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Abstract: In this paper, we introduce a set of identities involving hyperbolic k-Fibonacci
quaternions and k-Lucas quaternions. Moreover, we derive summation identities for hyperbolic
k-Fibonacci and k-Lucas quaternions by utilizing established properties of k-Fibonacci and
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1 Introduction

In 2007, Sergio Falcón and Ángel Plaza introduced generalized Fibonacci sequences, specifically
the k-Fibonacci sequence ϕk,n and the k-Lucas sequence ψk,n, as a new way to extend the classic
Fibonacci and Lucas numbers. These sequences depend on an integer parameter k ≥ 1. We
reproduce following Definitions 1.1 and 1.2 from [2].

Definition 1.1. The k-Fibonacci sequence (ϕk,n) is defined by the recurrence relation ϕk,n+1 =

kϕk,n + ϕk,n−1 with ϕk,0 = 0 and ϕk,1 = 1, for n ≥ 1.
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Definition 1.2. The k-Lucas sequence (ψk,n) is defined by the recurrence relation ψk,n+1 =

kψk,n + ψk,n−1 with ψk,0 = 2 and ψk,1 = k, for n ≥ 1.

Hamilton is acknowledged with the invention of the quaternions in 1843. He demonstrated
that they constitute a non-commutative division ring with four dimensions when multiplied together
[7, 8].

Definition 1.3. (Horadam [9]) A quaternion ω is an element of the form ω = ω0+ω1i+ω2j+ω3k,
where ω0, ω1, ω2, ω3 are real components and 1, i, j, k are basis elements satisfying the properties
i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.

Horadam [9] introduced Fibonacci and Lucas quaternions in 1963, laying the foundation for
further exploration of their properties. Ramı́rez’s work [13] in 2015 expanded on this, introducing
the concepts of k-Fibonacci quaternions and k-Lucas quaternions. For more detailed information,
refer [11,12] to works by Polatlı in 2015 and 2016. The study of various quaternion types has seen
significant advancements in recent years, with multiple authors delving into their generalizations.
The hyperbolic quaternions were first identified by Macfarlane [10] in the year 1900.

Definition 1.4. (Macfarlane [10]) The hyperbolic quaternion ϑ is an element of the form
ϑ = ϑ1 + ϑ2ϵ1 + ϑ3ϵ2 + ϑ4ϵ3 =

(
ϑ1, ϑ2, ϑ3, ϑ4

)
, with real components ϑ1, ϑ2, ϑ3, h4 and

1, ϵ1, ϵ2, ϵ3 are hyperbolic quaternion units that satisfy the non-commutative multiplication rules

ϵ1
2 = ϵ2

2 = ϵ3
2 = ϵ1ϵ2ϵ3 = 1, (1)

ϵ1ϵ2 = ϵ3 = −ϵ2ϵ1, ϵ2ϵ3 = ϵ1 = −ϵ3ϵ2, ϵ3ϵ1 = ϵ2 = −ϵ1ϵ3. (2)

The hyperbolic quaternion is neither a commutative nor an associative algebraic structure. In
the classical quaternion, every imaginary basis element has the property e2n =−1, while in the
hyperbolic quaternion all basis elements satisfy ϵ2m = +1. Read more about this in [10].

The hyperbolic k-Fibonacci and k-Lucas quaternions were defined in [3, 4, 6] by Godase and
some of their identities were established.

Definition 1.5. (Godase [3,4,6]) The hyperbolic k -Fibonacci quaternion ξk,n is an element of the

form ξk,n = ϕk,n +ϕk,n+1ϵ1 +ϕk,n+2ϵ2 +ϕk,n+3ϵ3, and the hyperbolic k -Lucas quaternion ϱk,n is

an element of the form ϱk,n = ψk,n + ψk,n+1ϵ1 + ψk,n+2ϵ2 + ψk,n+3ϵ3. The hyperbolic quaternion
units 1, ϵ1, ϵ2 and ϵ3 satisfy the multiplication rules defined in Definition 1.4 and ϕk,n and ψk,n

are k -Fibonacci and k -Lucas numbers.

2 Preliminary results

The papers [3,4,6] explore the underlying characteristics of hyperbolic k -Fibonacci and k -Lucas

quaternions. Below are a few of these properties that have been explored.

Theorem 2.1. (Godase [6]) If n ∈ Z+, then

(i) ξk,n+2 = kξk,n+1 + ξk,n, (3)

(ii) ϱk,n+2 = kϱk,n+1 + ϱk,n, (4)
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(iii) ϱk,n = kξk,n + 2ξk,n−1, (5)

(iv) ϱk,n = ξk,n+1 + ξk,n−1. (6)

Theorem 2.2. (Godase [6]) (Binet Formula). For every positive integer n, we have

(1) ξk,n =
µ̄1µ1

n − µ̄2µ2
n

µ1 − µ2

, (7)

(2) ϱk,n = µ̄1µ1
n + µ̄2µ2

n, (8)

where µ̄1 = 1+µ1ϵ1+µ1
2ϵ2+µ1

3ϵ3, µ̄2 = 1+µ2ϵ1+µ2
2ϵ2+µ2

3ϵ3 and 1, ϵ1, ϵ2, ϵ3 are hyperbolic
quaternion units that satisfy the multiplication rule (1)–(2).

