
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2025, Volume 31, Number 3, 588-606
DOI: 10.7546/nntdm.2025.31.3.588-606

Affine–Hill cipher from Hadamard-type
Fibonacci–Mersenne and Fibonacci-balancing

p-sequences

Elahe Mehraban1,2,∗ , T. Aaron Gulliver 3

and Evren Hincal 1,2,4
1 Mathematics Research Center, Near East University TRNC

Mersin 10, 99138 Nicosia, Turkey
2 Department of Mathematics, Near East University TRNC

Mersin 10, 99138 Nicosia, Turkey
e-mail: e.mehraban.math@gmail.com

3 Department of Electrical and Computer Engineering, University of Victoria
Victoria, BC V8W 2Y2, Canada

e-mail: agullive@ece.uvic.ca
4 Research Center of Applied Mathematics, Khazar University

Baku, Azerbaijan
e-mail: evren.hincal@neu.edu.tr

∗ Corresponding author

Received: 9 December 2024 Revised: 5 September 2025
Accepted: 7 September 2025 Online First: 10 September 2025

Abstract: In this paper, we define two new sequences using the generalized Mersenne numbers,
Fibonacci p-numbers, and m-balancing numbers. These sequences are constructed using the
Hadamard-type product of their characteristic polynomials. The determinants and combinatorial
and exponential representations of these new sequences are given. As an application, they are
with used to generate keys for encryption for the Affine–Hill cipher using an elliptic curve and
self-invertible matrix.

Copyright © 2025 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8544-9592
https://orcid.org/0000-0001-9919-0323
https://orcid.org/0000-0001-6175-1455
e.mehraban.math@gmail.com
agullive@ece.uvic.ca
evren.hincal@neu.edu.tr


Keywords: Mersenne numbers, Fibonacci p-numbers, Elliptic curve, Self-invertible matrix,
Affine–Hill cipher.
2020 Mathematics Subject Classification: 11K31, 11C20, 68P25, 68R01, 68P30, 15A15.

1 Introduction

For k ≥ 3 a fixed integer, the generalized Mersenne numbers, denoted by {M(k, n)}∞n=0, are
defined as

M(k, n) = kM(k, n− 1)− (k − 1)M(k, n− 2), n ≥ 2,

with initial conditions M(k, 0) = 0 and M(k, 1) = 1 [17].

Definition 1.1. ( [22]) For integer p ≥ 0, the Fibonacci p−numbers, denoted by {Fp(n)}∞0 , are
defined as

Fp(n) = Fp(n− 1) + Fp(n− p− 1), n ≥ 1,

with initial conditions Fp(0) = 0 and Fp(1) = Fp(2) = · · · = Fp+1(p) = 1.

For example, if p = 2 we have

F2(n) = F2(n− 1) + F2(n− 3), n ≥ 1,

so the sequence is {F2(n)}∞0 = {0, 1, 1, 1, 2, 3, · · · }.

Definition 1.2. ( [18, 19]) For m ≥ 1, the m-balancing numbers, denoted by {Bm,n}∞0 , are
defined as

Bm,n+1 = 6mBm,n −Bm,n−1, n ≥ 1,

with initial conditions Bm,0 = 0 and Bm,1 = 1 .

For example, if m = 1 we have

B1,n+1 = 6B1,n −B1,n−1, n ≥ 1,

so the sequence is {Bm,n}∞0 = {0, 1, 6, 35, . . .}. The characteristic polynomials of the generalized
Mersenne numbers, m-balancing numbers, and Fibonacci p-numbers are x2 − kx + k − 1, x2 −
6mx+ 1, and xp+1 − xp − 1, respectively.

Definition 1.3. ( [8, 13]) An elliptic curve E over a prime field Fq is defined by

E : y2 ≡ x3 + ax+ b (mod q),

where a, b ∈ Fq, q ̸= 2, 3 and satisfy the condition 4a3 + 27b2 ̸= 0(mod q). The elliptic curve
group E(Fq) consists of all points (x, y) that satisfy E and the point at infinity 0 .

Definition 1.4. ( [1]) A matrix M is called self-invertible matrix if M = M−1.

The Hadamard-type product of polynomials f and g is defined as follows [2].
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Definition 1.5. The Hadamard-type product of polynomials f and g is f ∗ g =
∑∞

i=0(ai ∗ bi)xi

where

ai ∗ bi =

{
aibi, if aibi ̸= 0,

ai + bi, if aibi = 0,

and f(x) = amx
m + · · ·+ a1x+ a0 and g(x) = bnx

n + bn−1x
n−1 + · · ·+ b1x+ b0.

