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1 Introduction

In one of his final papers, Erdős [6] asked for the length of the longest sequence of increasing
integers ≤ x with the property that the largest prime factors are decreasing. Cambie [3] recently
found asymptotic bounds for this quantity, which we call g(x) from here on. In addition, for
any two functions F,G, we write F (x) ≲ G(x), F (x) ≳ G(x), and F (x) ∼ G(x) to mean
F (x) ≤ (1 + o(1))G(x), F (x) ≥ (1 + o(1))G(x), and F (x) = (1 + o(1))G(x), respectively.

Theorem 1.1. As x → ∞, we have
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For any arithmetic function f , we can also define the function gf (x) as the largest k for which
there exists a sequence a1 < a2 < · · · < ak ≤ x with f(a1) > f(a2) > · · · > f(ak). Pollack,
Pomerance, and Treviño [11, Thms. 1.1, 1.4] bounded gφ(x) where φ is Euler’s totient function.

Theorem 1.2. As x → ∞, we have

x0.19 ≤ gφ(x) ≤ x exp

(
−
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)√
log x log log x

)
.

(For variants of this result for sequences in which φ is constant or increasing, as well as
analogues for the sum-of-divisors function σ, see [1,11,12]. Erdős [5, §9] previously asked for the
lengths of the longest sequences of increasing numbers ≤ x for which φ and σ are monotonically
increasing.)

Let P+(n) and P−(n) be the largest and smallest prime factors of n. From here on, we let
g−(x) = gP−(x). By modifying Cambie’s proof of Theorem 1.1, we bound g−(x).

Theorem 1.3. We have

g−(x) ≲ 2

√
x

log x
.

Unfortunately, we cannot obtain an unconditional lower bound of the same shape. However,
we can obtain a good bound if we assume a reasonable conjecture about prime gaps. Let G(x)

be the largest gap between two consecutive prime numbers ≤ x. In 1935, Cramér [4] conjectured
that G(x) ∼ (log x)2. Though a theorem of Maier [10] suggests that Cramér’s conjecture is false,
the following conjecture is still considered reasonable. (See [8, 9] for further discussion.)

Conjecture 1.1. As x → ∞, G(x) ≪ (log x)2.

The current unconditional bounds are very far from this. Baker, Harman, and Pintz [2] showed
that G(x) ≪ x0.525 for sufficiently large values of x. (For a lower bound on G(x), see [7].) Using
this result, we can obtain a lower bound for g−(x) which is close to our upper bound.

Theorem 1.4. If Conjecture 1.1 holds, then

g−(x) ≫
√
x

(log x)2
.

2 The proofs

In this section, we prove Theorems 1.3 and 1.4. Note that both proofs are similar to the results
in [3]. However, only Theorem 1.3 is unconditional.

Proof of Theorem 1.3. Let a1 < a2 < · · · < ak ≤ x be a sequence of integers with P−(a1) >

P−(a2) > · · · > P−(ak). If at were prime for t > 1, then at = P−(at) < P−(at−1) ≤ at−1,

which is a contradiction. Thus, at is composite for all t > 1. For all t > 1, we have
P−(at) ≤ √

at ≤
√
x. Because P−(a2), P

−(a3), . . . , P
−(ak) are distinct primes ≤

√
x, we

have k ≤ π(
√
x) + 1, giving us our result.
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Proof of Theorem 1.4. Let k = ⌊
√
x/(C(log x)2)⌋ and let p1, p2, . . . , pk be the first k primes

greater than
√
x/2 written in decreasing order. In addition, we define a sequence of primes

q1, q2, . . . , qk recursively. First we let q1 = p1. For each i < k, we let qi+1 be the smallest prime
number satisfying the inequality qi+1pi+1 > qipi. (Note that the qi’s are increasing because the
pi’s are decreasing.)

For each i ≤ k, we define ai as qipi. Because pi ≤ p1 = q1 ≤ qi, we have P−(ai) = pi.
Because of the way we defined qi, the sequence a1, a2, . . . , ak is increasing even though the
smallest prime factors of the ai’s are decreasing. If we can show that ak ≤ x, then we will have
an increasing sequence of k numbers ≤ x with decreasing smallest prime factors, which in turn
implies that g−(x) ≥ k.

If we let x → ∞, we may assume that p1 ∼ pk ∼
√
x/2. Define

R = 1 +
3C(log x)2√

x
.

We prove by induction that
qi ≤ q1R

2(i−1)

for all i < k. We already have the base case as q1 ≤ q1.
For any i, we can bound the ratio between pi+1 and pi. Conjecture 1.1 implies that if x is

sufficiently large, then pi − pi+1 ≤ C(log x)2 for some fixed constant C. Therefore,

pi+1

pi
= 1− pi − pi+1

pi
≥ 1− C(log x)2

pi
> 1− 2C(log x)2√

x
> R−1

for x sufficiently large.
We can bound qi+1/qi from below using our ratio for pi+1/pi. By assumption, qi+1 is the

smallest prime greater than qi(pi/pi+1). However,

Qi := qi(pi/pi+1) < q1R
2(i−1) ·R = q1R

2i−1.

Because Qi > qi ≥ pi >
√
x/2, the smallest prime greater than Qi is at most

Qi + C(log x)2 = Qi

(
1 +

C(log x)2

Qi

)
< QiR,

giving us the correct bound for qi+1.
We now show that ai ≤ x for all i. We have pi ∼

√
x/2 and

qi ≤ qk ≤ q1R
2(k−1) < q1

(
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3C(log x)2√
x

)√
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∼
3
√
e

2

√
x.

Hence, piqi is smaller than x if x is sufficiently large, giving us g−(x) ≤ k.

In the proof of [11, Theorem 1.4], Pollack et al. create an increasing sequence of numbers
≤ x with decreasing totients of length x0.19. However, their sequence also has decreasing smallest
prime factors. In light of this fact, we may state that g−(x) ≫ x0.19 holds unconditionally for all
sufficiently large values of x.
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At present, the author is unable to obtain g−(x) = x(1/2)+o(1) unconditionally. An argument
similar to the proof of Theorem 1.4 would give us a suitable bound as long as we know that the
largest gap between two consecutive primes ≤ x grows at a rate of xo(1). Additionally, while
it may be possible that prime gaps can be large, it is also the case that almost all gaps are not.
It may be possible to modify our lower bound argument with this result. Of course, even assuming
Conjecture 1.1, our upper and lower bounds do not match.

Finally, we recall that the function gf has only been studied for a few specific functions f ,
namely P+, P−, φ, and σ. One could also consider gf for other number-theoretic functions.
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