Theorem 2.3. (Godase [6]) (Catalan’s Identity). Let n, t be positive integers. Then show that

(i). ξk,n−tξk,n+t − ξk,n
2

= (−1)n−tϕk,t

(
0,−2ϕk,t+1,−2ϕk,t+2,−ϕk,t+3 + ϕk,t−3 + ϕk,t+1 + ϕk,t−1

)
,

(ii). ϱk,n−tϱk,n+t − ϱk,n
2

= ∆(−1)n−t+1ϕk,t

(
0,−2ϕk,t+1,−2ϕk,t+2,−ϕk,t+3 + ϕk,t−3 + ϕk,t+1 + ϕk,t−1

)
.

Theorem 2.4. (Godase [6]) (Cassini’s Identity). For every n ∈ Z+. We have

(i). ξk,n−1ξk,n+1 − ξk,n
2 = (−1)n−1(0,−2ϕk,2,−2ϕk,3,−ϕk,4

)
,

(ii). ϱk,n−1ϱk,n+1 − ϱk,n
2 = ∆(−1)n

(
0,−2ϕk,2,−2ϕk,3,−ϕk,4

)
.

Theorem 2.5. (Godase [6]) (d’Ocagne’s Identity). Let n be any non-negative integer and t
represents a natural number with t ≥ n+ 1. Then prove that

(i). ξk,tξk,n+1 − ξk,t+1ξk,n = (−1)n
(
0, −2ϕk,t−n−1, 2ϕk,t−n−2,

2ϕk,t−n+3 − 2ϕk,t−n−3 + 2ϕk,t−n+1 + 2ϕk,t−n−1

)
,

(ii). ϱk,tϱk,n+1 − ϱk,t+1ϱk,n = (−1)n+1∆
(
0, −2ϕk,t−n−1, 2ϕk,t−n−2,

2ϕk,t−n+3 − 2ϕk,t−n−3 + 2ϕk,t−n+1 + 2ϕk,t−n−1

)
.

3 Some new properties of hyperbolic k-Fibonacci
and k-Lucas quaternions

In this section, we establish relationships between hyperbolic k-Fibonacci and k-Lucas quaternions.
Our aim is to leverage the properties of the corresponding k-Fibonacci and k-Lucas numbers as
demonstrated in the research by Godase in [5]. Our goal is to generate a novel set of identities for
the k-Fibonacci and k-Lucas quaternions.

Theorem 3.1. For all integers n,m, we have

(i). 2ξk,n+m = ϕk,nϱk,m + ψk,nξk,m,

(ii). 2ϱk,n+m = ψk,nϱk,m + (k2 + 4)ϕk,nξk,m.
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Proof. The Lemma 4.2.3 in [5] yields the following equations

2ψk,n+m = ψk,nψk,m + (k2 + 4)ϕk,nϕk,m, (9)

2ϕk,n+m = ϕk,nψk,m + ψk,nϕk,m. (10)

Equation (10) can be applied with Definition 1.5 to give

2ξk,n+m = 2
(
ϕk,n+m + ϕk,n+m+1ϵ1 + ϕk,n+m+2ϵ2 + ϕk,n+m+3ϵ3

)
= ϕk,nψk,m + ψk,nϕk,m +

(
ϕk,nψk,m+1 + ψk,nϕk,m+1

)
ϵ1

+
(
ϕk,nψk,m+2 + ψk,nϕk,m+2

)
ϵ2 +

(
ϕk,nψk,m+3 + ψk,nϕk,m+3

)
ϵ3

= ϕk,n

(
ψk,m + ψk,m+1ϵ1 + ψk,m+2ϵ2 + ψk,m+3ϵ3

)
+ ψk,n

(
ϕk,m + ϕk,m+1ϵ1 + ϕk,m+2ϵ2 + ϕk,m+3ϵ3

)
= ϕk,nϱk,m + ψk,nξk,m.

Again, using Definition 1.5 and Equation (9), we can write

2ϱk,n+m = 2
(
ψk,n+m + ψk,n+m+1ϵ1 + ψk,n+m+2ϵ2 + ψk,n+m+3ϵ3

)
= ψk,nψk,m + (k2 + 4)ϕk,nϕk,m +

(
ψk,nψk,m+1 + (k2 + 4)ϕk,nϕk,m+1

)
ϵ1

+
(
ψk,nψk,m+2 + (k2 + 4)ϕk,nϕk,m+2

)
ϵ2 +

(
ψk,nψk,m+3

+ (k2 + 4)ϕk,nϕk,m+3

)
ϵ3

= ψk,n

(
ψk,m + ψk,m+1ϵ1 + ψk,m+2ϵ2 + ψk,m+3ϵ3

)
+ (k2 + 4)ϕk,n

(
ϕk,m + ϕk,m+1ϵ1 + ϕk,m+2ϵ2 + ϕk,m+3ϵ3

)
= ψk,nϱk,m + (k2 + 4)ϕk,nξk,m.