In [21, 23], some linear recurrence sequences were defined and their properties examined
using matrix methods. The Hill cipher was invented in 1929 [11]. It is a polygraphic block
cipher. The Affine cipher was introduced in [23]. It is an application of linear algebra and can be
described as follows.

Encryption:
Ci ≡ PiK +B (mod m),

where K is an n× n key matrix, and Pi, Ci and B are 1× n matrices over Zm. It should satisfy

gcd(detK(mod m)),m) = 1.

Decryption:

Pi ≡ (Ci −B)K−1 (mod m).

In 2016, a key matrix of order 3 that reflects an arbitrary line y = ax+b was used to overcome
the noninvertible matrix problem in the Affine–Hill cipher modulo a prime number [21]. In [20],
a public key cipher was obtained using the generalized Fibonacci matrices with the Affine–Hill
cipher. In [3], the authors used the Affine ciphers with the modulo 257 and showed that this cipher
looked like a permutation cipher. In [4], the authors constructed a relation between Tribonacci
numbers and generalized Tribonacci numbers and offered a public key cryptosystem by using
k-generalized Fibonacci sequences. In [7], a new pseudo-random sequence was offered based on
two chaotic systems, a logistic map and a seven-dimensional (7D) hyperchaotic system. In [16],
it was proposed to assign them to secure images. For this, the authors used data (which is defined
from the logistics map) to generate a super-increasing sequence which canattributed as a weight of
the synapses. Also, they were inspired to encrypt the images by the Merkel–Hellman algorithm.
Here, the generalized Mersenne numbers, Fibonacci p-numbers, and m-balancing numbers are
used to obtain new sequences. Then, an elliptic curve and self-invertible matrix are employed to
obtain a public key for the Affine–Hill cipher.

The General Linear group, denoted by GLλ(Fq) (q is a prime), consists of all invertible
matrices of order λ× λ over Fq [14]. This group has order

| GLλ(Fq) |= (qλ − qλ−1)(qλ − qλ−2) · · · (qλ − 1).

The remainder of this paper is organized as follows. In Sections 2 and 3, we present the
Fibonacci–Mersenne p-sequences and the Hadamard-type Fibonacci-balancing p-sequences,
respectively. The Fibonacci–Mersenne p-matrix and Hadamard-type Fibonacci-balancing p-matrix
are used in Section 4 as a key in the Affine–Hill cipher. Note that in this paper p denotes an integer.
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2 The Hadamard-type Fibonacci–Mersenne p-sequences

In this section, we define new sequences using the Hadamard-type product of the characteristic
polynomials of the Fibonacci p-numbers and Mersenne numbers.

Definition 2.1. For integers k ≥ 3 and p ≥ 3, the Hadamard-type Fibonacci–Mersenne
p-sequences, denoted by {HMn(k, p)}∞0 , are defined as

HMn+p+1(k, p) = HMn+p(k, p)−HMn+2(k, p) + kHMn+1(k, p) + (k − 1)HMn(k, p), n ≥ 0, (1)

with initial conditions HM0(k, p) = HM1(k, p) = · · · = HMp−1(k, p) = 0 and HMp(k, p) = 1.

For example, p = 3 and k = 3 give

HMn+4(3, 3) = HMn+3(3, 3)−HMn+2(3, 3) + 3HMn+1(3, 3) + 2HMn(3, 3), n ≥ 0,

{HMn(3, 3)}∞0 = {0, 0, 0, 1, 0, 2, 7, 7, 6, 24, . . .},

and p = 4 and k = 3 give

HMn+5(4, 3) = HMn+4(4, 3)−HMn+2(4, 3) + 3HMn+1(4, 3) + 2HMn(4, 3), n ≥ 0,

{HMn(4, 3)}∞0 = {0, 0, 0, 0, 1, 1, 0, 2, 6, 11, 11, 11, 22, . . .}.

From the recurrence relation (1), we have

HMn+p+1(k, p)

HMn+p(k, p)

HMn+p−1(k, p)
...

HMn+2(k, p)

HMn+1(k, p)


=



1 0 · · · 0 −1 k k − 1

1 0 · · · 0 0 0 0

0 1 · · · 0 0 0 0
...

... . . . ...
...

...
...

0 0 · · · 0 1 0 0

0 0 · · · 0 0 1 0





HMn+p(k, p)

HMn+p−1(k, p)

HMn+p−2(k, p)
...

HMn+1(k, p)

HMn(k, p)


.

The Hadamard-type Fibonacci–Mersenne p-sequences have the following companion matrix,
denoted Mp(k),

Mp(k) =


1 0 0 · · · 0 −1 k k − 1

1 0 0 · · · 0 0 0 0

0 1 0 · · · 0 0 0 0
...

...
... . . . ...

...
...

