

(
2n+ 1 + k

2k

)(
2k

k

)2
1

(−4)k

k∑
i=1

1

(2i− 1)2
.

This together with Theorem 3.1 and (2.1) yields the result.
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Theorem 3.3. Let p be an odd prime. Then

tp ≡
(
1 + 4(−1)

p−1
2

)
p2 (mod p3),

tp−1 ≡ (−1)
p−1
2

(
2p+ 2p − 2 + (pBp−1)

2
)
(mod p2),

t p−1
2

≡ pBp−1 − p+ 2p−1 − 1 (mod p2),

t p+1
2

≡ pBp−1 − 3p+ 2p−1 − 1 (mod p2)

and

t p−3
4

≡ ± 1(
(p−1)/2
(p−3)/4

) (mod p) for p ≡ 3 (mod 4).

Proof. Since p |
(
2k
k

)
for p

2
< k < p and

(2p+ 1)!

p2
= (p− 1)!(p+ 1) · · · (2p− 1) · 2(2p+ 1) ≡ 2(p− 1)!2 ≡ 2 (mod p),

we derive that

tp = (2p+ 1)!

p∑
k=0

(
2k
k

)
4k(2(p− k) + 1)

≡ (2p+ 1)!
( (p−1)/2∑

k=0

(
2k
k

)
4k(2(p− k) + 1)

+

(
p+1

(p+1)/2

)
4

p+1
2 · p

+

(
2p
p

)
4p

)
= (2p+ 1)!

( (p−1)/2∑
k=0

(
2k
k

)
4k(2p+ 1− 2k)

+

(
p−1

(p−1)/2

)
4

p−1
2 (p+ 1)

+

(
2p−1
p−1

)
2 · 4p−1

)
≡ 2p2

(p−1)/2∑
k=0

(
2k
k

)
4k(p+ 1− 2k)

+ 2p2 · (−1)
p−1
2 + p2

= p2
(p−1)/2∑
k=0

(
−1/2

k

)
(−1)k

1
p+1
2

− k
+ 2p2(−1)

p−1
2 + p2

≡ p2
(p−1)/2∑
k=0

(
(p− 1)/2

k

)
(−1)k

1
p+1
2

− k
+ 2(−1)

p−1
2 p2 + p2 (mod p3).

By [6, (1.43)],
n∑

k=0

(
n

k

)
(−1)k

1

x− k
=

(−1)n

(x− n)
(
x
n

) . (3.1)

Hence

(p−1)/2∑
k=0

(
(p− 1)/2

k

)
(−1)k

1
p+1
2

− k
=

(−1)
p−1
2

(p+1
2

− p−1
2
)
(
(p+1)/2
(p−1)/2

) ≡ 2(−1)
p−1
2 (mod p).

Therefore,

tp ≡ 2(−1)
p−1
2 p2 + 2(−1)

p−1
2 p2 + p2 =

(
1 + 4(−1)

p−1
2

)
p2 (mod p3).
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Since p | (2p− 1)! and p |
(
2k
k

)
for p

2
< k < p, we see that

tp−1 = (2p− 1)!

p−1∑
k=0

(
2k
k

)
4k(2p− 1− 2k)

≡ (2p− 1)!

(p−3)/2∑
k=0

(
2k
k

)
4k(2p− 1− 2k)

+ (2p− 1)!

(
p−1

(p−1)/2

)
4

p−1
2 · p

≡ (2p− 1)!

2

(p−3)/2∑
k=0

(
2k
k

)
(−4)k

(−1)k
1

2p−1
2

− k
+ (p− 1)!2

(
p−1

(p−1)/2

)
2p−1

(mod p2).

It is well known (see, for example, [9]) that H p−1
2

≡ −2qp(2) (mod p) and (p − 1)!

≡ pBp−1 − p (mod p2). Thus,(
p−1

(p−1)/2

)
2p−1

=
(p− 1)(p− 2) · · · (p− p−1

2
)

(p−1
2
)! · 2p−1

≡ (−1)
p−1
2

1− pH p−1
2

2p−1

≡ (−1)
p−1
2
(1 + pqp(2))

2

2p−1
= (−1)

p−1
2 2p−1 (mod p2)

and so

(p− 1)!2

(
p−1

(p−1)/2

)
2p−1

≡ (−1)
p−1
2 (p− 1)!2(2p−1 − 1 + 1)

≡ (−1)
p−1
2 (2p−1 − 1) + (−1)

p−1
2 (p− 1)!2

≡ (−1)
p−1
2

(
2p−1 − 1 + (pBp−1 − p)2

)
≡ (−1)

p−1
2

(
2p−1 − 1 + (pBp−1)

2 + 2p
)
(mod p2).