The proof of Theorem 3.1 is complete.

Theorem 3.2. For every n,m ∈ Z, we have

(i). 2(−1)mξk,n−m = ξk,nψk,m − ϱk,nϕk,m,

(ii). 2(−1)mϱk,n−m = ϱk,nψk,m − (k2 + 4)ξk,nϕk,m.

Proof. As a result of Lemma 4.2.4 in [5], we can write

2(−1)mψk,n−m = ψk,nψk,m − (k2 + 4)ϕk,nϕk,m, (11)

2(−1)mϕk,n−m = ϕk,nψk,m − ψk,nϕk,m. (12)

Using Definition 1.5 and Equation (12), we have

2(−1)mξk,n−m = 2(−1)m
(
ϕk,n−m + ϕk,n−m+1ϵ1 + ϕk,n−m+2ϵ2 + ϕk,n−m+3ϵ3

)
= ϕk,nψk,m − ψk,nϕk,m +

(
ϕk,n+1ψk,m − ψk,n+1ϕk,m

)
ϵ1

+
(
ϕk,n+2ψk,m − ψk,n+2ϕk,m

)
ϵ2 +

(
ϕk,n+3ψk,m − ψk,n+3ϕk,m

)
ϵ3

= ψk,m

(
ϕk,n + ϕk,n+1ϵ1 + ϕk,n+2ϵ2 + ϕk,n+3ϵ3

)
− ϕk,m

(
ψk,n + ψk,n+1ϵ1 + ψk,n+2ϵ2 + ψk,n+3ϵ3

)
= ψk,mξk,n − ϕk,mϱk,n.

The proof of the result (ii) is analogous to the proof of the result (i), so we omit the proof.
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Theorem 3.3. If n,m ∈ Z, then

(i). (−1)mξk,n−m + ξk,n+m = ξk,nψk,m,

(ii). (−1)mϱk,n−m + ϱk,n+m = ϱk,nψk,m.

Proof. From Lemma 4.2.5 of [5], it follows that

(−1)mψk,n−m + ψk,n+m = ψk,nψk,m, (13)

(−1)mϕk,n−m + ϕk,n+m = ϕk,nψk,m. (14)

Using Definition 1.5 and Equation (14), we obtain

(−1)mξk,n−m + ξk,n+m = (−1)m
(
ϕk,n−m + ϕk,n−m+1ϵ1 + ϕk,n−m+2ϵ2 + ϕk,n−m+3ϵ3

)
+
(
ϕk,n+m + ϕk,n+m+1ϵ1 + ϕk,n+m+2ϵ2 + ϕk,n+m+3ϵ3

)
= (−1)mϕk,n−m + ϕk,n+m +

(
(−1)m

(
ϕk,n−m+1 + ϕk,n+m+1

)
ϵ1

+
(
(−1)m

(
ϕk,n−m+2 + ϕk,n+m+2

)
ϵ2 +

(
(−1)m

(
ϕk,n−m+3 + ϕk,n+m+3

)
ϵ3

= ψk,mϕk,n + ψk,mϕk,n+1ϵ1 + ψk,mϕk,n+2ϵ2 + ψk,mϕk,n+3ϵ3

= ψk,m

(
ϕk,n + ϕk,n+1ϵ1 + ϕk,n+2ϵ2 + ϕk,n+3ϵ3

)
= ψk,mξk,n.

Since the proof of the result (ii) is identical to the proof of the result (i), we omit it.

Theorem 3.4. For any integers n,m and the nonzero integer t, we have

(i). ξk,n+t = ϕk,nξk,t+1 + ϕk,n−1ξk,t,

(ii). ϱk,n+t = ϕk,nϱk,t+1 + ϕk,n−1ϱk,t,

(iii). ξk,2n+t = ψk,nξk,n+t − (−1)nξk,t,

(iv). ϱk,2n+t = ψk,nϱk,n+t − (−1)nϱk,t.