...
0 0 0 · · · 0 0 1 0


(p+1)×(p+1)

,

and is called the Hadamard-type Fibonacci–Mersenne p-matrix.

Theorem 2.1. For p = 3, k = 3 and n ≥ 4, we have

(M3(3))
n =


HMn+3(3, 3) HMn+4(3, 3)−HMn+3(k, 3) a1 2HMn+2(3, 3)

HMn+2(3, 3) HMn+3(3, 3)−HMn+2(3, 3) a2 2HMn+1(k, 3)

HMn+1(3, 3) HMn+2(3, 3)−HMn+1(3, 3) a3 2HMn(3, 3)

HMn(3, 3) HMn+1(3, 3)−HMn(3, 3) a4 2HMn−1(3, 3)


(4)×(4)

,

a1 = HMn+5(3, 3)−HMn+4(3, 3) +HMn+3(3, 3),

a2 = HMn+4(3, 3)−HMn+3(3, 3) +HMn+2(3, 3),

a3 = HMn+3(3, 3)−HMn+2(3, 3) +HMn+1(3, 3),
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a4 = HMn+2(3, 3)−HMn+1(3, 3) +HMn(3, 3),

where

M3(3) =


1 −1 3 2

1 0 0 0

0 1 0 0

0 0 1 0


(4)×(4)

.

Proof. We use induction on n. For n = 4 we have

(M3(3))
4 =


1 −1 3 2

1 0 0 0

0 1 0 0

0 0 1 0


4

=


7 0 6 4

2 5 2 0

0 2 5 2

1 −1 3 2



=


HM7(3, 3) HM8(3, 3)−HM7(3, 3) HM9(3, 3)−HM8(3, 3) +HM7(3, 3)

HM6(3, 3) HM7(3, 3)−HM6(3, 3) HM8(3, 3)−HM7(3, 3) +HM6(3, 3)

HM5(3, 3) HM6(3, 3)−HM5(3, 3) HM7(3, 3)−HM6(3, 3) +HM5(3, 3)

HM4(3, 3) HM5(3, 3)−HM4(3, 3) HM6(3, 3)−HM6(3, 3) +HM4(3, 3)

2HM6(3, 3)

2HM5(3, 3)

2HM4(3, 3)

2HM3(3, 3)

 .

so the statement holds. Now, assume that the statement holds for n = t. Therefore, for n = t+ 1

we have

(M3(k))
t+1=


1 −1 3 2

1 0 0 0

0 1 0 0

0 0 1 0

×

HMt+3(3, 3) HMt+4(3, 3)−HMt+3(3, 3)

HMt+2(3, 3) HMt+3(3, 3)−HMt+2(3, 3)

HMt+1(3, 3) HMt+2(3, 3)−HMt+1(3, 3)

HMt(3, 3) HMt+1(3, 3)−HMt(3, 3)

HMt+5(3, 3)−HMt+4(3, 3) +HMt+3(3, 3) 2HMt+2(3, 3)

HMt+4(3, 3)−HMt+3(3, 3) +HMt+2(3, 3) 2HMt+1(3, 3)

HMt+3(3, 3)−HMt+2(3, 3) +HMt+1(3, 3) 2HMt(3, 3)

HMt+2(3, 3)−HMt+1(3, 3) +HMt(3, 3) 2HMt−1(3, 3)



=


HMt+4(3, 3) HMt+5(3, 3)−HMt+4(3, 3)

HMt+3(3, 3) HMt+4(3, 3)−HMt+3(3, 3)

HMt+2(3, 3) HMt+3(3, 3)−HMt+2(3, 3)

HMt+1(3, 3) HMt+2(3, 3)−HMt+1(3, 3)

HMt+6(3, 3)−HMt+5(3, 3) +HMt+4(3, 3) 2HMt+3(3, 3)

HMt+5(3, 3)−HMt+4(3, 3) +HMt+3(3, 3) 2HMt+2(3, 3)

HMt+4(3, 3)−HMt+3(3, 3) +HMt+2(3, 3) 2HMt+1(3, 3)

HMt+3(3, 3)−HMt+2(3, 3) +HMt+1(3, 3) 2HMt(3, 3)

 ,

which completes the proof.
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Similar to Theorem 2.1, we can obtain the following result.