Since (2kk )
(−4)k

=
(− 1

2
k

)
≡

( p−1
2
k

)
(mod p) for k ≤ p−1

2
, using (3.1) we deduce that

(2p− 1)!

2

(p−3)/2∑
k=0

(
2k
k

)
(−4)k

(−1)k
1

2p−1
2

− k

≡ (2p− 1)!

2

(p−3)/2∑
k=0

(p−1
2

k

)
(−1)k

1
2p−1
2

− k

=
(2p− 1)!

2

(p−1)/2∑
k=0

(p−1
2

k

)
(−1)k

1
2p−1
2

− k
− (−1)

p−1
2 (p2 − 12) · · · (p2 − (p− 1)2)

=
p · (p2 − 12) · · · (p2 − (p− 1)2)

2
· (−1)

p−1
2

(2p−1
2

− p−1
2
)
(
(2p−1)/2
(p−1)/2

)
− (−1)

p−1
2 (p2 − 12) · · · (p2 − (p− 1)2)

≡ (−1)
p−1
2 (p− 1)!2

1
( p
2
+1)( p

2
+2)···( p

2
+ p−1

2
)

( p−1
2

)!

− (−1)
p−1
2 (p− 1)!2

≡ (−1)
p−1
2 (p− 1)!2

1

1 + p
2
H p−1

2

− (−1)
p−1
2 (p− 1)!2
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≡ (−1)
p−1
2 (p− 1)!2

( 1

1− pqp(2)
− 1

)
≡ (−1)

p−1
2 (p− 1)!2pqp(2) ≡ (−1)

p−1
2 (2p−1 − 1) (mod p2).

Therefore,
tp−1 ≡ (−1)

p−1
2 (2(2p−1 − 1) + (pBp−1)

2 + 2p
)
(mod p2).

From [16],
(p−1)/2∑
k=1

(
2k
k

)
4kk

≡
p−1∑
k=1

(
2k
k

)
4kk

≡ 2qp(2) (mod p).

Thus,

t p−1
2

= p!

(p−1)/2∑
k=0

(
2k
k

)
4k(p− 2k)

≡ (p− 1)!
(
1− p

2

(p−1)/2∑
k=1

(
2k
k

)
4kk

)
≡ (p− 1)!(1− pqp(2)) ≡ (pBp−1 − p)(1− pqp(2))

≡ pBp−1 − p+ 2p−1 − 1 (mod p2).

From (1.3) and the above congruence for t p−1
2

modulo p2 we deduce that

t p+1
2

≡
(
8
(p− 1

2

)2

+ 12
(p− 1

2

)
+ 5

)
t p−1

2
≡ (2p+ 1)t p−1

2

≡ (2p+ 1)
(
pBp−1 − p+ 2p−1 − 1

)
≡ pBp−1 − 3p+ 2p−1 − 1 (mod p2).

For p ≡ 3 (mod 4), from Theorem 3.2 and (2.2) we see that

t2p−3
4

= −
(p− 1

2

)
!2

(p−1)/2∑
k=0

(p−1
2

+ k

2k

)(
2k

k

)2
1

(−4)k

k∑
i=1

1

(2i− 1)2

≡ −
(p− 1

2

)
!2

(p−1)/2∑
k=0

(
2k
k

)3
64k

k∑
i=1

1

(2i− 1)2
(mod p2).

Since p ≡ 3 (mod 4) we have
(
p−1
2

)
!2 ≡ −(p− 1)! ≡ 1 (mod p). By the proof of Theorem 2.1,

(p−1)/2∑
k=0

(
2k
k

)3
64k

k∑
i=1

1

(2i− 1)2
≡ − 1

4
(
(p−3)/2
(p−3)/4

)2 (mod p).

Hence,

t2p−3
4

≡ 1

4
(
(p−3)/2
(p−3)/4

)2 (mod p) (3.2)

and so
t p−3

4
≡ ∓ 1

2
(
(p−3)/2
(p−3)/4

) ≡ ± 1(
(p−1)/2
(p−3)/4

) (mod p).

This completes the proof.

Corollary 3.1. Let p > 3 be a prime of the form 4k + 3. Then

A′
p−1
2

≡ 4

3
p2t2p−3

4

(mod p3).

Proof. This is immediate from (3.2) and Theorem 2.1(i).
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