Proof. According to Theorem 3.2.1 in [5], we have

ϕk,n+t = ϕk,nϕk,t+1 + ϕk,n−1ϕk,t, (15)

ψk,n+t = ϕk,nψk,t+1 + ϕk,n−1ψk,t, (16)

ϕk,2n+t = ψk,nϕk,n+t − (−1)nϕk,t, (17)

ψk,2n+t = ψk,nψk,n+t − (−1)nψk,t. (18)

Applying Definition 1.5 and Equation (15), we get

ξk,n+t = ϕk,n+t + ϕk,n+t+1ϵ1 + ϕk,n+t+2ϵ2 + ϕk,n+t+3ϵ3

= ϕk,nϕk,t+1 + ϕk,n−1ϕk,t +
(
ϕk,nϕk,t+2 + ϕk,n−1ϕk,t+1

)
ϵ1

+
(
ϕk,nϕk,t+3 + ϕk,n−1ϕk,t+2

)
ϵ2 +

(
ϕk,nϕk,t+4 + ϕk,n−1ϕk,t+3

)
ϵ3

= ϕk,n

(
ϕk,t+1 + ϕk,t+2ϵ1 + ϕk,t+3ϵ2 + ϕk,t+4ϵ3

)
+ ϕk,n−1

(
ϕk,t + ϕk,t+1ϵ1 + ϕk,t+2ϵ2 + ϕk,t+3ϵ3

)
= ϕk,nξk,t+1 − ϕk,n−1ξk,t.
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Using Equation (16) and Definition 1.5, we can write

ϱk,n+t = ψk,n+t + ψk,n+t+1ϵ1 + ψk,n+t+2ϵ2 + ψk,n+t+3ϵ3

= ϕk,nψk,t+1 + ϕk,n−1ψk,t +
(
ϕk,nψk,t+2 + ϕk,n−1ψk,t+1

)
ϵ1

+
(
ϕk,nψk,t+3 + ϕk,n−1ψk,t+2

)
ϵ2 +

(
ϕk,nψk,t+4 + ϕk,n−1ψk,t+3

)
ϵ3

= ϕk,n

(
ψk,t+1 + ψk,t+2ϵ1 + ψk,t+3ϵ2 + ψk,t+4ϵ3

)
+ ϕk,n−1

(
ψk,t + ψk,t+1ϵ1 + ψk,t+2ϵ2 + ψk,t+3ϵ3

)
= ϕk,nϱk,t+1 − ϕk,n−1ϱk,t.

The proofs of the results (iii) and (iv) are analogous to the proofs for the results (i) and (ii).

Theorem 3.5. Given two integers s and t, we have

(i). kξk,s+2t = ϕk,2tϱk,s+1 − ψk,2t−1ξk,s,

(ii). kϱk,s+2t = ϕk,2t∆ξk,s+1 − ψk,2t−1ϱk,s.

Proof. Theorem 3.2.7 of [5] allows us to write

kϕk,s+2t + ψk,2t−1ϕk,s = ϕk,2tψk,s+1, (19)

kψk,s+2t + ψk,2t−1ψk,s = ϕk,2t∆ϕk,s+1. (20)

Using Equation (19) and Definition 1.5, we have

kξk,s+2t = k
(
ϕk,s+2t + ϕk,s+2t+1ϵ1 + ϕk,s+2t+2ϵ2 + ϕk,s+2t+3ϵ3

)
= ϕk,2tψk,s+1 − ψk,2t−1ϕk,s +

(
ϕk,2tψk,s+2 − ψk,2t−1ϕk,s+1

)
ϵ1

+
(
ϕk,2tψk,s+3 − ψk,2t−1ϕk,s+2

)
ϵ2 +

(
ϕk,2tψk,s+4 − ψk,2t−1ϕk,s+3

)
ϵ3

= ϕk,2t

(
ψk,s+1 + ψk,s+2ϵ1 + ψk,s+3ϵ2 + ψk,s+4ϵ3

)
− ψk,2t−1

(
ϕk,s + ϕk,s+1ϵ1 + ϕk,s+2ϵ2 + ϕk,s+3ϵ3

)
= ϕk,2tϱk,s+1 − ψk,2t−1ξk,s.

The Definition 1.5 and Equation (20) are used to obtain

kϱk,s+2t = k
(
ψk,s+2t + ψk,s+2t+1ϵ1 + ψk,s+2t+2ϵ2 + ψk,s+2t+3ϵ3

)
= ϕk,2t∆ϕk,s+1 − ψk,2t−1ψk,s +

(
ϕk,2t∆ϕk,s+2 − ψk,2t−1ψk,s+1

)
ϵ1

+
(
ϕk,2t∆ϕk,s+3 − ψk,2t−1ψk,s+2

)
ϵ2 +

(
ϕk,2t∆ϕk,s+4 − ψk,2t−1ψk,s+3

)
ϵ3

= ϕk,2t∆
(
ϕk,s+1 + ϕk,s+2ϵ1 + ϕk,s+3ϵ2 + ϕk,s+4ϵ3

)
− ψk,2t−1

(
ψk,s + ψk,s+1ϵ1 + ψk,s+2ϵ2 + ψk,s+3ϵ3

)
= ϕk,2tξk,s+1∆− ψk,2t−1ϱk,s.

The proof of Theorem 3.5 is now complete.