Corollary 2.1. For p = 3, k ≥ 4 and n ≥ 4, we have

(M3(k))
n=


HMn+p(k, 3) HMn+p+1(k, 3)−HMn+p(k, 3) a (k − 1)×HMn+p−1(k, 3)

HMn+p−1(k, 3) HMn+p(k, 3)−HMn+p−1(k, 3) b (k − 1)×HMn+p−2(k, 3)

HMn+p−2(k, 3) HMn+p−1(k, 3)−HMn+p−2(k, 3) c (k − 1)×HMn+p−3(k, 3)

HMn+p−3(k, 3) HMn+p−2(k, 3)−HMn+p−3(k, 3) d (k − 1)×HMn+p−4(k, 3)

 ,

where

a = HMn+p+2(k, 3)−HMn+p+1(k, 3) +HMn+p(k, 3),

b = HMn+p+1(k, 3)−HMn+p(k, 3) +HMn+p−1(k, 3),

c = HMn+p(k, 3)−HMn+p−1(k, 3) +HMn+p−2(k, 3),

d = HMn+p−1(k, 3)−HMn+p−2(k, 3) +HMn+p−3(k, 3),

and

M3(k) =


1 −1 k k − 1

1 0 0 0

0 1 0 0

0 0 1 0


(4)×(4)

.

It can be readily established by induction that for p ≥ 4 and n ≥ p+ 1

(Mp(k))
n =


HMn+p(k, p) HMn+p+1(k, p)−HMn+p(k, p) · · · (k − 1)HMn+p−1(k, p)

HMn+p−1(k, p) HMn+p(k, p)−HBn+p−1(k, p) · · · (k − 1)HBn+p−2(k, p)
...

... M∗
p

...
HMn+1(k, p) HMn+2(k, p)−HMn+1(k, p) · · · (k − 1)HMn(k, p)

HMn(k, p) HMn+1(k, p)−HMn(k, p) · · · (k − 1)HMn−1(k, p)

 ,

where M∗
p is the following (p− 2)× (p− 2) matrix

M∗
p =


HMn+p+2(k, p)−HMn+p+1(k, p) . . . HMn+2p−2(k, p)−HMn+2p−3(k, p) b1
HMn+p+1(k, p)−HMn+p(k, p) . . . HMn+2p−3(k, p)−HMn+2p−4(k, p) b2

... . . . ...
...

HMn+3(k, p)−HMn+2(k, p) . . . HMn+p−1(k, p)−HMn+p−2(k, p) b3
HMn+2(k, p)−HMn+1(k, p) . . . HMn+p−2(k, p)−HMn+p−3(k, p) b4

 ,

b1 = (HMn+2p−1(k, p)−HMn+2p−2(k, p)) +HMn+p(k, p),

b2 = (HMn+2p−2(k, p)−HMn+2p−3(k, p)) +HMn+p−1(k, p),

b3 = (HMn+p(k, p)−HMn+p−1(k, p)) +HMn+1(k, p),

b4 = (HMn+p−1(k, p)−HMn+p−2(k, p)) +HMn(k, p).
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It can be easily determined that

Mp(k) =

{
−(k − 1), if p is odd,
k − 1, if p is even,

so therefore

(Mp(k))
n =

{
−(k − 1)n, if p is odd and n is odd,
(k − 1)n, otherwise.

Lemma 2.1. Let g(x) be the generating function of the Hadamard-type Fibonacci–Mersenne
p-sequences. Then

g(x) =
xp

1− x+ xp−1 − kxp − (k − 1)xp+1
. (2)

Proof. We have

g(x) =
∞∑
n=1

HMn(k, p)x
n

= HM1(k, p)x
1 +HM2(k, p)x

2 + · · ·+HMp−1(k, p)x
p−1 +HMp(k, p)x

p

+
∞∑

n=p+1

HMn(k, p)x
n

= xp +
∞∑

n=p+1

[HMn+p(k, p)−HMn+2(k, p) + kHMn+1(k, p) + (k − 1)HMn(k, p)]x
n

= xp +
∞∑

n=p+1

HMn+p(k, p)x
n −

∞∑
n=p+1

HMn+2(k, p)x
n + k

∞∑
n=p+1

HMn+1(k, p)x
n

+ (k − 1)
∞∑

n=p+1

HMn(k, p)x
n

= xp + x
∞∑
n=1

HMn(k, p)x
n − x2

∞∑
n=1

HMn(k, p)x
n + kxp

∞∑
n=1

HMn(k, p)x
n

+ (k − 1)xp+1

∞∑
n=1

HMn(k, p)x
n

= xp + xg(x)− xp−1g(x) + kxpg(x) + (k − 1)xp+1g(x).

Theorem 2.2. The Hadamard-type Fibonacci–Mersenne p-sequences {HMn(k, p)} have the
following exponential representation

g(x) = xp exp
∞∑
i=1

(x)i

i
(1− xp−2 + kxp−1 + (k − 1)xp)i,

where p ≥ 5.

