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1 Introduction

A real quaternion is defined as
q = q0 + q1i + q2j + q3k, (1)

where q0, q1, q2 and q3 are real numbers, and the set {1, i, j, k} is the imaginary units that satisfy
the non-commutative multiplication conditions:

i2 = j2 = k2 = ijk = −1,

ij = k = −ji, jk = i = −kj, ki = j = −ik. (2)

The set of quaternions is represented by

H = {q = q0 + q1i + q2j + q3k ∶ q0, q1, q2, q3 ∈ R}. (3)

In literature, many authors have studied the matrix applications of quaternions. In [10],
the authors describe some properties of the real quaternion matrices. The authors, in [3], give
several new amazing linear representations of matrix quaternions by using the general linear
representation form of matrix quaternions. In [6] and [8], the authors express the matrix representa-
tions of dual quaternions by using some algebraic properties. The authors represent the algebraic
properties of real quaternions in detail; see [12]. In [1], Akbıyık et al. examine the 4 × 4

matrix representation of Pauli quaternions and give the Euler’s and De Moivre’s formulas for
these quaternions. Also, they provide De Moivre’s formula for the light-like Pauli quaternions.
Moreover, some researchers focus on the norms of special matrices such as maximum column
and row norms, Euclidean (Frobenius) norm, [2, 11, 13]. A. F. Horadam, in [9], defines the n-th
quaternions as follows:

Qn = Fn + iFn+1 + jFn+2 + kFn+3,

where Fn is the n-th Fibonacci number, and i, j, k are as defined in (2).
The mostly studied Toeplitz matrices arise in different areas of science, such as solutions to

differential and integral equations, spline functions, problems in physics, mathematics, statistics,
and etc. A special case of Toeplitz matrices, called circulant matrices, is an n-square matrix given
by the following form:

Cn =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C0 C1 ⋯ Cn−2 Cn−1
Cn−1 C0 ⋯ Cn−3 Cn−2
⋮ ⋮ ⋱ ⋮ ⋮

C2 C3 ⋯ C0 C1

C1 C2 ⋯ Cn−1 C0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4)

where each row is a cyclic shift of the row above it [5]. The circulant matrices have many
applications in many fields of science, such as statistics, algebraic coding theory, acoustics,
numerical analysis, number theory, graph theory, and so on. The properties of circulant matrices
are well-known and mostly presented in [5]. The eigenvalues of Cn are

λm =
n−1
∑
l=0

clω
ml , m = 0,1,2,3, . . . , n − 1,
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where ω = e(
2πi
n
) and i =

√
−1. Therefore, we can write the d eterminant of a non-singular

circulant matrix as:

detCn =
n−1
∏
m=0
(
n−1
∑
l=0

clω
ml) ,

where l = 0,1, . . . , n − 1.
The norm of a matrix is a non-negative real number, which is a measure of the magnitude of

the matrix. There are several different ways of defining a matrix norm, but they all share the same
certain properties. Let A = (atm) be a n by n matrix, then the maximum column length norm is

c1(A) =max
m

√

∑
t

∣atm∣2 (5)

and the maximum row length norm is

r1(A) =max
t

√

∑
m

∣atm∣2. (6)

The ℓp norm of A is

∥A∥p = (
n

∑
t=1

n

∑
m=1
∣atm∣

p)
1
p . (7)

For p = 2, the ℓp norm is called the Euclidean norm and is denoted by ∥A∥E. Let AH be the
conjugate transpose of matrix A and λt be the eigenvalue of matrix AAH , then the spectral norm
of the matrix A is

∥A∥2 =
√
max
1≤t≤nλt. (8)

If the matrix A equals to the Hadamard product of B and C (i.e., A = B ○C), then the following
relation is satisfied

∥A∥2 ≤ r1(B)c1(C). (9)

The Euclidean and spectral norm of the matrix A satisfy the following inequality:

1
√
n
∥A∥E ≤ ∥A∥2 ≤ ∥A∥E. (10)