Theorem 3.6. For all integers s and t, we have

(i). kξk,s+2t+1 = ψk,2t+1ξk,s+1 − ϕk,2tϱk,s
√
∆,

(ii). kϱk,s+2t+1 = ψk,2t+1ϱk,s+1 −∆ϕk,2tξk,s.
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Proof. As a result of Theorem 3.2.8 of [5], we can write

ϕk,s+2t+1 =
ψk,2t+1

k
ϕk,s+1 −

ϕk,2t

k
ψk,s

√
∆, (21)

ψk,s+2t+1 =
ψk,2t+1

k
ψk,s+1 −∆

ϕk,2t

k
ϕk,s. (22)

Equation (21) and Definition 1.5 yield

kξk,s+2t+1 = k
(
ϕk,s+2t+1 + ϕk,s+2t+2ϵ1 + ϕk,s+2t+3ϵ2 + ϕk,s+2t+4ϵ3

)
= ψk,2t+1ϕk,s+1 − ϕk,2tψk,s

√
∆+

(
ψk,2t+1ϕk,s+2 − ϕk,2tψk,s+1

√
∆
)
ϵ1

+
(
ψk,2t+1ϕk,s+3 − ϕk,2tψk,s+2

√
∆
)
ϵ2 +

(
ψk,2t+1ϕk,s+4 − ϕk,2tψk,s+3

√
∆
)
ϵ3

= ψk,2t+1

(
ϕk,s+1 + ϕk,s+2ϵ1 + ϕk,s+3ϵ2 + ϕk,s+4ϵ3

)
−

√
∆ϕk,2t

(
ψk,s + ψk,s+1ϵ1 + ψk,s+2ϵ2 + ψk,s+3ϵ3

)
= ψk,2t+1ξk,s+1 −

√
∆ϕk,2tϱk,s.

Using Definition 1.5 and Equation (22), we obtain

kϱk,s+2t+1 = k
(
ψk,s+2t+1 + ψk,s+2t+2ϵ1 + ψk,s+2t+3ϵ2 + ψk,s+2t+4ϵ3

)
= ψk,2t+1ψk,s+1 −∆ϕk,2tϕk,s +

(
ψk,2t+1ψk,s+2 −∆ϕk,2tϕk,s+1

)
ϵ1

+
(
ψk,2t+1ψk,s+3 −∆ϕk,2tϕk,s+2

)
ϵ2 +

(
ψk,2t+1ψk,s+4 −∆ϕk,2tϕk,s+3

)
ϵ3

= ψk,2t+1

(
ψk,s+1 + ψk,s+2ϵ1 + ψk,s+3ϵ2 + ψk,s+4ϵ3

)
−∆ϕk,2t

(
ϕk,s + ϕk,s+1ϵ1 + ϕk,s+2ϵ2 + ϕk,s+3ϵ3

)
= ψk,2t+1ϱk,s+1 −∆ϕk,2tξk,s.

This concludes the proof of Theorem 3.6.

Theorem 3.7. For all integers s and t, we have

(i). 4ξk,a+b+c = ψk,aψk,bξk,c + ϕk,aψk,bϱk,c + ψk,aϕk,bϱk,c + (k2 + 4)ϕk,aϕk,bξk,c,

(ii). 4ϱk,a+b+c = ψk,aψk,bϱk,c + (k2 + 4)
(
ψk,aϕk,bξk,c + ϕk,aψk,bξk,c + ϕk,aϕk,bϱk,c

)
.

Proof. As a result of Theorem 4.2.6 of [5], we have

4ϕk,a+b+c = ψk,aψk,bϕk,c + ϕk,aψk,bψk,c + ψk,aϕk,bψk,c + (k2 + 4)ϕk,aϕk,bϕk,c, (23)

4ψk,a+b+c = ψk,aψk,bψk,c + (k2 + 4)
(
ψk,aϕk,bϕk,c + ϕk,aψk,bϕk,c + ϕk,aϕk,bψk,c

)
. (24)