Proof. Using (2), we have

ln g(x) = lnxp − ln(1− x+ xp−1 − kxp − (k − 1)xp+1).
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Since

− ln (1− x+ xp−1 − kxp − (k − 1)xp+1) = −[−x(1− xp−2 + kxp−1 + (k − 1)xp)

− 1

2
x2(1− xp−2 + kxp−1 + (k − 1)xp)2 − · · ·

− 1

i
xi(1− xp−2 + kxp−1 + (k − 1)xp)i − · · · ]

=
∞∑
i=1

(x)i

i
(1− xp−2 + kxp−1 + (k − 1)xp)i,

the result follows.

3 The Hadamard-type Fibonacci-balancing p-sequences

In this section, we define new sequences using the Hadamard-type product of the characteristic
polynomials of the Fibonacci p-numbers and m-balancing numbers.

Definition 3.1. For m ≥ 1 and p ≥ 3, the Hadamard-type Fibonacci-balancing p-sequences,
denoted by {HBm

n }∞0 , are defined as

HBm
n+p+1 = HBm

n+p −HBm
n+2 + 6mHBm

n+1 +HBm
n , n ≥ 0, (3)

with initial conditions HBm
0 = HBm

1 = · · · = HBm
p−1 = 0 and HBm

p = 1.

For example m = 1 and p = 3 give

HBm
n+4 = HBm

n+3 −HBm
n+2 + 6HBm

n+1 +HBm
n , n ≥ 0,

and {HB1
n}∞0 = {0, 0, 0, 1, . . .}. From the recurrence relation (3), we have

HBm
n+p+1

HBm
n+p

HBm
n+p−1
...

HBm
n+2

HBm
n+1


=



1 0 · · · 0 −1 6m 1

1 0 · · · 0 0 0 0

0 1 · · · 0 0 0 0
...

... . . . ...
...

...
...

0 0 · · · 0 1 0 0

0 0 · · · 0 0 1 0





HBm
n+p

HBm
n+p−1

HBm
n+p−2
...

HBm
n+1

HBm
n


.

The Hadamard-type Fibonacci-balancing p-sequences have the following companion matrix, Bp(m),

Bp(m) =


1 0 0 · · · 0 −1 6m 1

1 0 0 · · · 0 0 0 0

0 1 0 · · · 0 0 0 0
...

...
... . . . ...

...
...

...
0 0 0 · · · 0 0 1 0


(p+1)×(p+1)

,

and is called the Hadamard-type Fibonacci-balancing p-matrix.

595



Theorem 3.1. For p ≥ 3, m ≥ 1 and n ≥ p+ 1, we have

(Bp(m))n =


HBm

n+p HBm
n+p+1 −HBm

n+p · · · HBm
n+p−1

HBm
n+p−1 HBm

n+p −HBm
n+p−1 · · · HBm

n+p−2
...

... B∗
p

...
HBm

n+1 HBm
n+2 −HBm

n+1 · · · HBm
n

HBm
n HBm

n+1 −HBm
n · · · HBm

n−1

 ,

where B∗
p is the following (p− 2)× (p− 2) matrix

B∗
p =
HBm

n+p+2 −HBm
n+p+1 . . . HBm

n+2p−2 −HBm
n+2p−3 (HBm

n+p −HBm
n+2p−2) +HBm

n+2p−1

HBm
n+p+1 −HBm

n+p . . . HBm
n+2p−3 −HBm

n+2p−4 (HBm
n+p−1 −HBm

n+2p−3) +HBm
n+2p−2

... . . . ...
...

HBm
n+3 −HBm

n+2 . . . HBm
n+p−1 −HBm

n+p−2 (HBm
n+1 −HBm

n+p−1) +HBm
n+p

HBm
n+2 −HBm

n+1 . . . HBm
n+p−2 −HBm

n+p−3 (HBm
n −HBm

n+p−2) +HBm
n+p−1

 .

Proof. The proof is similar to that of Theorem 2.1 and so is omitted.

It can be easily determined that detBp(m) = (−1)p so det(Bp(m))n = (−1)np.

Lemma 3.1. Let w(x) be the generating function of the Hadamard-type Fibonacci-balancing
p-sequences. Then

w(x) =
xp

1− x+ xp−1 − 6mxp − xp+1
· (4)

Proof. We have

w(x) =
∞∑
n=1

HBm
n xn

= HBm
1 x1 +HBm

2 x2 + · · ·+HBm
p−1x

p−1 +HBm
p xp +

∞∑
n=p+1

HBm
n xn

= xp +
∞∑

n=p+1

[HBm
n+p −HBm

n+2 + 6mHBm
n+1 +HBm

n ]xn

= xp +
∞∑

n=p+1

HBm
n+px

n −
∞∑

n=p+1

HBn+2x
n + 6m

∞∑
n=p+1

HBm
n+1x

n +
∞∑

n=p+1

HBm
n xn

= xp + x
∞∑
n=1

HBm
n xn − xp−1

∞∑
n=1

HBnx
n + 6mxp

∞∑
n=1

HBm
n xn + xp+1

∞∑
n=1

HBm
n xn

= xp + xw(x)− xp−1w(x) + 6mxpw(x) + xp+1w(x).