We remind that the Chebyshev polynomials of second kind, denoted by Un(x), satisfy the three-term
recurrence relations

Un+1(x) = 2xUn(x) − Un−1(x)

with initial contidions U0(x) = 1 and U1(x) = 2x, or, equivalently,

Un(x) =
sin(n + 1)θ

sin θ
, with x = cos θ (0 ⩽ θ < π),

for all n = 0,1,2 . . .. It is also known (see, e.g., [7]) that

det

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a b

c ⋱ ⋱

⋱ ⋱ b

c a

⎞
⎟
⎟
⎟
⎟
⎟
⎠
n×n

= (
√
bc)

n
Un (

a

2
√
bc
) .
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In [4], the authors give that if

Dn =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d1 d2 d3 ⋯ dn−1 dn
a b

c a b

c a ⋱

⋱ ⋱ ⋱

c a b

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

then

detDn =
n

∑
l=1

zlb
n−l (−

√
bc)

l−1
Ul−1 (

a

2
√
bc
) , (12)

where Ul(x) is the l-th Chebyshev polynomial of second kind.
In this paper, we consider the n-square circulant matrix,

Tn ∶= circ (Q1,Q2, . . . ,Qn) (13)

where Qn is the n-th Fibonacci quaternion. Then, we get the determinant of the matrix Tn by
using the second-kind Chebyshev polynomials. Furthermore, we get some norms for the circulant
matrices with Fibonacci quaternion coefficients.

2 Main results

This section is devoted to the determinant formula of circulant matrices with Fibonacci quaternion
entries.

Let us consider n−square matrices Pn and Hn, as below:

Pn =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 ⋯ 0 0 0

0 0 0 0 ⋯ 0 0 1

−1 0 0 0 ⋯ 0 1 −1

0 0 0 0 ⋯ 1 −1 −1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 1 −1 ⋯ 0 0 0

0 1 −1 −1 ⋯ 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)

and

Hn =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0 0 0

0 0 0 ⋯ 0 0 1

0 0 0 ⋯ 0 1 1

0 0 0 ⋯ 1 1 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 1 ⋯ 0 0 0

0 1 1 ⋯ 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

Then, we have the following property.
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Lemma 2.1. The determinants of the matrices in (14) and (15) are

det(Pn) = det(Hn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1,
n ≡ 3 (mod 4)

n ≡ 0 (mod 4)

1,
n ≡ 1 (mod 4)

n ≡ 2 (mod 4)

.

Proof. It is known that equality holds for Hn (see [14]). By using Laplace expansion on the first
row, the proof can be easily seen for Pn.

Theorem 2.1. For n > 3, we have

det(Tn) = −Q2

n−1
∑
l=1

Ql+2bl−1 (−
√
bc)

n−l−1
Un−l−1 (

a

2
√
bc
)

−Q1

n−1
∑
l=2

Ql+2bl−2 (−
√
bc)

n−l
Un−l (

a

2
√
bc
)

−(Q2
1 +Q1Qn) b

n−2 U0 (
a

2
√
bc
) ,

where
a = Q2 −Qn+2, b = Q1 −Qn+1, c = Q0 −Qn.

Proof. Let us multiply the matrices as below:

Sn = PnTnHn.

Then, we obtain the following matrix:

Sn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Q1 −Qn+1 −Qn ⋯ −Q4 −Q2

Q2 Q1 +Qn Qn+1 ⋯ Q5 Q3

0 a b ⋯ 0 0

0 c a ⋯ 0 ⋮

⋮ 0 ⋱ ⋱ ⋱ 0

0 ⋯ 0 c a b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (16)

where
a = Q2 −Qn+2, b = Q1 −Qn+1, c = Q0 −Qn.