By applying Definition 1.5 and Equation (23), we get

4ξk,a+b+c = 4
(
ϕk,a+b+c + ϕk,a+b+c+1ϵ1 + ϕk,a+b+c+2ϵ2 + ϕk,a+b+c+3ϵ3

)
= ψk,aψk,bϕk,c + ϕk,aψk,bψk,c + ψk,aϕk,bψk,c + (k2 + 4)ϕk,aϕk,bϕk,c

+
(
ψk,aψk,bϕk,c+1 + ϕk,aψk,bψk,c+1 + ψk,aϕk,bψk,c+1 + (k2 + 4)ϕk,aϕk,bϕk,c+1

)
ϵ1

+
(
ψk,aψk,bϕk,c+2 + ϕk,aψk,bψk,c+2 + ψk,aϕk,bψk,c+2 + (k2 + 4)ϕk,aϕk,bϕk,c+2

)
ϵ2

+
(
ψk,aψk,bϕk,c+3 + ϕk,aψk,bψk,c+3 + ψk,aϕk,bψk,c+3 + (k2 + 4)ϕk,aϕk,bϕk,c+3

)
ϵ3

576



= ψk,aψk,b

(
ϕk,c + ϕk,c+1ϵ1 + ϕk,c+2ϵ2 + ϕk,c+3ϵ3

)
+ ϕk,aψk,b

(
ψk,c + ψk,c+1ϵ1 + ψk,c+2ϵ2 + ψk,c+3ϵ3

)
+ ψk,aϕk,b

(
ψk,c + ψk,c+1ϵ1 + ψk,c+2ϵ2 + ψk,c+3ϵ3

)
+ (k2 + 4)ϕk,aϕk,b

(
ϕk,c + ϕk,c+1ϵ1 + ϕk,c+2ϵ2 + ϕk,c+3ϵ3

)
= ψk,aψk,bξk,c + ϕk,aψk,bϱk,c + ψk,aϕk,bϱk,c + (k2 + 4)ϕk,aϕk,bξk,c.

The proof of the result (ii) is analogous to the proof of the result (i). Therefore, we omit it.

Theorem 3.8. Given integers a, b and c, we have

(i). ξk,a+b−1 = ξk,aϕk,b + ξk,a−1ϕk,b−1,

(ii). kξk,a+b−2 = ξk,aϕk,b − ξk,a−2ϕk,b−2,

(iii). kξk,a+b+c−3 = ξk,aϕk,bϕk,c + kξk,a−1ϕk,b−1ϕk,c−1 − ξk,a−2ϕk,b−2ϕk,c−2.

Proof. From Proposition 5 of [1], it follows that

ϕk,a+b−1 = ϕk,aϕk,b + ϕk,a−1ϕk,b−1, (25)

ϕk,a+b−2 =
1

k

(
ϕk,aϕk,b − ϕk,a−2ϕk,b−2

)
, (26)

ϕk,a+b+c−3 =
1

k

(
ϕk,aϕk,bϕk,c + kϕk,a−1ϕk,b−1ϕk,c−1 − ϕk,a−2ϕk,b−2ϕk,c−2

)
(27)

By using Equation (26) and Definition 1.5, we can write

kξk,a+b−2 = k
(
ϕk,a+b−2 + ϕk,a+b−1ϵ1 + ϕk,a+bϵ2 + ϕk,a+b+1ϵ3

)
= ϕk,aϕk,b − ϕk,a−2ϕk,b−2 +

(
ϕk,a+1ϕk,b − ϕk,a−1ϕk,b−1

)
ϵ1

+
(
ϕk,a+2ϕk,b − ϕk,aϕk,b−1

)
ϵ2 +

(
ϕk,a+3ϕk,b − ϕk,a+1ϕk,b−1

)
ϵ3

= ϕk,b

(
ϕk,a + ϕk,a+1ϵ1 + ϕk,a+2ϵ2 + ϕk,a+3ϵ3

)
− ϕk,b−2

(
ϕk,a−2 + ϕk,a−1ϵ1 + ϕk,aϵ2 + ϕk,a+1ϵ3

)
= ξk,aϕk,b − ξk,a−2ϕk,b−2.

Finally, using Definition 1.5 and Equation (27), we obtain

kξk,a+b+c−3 = k
(
ϕk,a+b+c−3 + ϕk,a+b+c−2ϵ1 + ϕk,a+b+c−1ϵ2 + ϕk,a+b+cϵ3

)
= ϕk,aϕk,bϕk,c + kϕk,a−1ϕk,b−1ϕk,c−1 − ϕk,a−2ϕk,b−2ϕk,c−2

+
(
ϕk,a+1ϕk,bϕk,c + kϕk,aϕk,b−1ϕk,c−1 − ϕk,a−1ϕk,b−2ϕk,c−2

)
ϵ1

+
(
ϕk,a+2ϕk,bϕk,c + kϕk,a+1ϕk,b−1ϕk,c−1 − ϕk,aϕk,b−2ϕk,c−2

)
ϵ2

+
(
ϕk,a+3ϕk,bϕk,c + kϕk,a+2ϕk,b−1ϕk,c−1 − ϕk,a+1ϕk,b−2ϕk,c−2

)
ϵ3

= ϕk,bϕk,c

(
ϕk,a + ϕk,a+1ϵ1 + ϕk,a+2ϵ2 + ϕk,a+3ϵ3

)
+ kϕk,b−1ϕk,c−1

(
ϕk,a−1 + ϕk,aϵ1 + ϕk,a+1ϵ2 + ϕk,a+2ϵ3

)
− ϕk,b−2ϕk,c−2

(
ϕk,a−2 + ϕk,a−1ϵ1 + ϕk,aϵ2 + ϕk,a+1ϵ3

)
= ξk,aϕk,bϕk,c + kξk,a−1ϕk,b−1ϕk,c−1 − ξk,a−2ϕk,b−2ϕk,c−2.