Theorem 3.2. The Fibonacci-balancing p-sequences {FBn(k, p)} have the following exponential
representation

w(x) = xp exp
∞∑
i=1

(x)i

i
(1− xp−2 + 6mxp−1 + xp)i,

where p ≥ 3.
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Proof. Using (4), we have

lnw(x) = lnxp − ln(1− x+ xp−1 − 6mxp − xp+1).

Since

− ln (1− x+ xp−1 − 6mxp − xp+1) = −[−x(1− xp−2 + 6mxp−1 + xp)

− 1

2
x2(1− xp−2 + 6mxp−1 + xp)2 − · · ·

− 1

i
xi(1− xp−2 + 6mxp−1 + xp)i − · · · ]

=
∞∑
i=1

(x)i

i
(1− xp−2 + 6mxp−1 − xp)i.

the result follows.

4 A public key cipher using Fibonacci-balancing p-sequences
and Hadamard-type Fibonacci–Mersenne p-sequences

In this section, a public key for the Affine–Hill cipher is obtained by considering the Hadamard-
type Fibonacci–Mersenne p-sequences The key matrix has a large space so it can provide sufficient
security. The algorithm is given below. For illustration purposes, an alphabet of 37 symbols is
considered which contains the letters A−Z with numerical equivalents 0−25, the numbers 0−9

with numerical equivalents 26− 35, and space with numerical equivalent 36 as shown in Table 1.

Table 1. A 37 symbol alphabet

A B C D E F G H I J K
0 1 2 3 4 5 6 7 8 9 10

L M N O P Q R S T U V
11 12 13 14 15 16 17 18 19 20 21

W X Y Z 0 1 2 3 4 5 6

22 23 24 25 26 27 28 29 30 31 32

7 8 9

33 34 35 36

First, we consider the Hadamard-type Fibonacci–Mersenne p-sequences and an elliptic curve
E(Fq), and introduce Algorithm 1.

597



Algorithm 1

Bob has the elliptic group E(Fq) and using (a, b, q) chooses an arbitrary element of the group
(x, y). Then he sends n :=| x− y |, k and p to Alice where k and p are defined as follows

k :=

{
gcd(x, y), if gcd(x, y) ≥ 3,

3, if gcd(x, y) < 3,

where gcd(x, y) is the greatest common divisor x and y, and

p :=

{
| a− b | , if | a− b |≥ 3,

4, if | a− b |< 3.

Then, Alice employs the encryption algorithm to get the ciphertext.

Encryption:

Step 1. Divide the plaintext into blocks of size 1× (p+ 1).

Step 2. Construct a key matrix K := (Mp(k))
n and

B := [MBn+p(k, p),MBn+p+1(k, p), . . . ,MBn+2p(k, p)].

We have that K ≡ K(mod 37) and B ≡ B (mod 37).

Step 3. Calculate Ci ≡ (PiK +B) (mod 37).

Step 4. Obtain the ciphertext.

Bob receives the ciphertext and employs the decryption algorithm to get the plaintext.

Decryption:

Step 1. Using K and B, calculate P ≡ (C −B)K−1 (mod 37).

Step 2. Using Table 1, obtain the plaintext.

This algorithm is illustrated in the following example.

Example 4.1. Bob chooses a = 3, b = 1, and q = 31 and gets

y2 ≡ x3 + 3x+ 1 (mod 31).

Since 4(3)3 + 27 × 1 = 135 ≡ 11 ̸= 0 (mod 31), Bob obtains the elliptic curve group E(F31).
Then he chooses (1, 6) which is an element of E(F31). Bob then obtains n :=| 1− 6 |= 5, k = 3,
and p = 4, and sends them to Alice. Then, Alice creates the ciphertext for the plaintext

MATHEMATICS IS INTERESTING
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Applying the Fibonacci–Mersenne p-sequence gives

(M4(3))
5 =


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 −1 2 5 2

1 0 −1 3 2

 ≡


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2

 (mod 37),

B = [MH9(3, 4),MH10(3, 4)],MH11(3, 4),MH12(3, 4),MH13(3, 4)]

= [6, 11, 11, 11, 22] ≡ [6, 11, 11, 11, 22] (mod 37).