By adding the first column to the n-th column, we have

Sn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Q1 −Qn+1 −Qn ⋯ −Q4 −Q3

Q2 Q1 +Qn Qn+1 ⋯ Q5 Q4

0 a b ⋯ 0 0

0 c a ⋯ 0 ⋮

⋮ 0 ⋱ ⋱ ⋱ 0

0 ⋯ 0 c a b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17)
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Then

det(Sn) = det(PnTnHn) = det(Pn)det(Tn)det(Hn).

By Lemma 2, it is seen that

det(Sn) = det(Tn).

So,

det(Tn) =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

−Q1 −Qn+1 −Qn ⋯ −Q4 −Q3

Q2 Q1 +Qn Qn+1 ⋯ Q5 Q4

0 a b ⋯ 0 0

0 c a ⋯ 0 ⋮

⋮ 0 ⋱ ⋱ ⋱ 0

0 ⋯ 0 c a b

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

. (18)

By using the Laplace expansion on the first column and (12), the following equation is satisfied:

det(Tn) = −Q2

n−1
∑
l=1

Ql+2bl−1 (−
√
bc)

n−l−1
Un−l−1 (

a

2
√
bc
)

−Q1

n−1
∑
l=2

Ql+2bl−2 (−
√
bc)

n−l
Un−l (

a

2
√
bc
)

−(Q2
1 +Q1Qn) b

n−2U0 (
a

2
√
bc
)

where Ul(x) is the l-th Chebyshev polynomial of second kind.

Example 1. For n = 4,

T4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q1 Q2 Q3 Q4

Q4 Q1 Q2 Q3

Q3 Q4 Q1 Q2

Q2 Q3 Q4 Q1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

i.e.,

T4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + i + 2j + 3k 1 + 2i + 3j + 5k 2 + 3i + 5j + 8k 3 + 5i + 8j + 13k

3 + 5i + 8j + 13k 1 + i + 2j + 3k 1 + 2i + 3j + 5k 2 + 3i + 5j + 8k

2 + 3i + 5j + 8k 3 + 5i + 8j + 13k 1 + i + 2j + 3k 1 + 2i + 3j + 5k

1 + 2i + 3j + 5k 2 + 3i + 5j + 8k 3 + 5i + 8j + 13k 1 + i + 2j + 3k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since

Sn = PnTnHn,

where

P4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 0

0 0 0 1

−1 0 1 −1

0 1 −1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and

H4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 0 1 1

0 1 1 0

0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

then the following matrix is obtained:

S4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Q1 −Q5 −Q4 −Q3

Q2 Q1 +Q4 Q5 Q4

0 Q2 −Q6 Q2 −Q5 0

0 Q0 −Q4 Q2 −Q6 Q1 −Q5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

i.e.,

S4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 − i − 2j − 3k −5 − 8i − 13j − 21k −3 − 5i − 8j − 13k −2 − 3i − 5j − 8k

1 + 2i + 3j + 5k 4 + 6i + 10j + 16k 5 + 8i + 13j + 21k 3 + 5i + 8j + 13k

0 −7 − 11i − 18j − 29k −4 − 6i − 10j − 16k 0

0 −3 − 4i − 7j − 11k −7 − 11i − 18j − 29k −4 − 6i − 10j − 16k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since

det(S4) = det(P4T4H4) = det(T4),

we have

det(T4) = −Q2

3

∑
l=1

Ql+2bl−1 (−
√
bc)

3−l
U3−l (

a

2
√
bc
)

−Q1

3

∑
l=2

Ql+2bl−2 (−
√
bc)

4−l
U4−l (

a

2
√
bc
)

−(Q2
1 +Q1Q4) b

2U0 (
a

2
√
bc
)

= −Q2 [Q3b
0 (−
√
bc)

2
U2 (

a

2
√
bc
) +Q4b

1 (−
√
bc)

1
U1 (

a

2
√
bc
)

+Q5b
2 (−
√
bc)

0
U0 (

a

2
√
bc
)]

−Q1 [Q4b
0 (−
√
bc)

2
U2 (

a

2
√
bc
) +Q5b

1 (−
√
bc)

1
U1 (

a

2
√
bc
)]