The proof of the result (i) is identical to that result (ii). So, we omit it.
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4 Sums of hyperbolic k-Fibonacci and k-Lucas quaternions

In this section, distinct summation identities are derived for hyperbolic k-Fibonacci and k-Lucas
quaternions.

Theorem 4.1. Let n ∈ N. Then prove that

(i).
n∑

i=0

(
n

i

)
kiξk,i = ξk,2n,

(ii).
n∑

i=0

(
n

i

)
kiϱk,i = ϱk,2n.

Theorem 4.2. Let n ∈ N. Then prove that

(i).
n∑

i=1

ξk,i =
ξk,n + ξk,n+1 − ξk,0 − ξk,1

k
,

(ii).
n∑

i=1

ϱk,i =
ϱk,n + ϱk,n+1 − ϱk,0 − ϱk,1

k
.

Proof. (i) From Theorem 2.1(i), we have

kξk,1 + ξk,0 = ξk,2,

kξk,2 + ξk,1 = ξk,3,

kξk,3 + ξk,2 = ξk,4,

...

kξk,n + ξk,n−1 = ξk,n+1.

Consequently, adding all these relations, we get

k
(
ξk,1 + ξk,2 + ξk,3 + · · ·+ ξk,n

)
+
(
ξk,0 + ξk,1 + ξk,2 + · · ·+ ξk,n−1

)
= ξk,2 + ξk,3 + ξk,4 + · · ·+ ξk,n+1,

k
(
ξk,1 + ξk,2 + ξk,3 + · · ·+ ξk,n

)
= ξk,n + ξk,n+1 − ξk,0 − ξk,1.

It gives that

n∑
i=1

ξk,i =
ξk,n + ξk,n+1 − ξk,0 − ξk,1

k
.

The proof of (ii) is analogous to (i) using Theorem 2.1(ii). Hence, we omit the proof.

Theorem 4.3. Let n ∈ N. Then prove that

(i).
n∑

i=1

ξk,2i =
ξk,2n+1 − ξk,1

k
,

(ii).
n∑

i=1

ϱk,2i =
ϱk,2n+1 − ϱk,1

k
.
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Proof. (i) From Theorem 2.1(i), we can write

kξk,2 = ξk,3 − ξk,1,

kξk,4 = ξk,5 − ξk,3,

kξk,6 = ξk,7 − ξk,5,

...

kξk,2n = ξk,2n+1 − ξk,2n−1.

Adding all these relations, we obtain

k
(
ξk,2 + ξk,4 + ξk,6 + · · ·+ ξk,2n

)
=

(
ξk,3 + ξk,5 + ξk,7 + · · ·+ ξk,2n+1

)
−

(
ξk,1 + ξk,3 + ξk,5 + · · ·+ ξk,2n−1

)
,

k
(
ξk,2 + ξk,4 + ξk,6 + · · ·+ ξk,2n

)
= ξk,2n+1 − ξk,1.

It can be written in the form
n∑

i=1

ξk,2i =
ξk,2n+1 − ξk,1

k
.

The proof of (ii) is similar to (i) using Theorem 2.1(ii). Hence, we omit the proof.

Theorem 4.4. Let n ∈ N. Then prove that

(i).
n∑

i=1

ξk,2i−1 =
ξk,2n − ξk,0

k
,

(ii).
n∑

i=1

ϱk,2i−1 =
ϱk,2n − ϱk,0

k
.

Proof. (i) From Theorem 2.1(i), we can write

kξk,1 = ξk,2 − ξk,0,

kξk,3 = ξk,4 − ξk,2,

kξk,5 = ξk,6 − ξk,4,

...

kξk,2n−1 = ξk,2n − ξk,2n−2.

By adding all these relations, we get

k
(
ξk,1 + ξk,3 + ξk,5 + · · ·+ ξk,2n−1

)
=

(
ξk,2 + ξk,4 + ξk,6 + · · ·+ ξk,2n

)
−

(
ξk,0 + ξk,2 + ξk,4 + · · ·+ ξk,2n−2

)
,

k
(
ξk,1 + ξk,3 + ξk,5 + · · ·+ ξk,2n+1

)
= ξk,2n − ξk,0.

Finally, we can write
n∑

i=1

ξk,2i−1 =
ξk,2n − ξk,0

k
.

The proof of (ii) is similar to (i), using Theorem 2.1 (ii). Hence, we omit the proof.
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Theorem 4.5. Let n ∈ N. Then prove that

n∑
i=1

(ξk,i + ϱk,i) =
1

k

(
(k + 3)ξk,n+1 − (k − 3)ξk,n − â

)
,

where

â = (k + 3) + (k2 + 2k + 3)ϵ1 + (k3 + 2k2 + 4k + 3)ϵ2 + (k4 + 2k3 + 5k2 + 5k + 3)ϵ3.