Now, calculate Ci ≡ (PiK +B)(mod 37) and

P1 = [M,A,T,H,E],

P2 = [M,A,T,I,C],

P3 = [S, ,I,S, ],

P4 = [I,N,T,E,R],

P5 = [E,S,T,I,N],

P6 = [G, , , , ],

so then

C1 =
[
12 0 19 7 4

]

6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2

+
[
6 11 11 11 22

]

≡
[
15 28 23 3 19

]
(mod 37),

C2 =
[
12 0 19 8 2

]

6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2

+
[
6 11 11 11 22

]

≡
[
13 34 27 2 17

]
(mod 37),

C3 =
[
18 36 8 18 36

]

6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2

+
[
6 11 11 11 22

]

≡
[
18 21 1 22 33

]
(mod 37),
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C4 =
[
8 13 19 4 17

]

6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2

+
[
6 11 11 11 22

]

≡
[
27 26 26 29 23

]
(mod 37),

C5 =
[
4 18 19 8 13

]

6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2

+
[
6 11 11 11 22

]

≡
[
13 22 27 23 7

]
(mod 37),

C6 =
[
6 36 36 36 36

]

6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2

+
[
6 11 11 11 22

]

≡
[
1 36 1 27 2

]
(mod 37).

Therefore, the ciphertext is

P2XDTN81CRSVBW71003XNW1XHB B1C

For decryption, we require

(M4(3))
−5 =


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2



−5

.

Using K−1 := (M4(3))
(−5) and B, calculate P ≡ (C −B)K−1 (mod 37)

P1 = (C1 −B)K−1 = (
[
15 28 23 3 19

]
−
[
6 11 11 11 22

]
)×


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2



−5

≡
[
12 0 19 7 4

]
(mod 37),
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P2 = (C2 −B)K−1 = (
[
13 34 27 2 17

]
−
[
6 11 11 11 22

]
)×


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2



−5

≡
[
12 0 19 8 2

]
(mod 37),

P3 = (C3 −B)K−1 = (
[
18 21 1 22 33

]
−
[
6 11 11 11 22

]
)×


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2



−5

≡
[
18 36 8 18 36

]
(mod 37),

P4 = (C4 −B)K−1 = (
[
27 26 26 29 23

]
−
[
6 11 11 11 22

]
)×


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2



−5

≡
[
8 13 19 4 17

]
(mod 37),

P5 = (C5 −B)K−1 = (
[
13 22 27 23 7

]
−
[
6 11 11 11 22

]
)×


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2



−5

≡
[
4 18 19 8 13

]
(mod 37),

P6 = (C6 −B)K−1 = (
[
1 36 1 27 2

]
−
[
6 11 11 11 22

]
)×


6 5 0 6 4

2 4 5 2 0

0 2 4 5 2

1 36 2 5 2

1 0 36 3 2



−5

≡
[
6 36 36 36 36

]
(mod 37).

Then the plaintext is obtained as

MATHEMATICS IS INTERESTING
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Algorithm 2 uses the Fibonacci-balancing p-sequences.

Algorithm 2

First, Bob calculates n and p as in Algorithm 1, and he obtains i and m as follows:

i =

{
| a− b | , if | a− b | ≥ 4,

3, if | a− b | ≤ 3,

m :=

{
gcd(x, y), if gcd(x, y) ≥ 3,

3, if gcd(x, y) < 3,

He sends these to Alice. Then, Alice employs the encryption algorithm to get the ciphertext.

Encryption:

Step 1. Divide the plaintext into blocks of size 1× (i+ 1).

Step 2. Construct a self-invertible matrix M using HBm
n+p, HBm

n+p+1, . . . , HBm
n+p+i and get

key matrix K := M [1]. Put B := [HBm
n+p, HBm

n+p+1, . . . , HBm
n+p+i]. We have that

K ≡ K (mod 37) and B ≡ B(mod 37).

Step 3. Calculate Ci ≡ (PiK +B) (mod 37).

Step 4. Obtain the ciphertext.

Decryption:

Step 1. Using K (K is self-invertible, so K=K−1) and B, calculate P ≡ (C−B)K−1(mod 37).

Step 2. Using Table 1, obtain the plaintext.

Example 4.2. Bob sends p = 4, n = 4, m = 3 and i = 3 to Alice. Using the plaintext in
Example 4.1, we obtain

B = [HB3
8 , HB3

9 , HB3
10, HB3

11] = [17, 35, 54, 38] ≡ [17, 35, 17, 1] (mod 37),

and using [HB3
8 , HB3

9 , HB3
10, HB3

11] ≡ [17, 35, 17, 1] (mod 37) obtains the self-invertiable matrix

M =


HB3

8 HB3
9 1−HB3

8 −HB3
9

HB3
10 HB3

11 −HB3
10 1−HB3

11

1 +HB3
8 HB3

9 −HB3
8 −HB3

9

HB3
10 1 +HB3

11 −HB3
10 −HB3

11

 ,

=


17 35 16 −35

17 1 −17 0

18 35 −17 −35

17 2 −17 −1

 ≡


17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

 (mod 37).