−(Q2
1 +Q1Q4) b

2U0 (
a

2
√
bc
) .
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Therefore, we obtain

det(T4) = −Q2Q3 (−
√
bc)

2 ⎛

⎝
4(

a

2
√
bc
)

2

− 1
⎞

⎠
−Q2Q4b (−

√
bc)2(

a

2
√
bc
)

−Q2Q5b
2 −Q1Q4 (−

√
bc)

2 ⎛

⎝
4(

a

2
√
bc
)

2

− 1
⎞

⎠

−Q1Q5b (−
√
bc)2(

a

2
√
bc
) − (Q2

1 +Q1Q4) b
2

= Q2Q3bc − a
2Q2Q3 +Q2Q4ab −Q2Q5b

2 − a2Q1Q4 +Q1Q4bc

+Q1Q5ab − (Q
2
1 +Q1Q4)b

2

= −61287 + 18370i + 26782j + 47671k

where a = Q2 −Q6, b = Q1 −Q5, c = Q0 −Q4, U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1.

3 On norms of Tn matrices

In this section, we initially obtain summation formulas for the Fibonacci numbers. Then, we
obtain some norms for them.

Lemma 3.1. Let Fn be the n-th Fibonacci number. Then, the following summation formulas are
satisfied:

• F1F2 + F2F3 +⋯ + FnFn+1 =
⎧⎪⎪
⎨
⎪⎪⎩

F 2
n+1, if n odd

F 2
n+1 − 1, if n even

• F1F3 + F2F4 +⋯ + FnFn+2 =
⎧⎪⎪
⎨
⎪⎪⎩

Fn+1Fn+2, if n odd

Fn+1Fn+2 − 1, if n even

• F1F4 + F2F5 +⋯ + FnFn+3 =
⎧⎪⎪
⎨
⎪⎪⎩

Fn+1Fn+3, if n odd

Fn+1Fn+3 − 2, if n even

Proof. We apply the mathematical induction on n. For n = 1,

F1F2 = 1 = F
2
2

and for n = 2,

F1F2 + F2F3 = 1.1 + 1.2 = F
2
3 − 1

are satisfied. Assume that for n = 2k + 1 an arbitrary odd number where k is an integer,

F1F2 + F2F3 +⋯ + FnFn+1 = F1F2 + F2F3 +⋯ + F2k+1F2k+2 = F 2
2k+2
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and for n = 2k an arbitrary even number,

F1F2 + F2F3 +⋯ + FnFn+1 = F1F2 + F2F3 +⋯ + F2kF2k+1 = F 2
2k − 1

hold. For n→ n + 1 = 2k + 2,

F1F2 + F2F3 +⋯ + Fn+1Fn+2 = F1F2 + F2F3 +⋯ + F2k+2F2k+3

= F2k+2(F2k+2 + F2k+3)

= F2k+2F2k+4

= (−1)2k+3 + F 2
2k+3

= F 2
n+2 − 1

when n is odd. For n→ n + 1 = 2k + 1,

F1F2 + F2F3 +⋯ + Fn+1Fn+2 = F1F2 + F2F3 +⋯ + F2k+1F2k+2 = F 2
2k+1

when n is even.
As a result, we can say that

F1F2 + F2F3 +⋯ + FnFn+1 = F 2
n+1

when n is an odd number, and

F1F2 + F2F3 +⋯ + FnFn+1 = F 2
n+1 − 1

when n is even. The other identities can be obtained by following similar steps of the proof.

Theorem 3.1. The maximum column length norm and the maximum row length norm of Tn is
given as follows:

• If n is odd, then

c1(Tn) = r1(Tn) =
√
−F 2

n+1 + F2n+6 + 9 + 2iF 2
n+1 + 2jFn+1Fn+2 + 2kFn+1Fn+3.

• If n is even, then

c1(Tn) = r1(Tn) =
√
−F 2

n+1 + F2n+6 + 9 + 2i(F 2
n+1 − 1) + 2j(Fn+1Fn+2 − 1) + 2k(Fn+1Fn+3 − 2),

where Qn = Fn + iFn+1 + jFn+2 + kFn+3 is the n-th Fibonacci quaternion.

Proof. From the definition of the maximum column length norm and the maximum row length
norm, we get

c1(Tn) =max
m

√

∑
t

∣Ttm∣
2

= r1(Tn)

=max
t

√

∑
m

∣Ttm∣
2

=
√
Q2

1 +Q
2
2 +⋯ +Q

2
n

=
√
(F1 + iF2 + jF3 + kF4)

2 +⋯ + (Fn + iFn+1 + jFn+2 + kFn+3)2,

where Ttm is t-th column and m-th row of Tn.
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The square of any quaternion q = a + ib + jc + kd can be calculated as

q2 = (a + ib + jc + kd)2 = a2 − b2 − c2 − d2 + 2iab + 2jac + 2kad,

where a, b, c, d ∈ R. So, we obtain the following squares:

(F1 + iF2 + jF3 + kF4)
2 = F 2

1 − F
2
2 − F

2
3 − F

2
4

+2iF1F2 + 2jF1F3 + 2kF1F4

(F2 + iF3 + jF4 + kF5)
2 = F 2

2 − F
2
3 − F

2
4 − F

2
5

+2iF2F3 + 2jF2F4 + 2kF2F5

⋮

(Fn + iFn+1 + jFn+2 + kFn+3)2 = F 2
n − F

2
n+1 − F

2
n+2 − F

2
n+3

+2iFnFn+1 + 2jFnFn+2 + 2kFnFn+3.

The summation of the right-hand sides of all equations is

(F 2
1 + F

2
2 +⋯ + F

2
n) − (F

2
2 + F

2
3 +⋯ + F

2
n+1) − (F

2
3 + F

2
4 +⋯ + F

2
n+2) − (F

2
4 + F

2
5 +⋯ + F

2
n+3)

+ 2i(F1F2 + F2F3 +⋯ + FnFn+1) + 2j(F1F3 + F2F4 +⋯ + FnFn+2)

+ 2k(F1F4 + F2F5 +⋯ + FnFn+3)

= FnFn+1 − Fn+1Fn+2 − Fn+2Fn+3 − Fn+3Fn+4 + 9

+

⎧⎪⎪
⎨
⎪⎪⎩

2iF 2
n+1 + 2jFn+1Fn+2 + 2kFn+1Fn+3, if n odd

2i(F 2
n+1 − 1) + 2j(Fn+1Fn+2 − 1) + 2k(Fn+1Fn+3 − 2), if n even

= −F 2
n+1 + F2n+6 + 9 +

⎧⎪⎪
⎨
⎪⎪⎩

2iF 2
n+1 + 2jFn+1Fn+2 + 2kFn+1Fn+3, if n odd

2i(F 2
n+1 − 1) + 2j(Fn+1Fn+2 − 1) + 2k(Fn+1Fn+3 − 2), if n even

.

Theorem 3.2. If Tn is a circulant matrix of Fibonacci quaternions in (13), then the Euclidean
norm is

∥Tn∥E =
√
nc1(Tn) =

√
nr1(Tn).

Proof. From the definition of Euclidean norm of a matrix, we obtain

∥Tn∥E = (
n

∑
t=1

n

∑
m=1
∣Ttm∣

2)
1
2

=
√
n(Q2

1 +Q
2
2 +⋯ +Q

2
n)

=
√
n
√
Q2

1 +Q
2
2 +⋯ +Q

2
n

=
√
nc1(Tn) =

√
nr1(Tn).

4 Conclusion

In literature, there are a huge amount of papers on determinants of circulant matrices with some
famous number sequence entries. In this paper, we consider the circulant matrix family Tn whose
entries are Fibonacci quaternions. Then, we compute the determinant of Tn by exploiting the
well-known Chebyshev polynomials of the second kind. Moreover, we obtain some norms for Tn
matrices.
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