Now, calculate Ci ≡ (PiK +B)(mod 37).
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P1 = [M,A,T,H],

P2 = [E,M,A,T],

P3 = [I,C,S, ],

P4 = [I,S, ,I],

P5 = [N,T,E,R],

P6 = [E,S,T,I],

P7 = [N,G, , ],

so then

C1 =
[
12 0 19 7

]
17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

+
[
17 35 17 1

]
≡

[
16 24 36 19

]
(mod 37),

C2 =
[
4 12 0 19

]
17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

+
[
17 35 17 1

]
≡

[
20 3 35 27

]
(mod 37),

C3 =
[
8 2 18 36

]
17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

+
[
17 35 17 1

]
≡

[
13 20 7 8

]
(mod 37),

C4 =
[
8 18 36 8

]
17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

+
[
17 35 17 1

]
≡

[
22 18 16 7

]
(mod 37),

C5 =
[
13 19 4 17

]
17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

+
[
17 35 17 1

]
≡

[
34 17 26 28

]
(mod 37),

C6 =
[
4 8 19 8

]
17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

+
[
17 35 17 1

]
≡

[
14 13 4 2

]
(mod 37),

C7 =
[
13 6 36 36

]
17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

+
[
17 35 17 1

]
≡

[
9 15 9 26

]
(mod 37).

The resulting ciphertext is

QY TUD91NUHIW31H8R02ONECJPJ0
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Now, Bob receives the ciphertext and using k, n, and p calculates K−1 = K.

P1 = (
[
16 24 36 19

]
−

[
17 35 17 1

]
)


17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

 ≡
[
12 0 19 7

]
(mod 37),

P2 = (
[
20 3 35 27

]
−

[
17 35 17 1

]
)


17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

 ≡
[
4 12 0 19

]
(mod 37),

P3 = (
[
13 20 7 8

]
−

[
17 35 17 1

]
)


17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

 ≡
[
8 2 18 36

]
(mod 37),

P4 = (
[
22 18 16 7

]
−

[
17 35 17 1

]
)


17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

 ≡
[
8 18 36 8

]
(mod 37),

P5 = (
[
34 17 26 28

]
−

[
17 35 17 1

]
)


17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

 ≡
[
13 19 4 17

]
(mod 37),

P6 = (
[
14 13 4 2

]
−

[
17 35 17 1

]
)


17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

 ≡
[
4 8 19 8

]
(mod 37),

P7 = (
[
9 15 9 26

]
−

[
17 35 17 1

]
)


17 35 16 2

17 1 20 0

18 35 20 2

17 2 20 36

 ≡
[
13 6 36 36

]
(mod 37),

and the plaintext is obtained.

4.1 Security analysis

In the proposed method, matrices Mn
p and Bn

p are used to construct the Affine–Hill cipher
encryption key. Note that these matrices are over F37. Therefore, Mn

p and Bn
p are required by an

attacker to obtain the key, and

| GLp+1(F37) | = (37p+1 − 37p)(37p+1 − 37p−1) · · · (37p+1 − 1),

| GLi+1(F37) | = (37i+1 − 37i)(37i+1 − 37i−1) · · · (37i+1 − 1).

Thus, to obtain the key an attacker needs to check a large number of matrices which confirms that
the key is strong.
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For example, if p = 49, we have:

| GL50(F37) |= (3750 − 3749)(3750 − 3748) · · · (3750 − 1) = 3.1× 103920.

Therefore, an attacker needs to check 103920 matrices which is intractable.

5 Conclusion

In this paper, two new sequences were defined using the generalized Mersenne numbers, Fibonacci
p-numbers and m-balancing numbers. Using these sequences, a Hadamard-type Fibonacci–
Mersenne p-matrix with determinant equal to k− 1 or −(k− 1) and a Hadamard-type Fibonacci-
balancing p-matrix with determinant equal to 1 and −1, were obtained. A public key cipher was
developed which use the parameters k, n, p, i, and m which are known only to Alice and Bob. It
was shown that breaking this system is intractable if suitable parameters are chosen which ensures
the security of the data. As future work, other sequences can be used to build these algorithms
(see [5, 6, 9, 10, 12, 15]).
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based on chaotic super-increasing sequence. Journal of Discrete Mathematical Sciences and
Cryptography, 28(3), 733–751.

[17] Ochalik, P., & Włoch, A. (2018). On generalized Mersenne numbers, their interpretations and
matrix generators. Annales Universitatis Mariae Curie-Skłodowska. Sectio A-Mathematica,
72(1), 69–76.
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