Proof. By using Theorem 4.2, we can write

n∑
i=1

(
ξk,i + ϱk,i

)
=
ξk,n + ξk,n+1 − ξk,0 − ξk,1 + ϱk,n + ϱk,n+1 − ϱk,0 − ϱk,1

k
.

Now, using Equation (4), we get

n∑
i=1

(
ξk,i + ϱk,i

)
=

1

k

(
ξk,n + ξk,n+1 + kξk,n + 2ξk,n−1 + kξk,n+1 + 2ξk,n

− ϱk,0 − ϱk,1 − ξk,0 − ξk,1
)

=
1

k

(
(k + 3)ξk,n + (k + 1)ξk,n+1 + 2ξk,n−1 − ϱk,0 − ϱk,1 − ξk,0 − ξk,1

)
.

Finally, using Equation (3), we can write

n∑
i=1

(
ξk,i + ϱk,i

)
=

1

k

(
(k + 3)ξk,n + (k + 1)ξk,n+1 + 2(ξk,n+1 − ξk,n)

− ϱk,0 − ϱk,1 − ξk,0 − ξk,1
)

=
1

k

(
(k + 3)ξk,n+1 − (k − 3)ξk,n − (k + 3) + (k2 + 2k + 3)ϵ1

+ (k3 + 2k2 + 4k + 3)ϵ2 + (k4 + 2k3 + 5k2 + 5k + 3)ϵ3

)
=

1

k

(
(k + 3)ξk,n+1 − (k − 3)ξk,n − â

)
.

This concludes the proof of Theorem 4.5.

Theorem 4.6. Let n ∈ N. Then prove that

(i).
n∑

i=1

ξ2k,i =


1
k
(ξk,nξk,n+1 − ξk,0ξk,1), if n is an even positive integer;

1
k
(ξk,n+1ξk,n − ξk,0ξk,1), if n is an even positive integer,

(28)

(ii).
n∑

i=1

ϱ2k,i =


1
k
(ϱk,nϱk,n+1 − ϱk,0ϱk,1), if n is an even positive integer;

1
k
(ϱk,n+1ϱk,n − ϱk,0ϱk,1), if n is an even positive integer.

(29)
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Proof. (i) Using Equation (3), we can write

kξ2k,1 = kξk,1ξk,1 = (ξk,2 − ξk,0)ξk,1 = ξk,2ξk,1 − ξk,0ξk,1,

kξ2k,2 = kξk,2ξk,2 = ξk,2(ξk,3 − ξk,1) = ξk,2ξk,3 − ξk,2ξk,1,

kξ2k,3 = kξk,3ξk,3 = (ξk,4 − ξk,2)ξk,3 = ξk,4ξk,3 − ξk,2ξk,3,

kξ2k,4 = kξk,4ξk,4 = ξk,4(ξk,5 − ξk,3) = ξk,4ξk,5 − ξk,4ξk,3,

kξ2k,5 = kξk,5ξk,5 = (ξk,6 − ξk,4)ξk,5 = ξk,6ξk,5 − ξk,4ξk,5,

...

k
n∑

i=1

ξ2k,n =

ξk,nξk,n+1 − ξk,nξk,n−1, if n is an even positive integer;

ξk,n+1ξk,n − ξk,n−1ξk,n, if n is an odd positive integer.

Consequently, by adding all these relations, we get

n∑
i=1

ξ2k,i =


1
k
(ξk,nξk,n+1 − ξk,0ξk,1), if n is an even positive integer;

1
k
(ξk,n+1ξk,n − ξk,0ξk,1), if n is an even positive integer.

(ii) By using Equation 4, we write

kϱ2k,1 = kϱk,1ϱk,1 = (ϱk,2 − ϱk,0)ϱk,1 = ϱk,2ϱk,1 − ϱk,0ϱk,1,

kϱ2k,2 = kϱk,2ϱk,2 = ϱk,2(ϱk,3 − ϱk,1) = ϱk,2ϱk,3 − ϱk,2ϱk,1,

kϱ2k,3 = kϱk,3ϱk,3 = (ϱk,4 − ϱk,2)ϱk,3 = ϱk,4ϱk,3 − ϱk,2ϱk,3,

kϱ2k,4 = kϱk,4ϱk,4 = ϱk,4(ϱk,5 − ϱk,3) = ϱk,4ϱk,5 − ϱk,4ϱk,3,

kϱ2k,5 = kϱk,5ϱk,5 = (ϱk,6 − ϱk,4)ϱk,5 = ϱk,6ϱk,5 − ϱk,4ϱk,5,

...

k
n∑

i=1

ϱ2k,n =

ϱk,nϱk,n+1 − ϱk,nϱk,n−1, if n is an even positive integer;

ϱk,n+1ϱk,n − ϱk,n−1ϱk,n, if n is an odd positive integer.

Again, by adding all these relations, we obtain

n∑
i=1

ϱ2k,i =


1
k
(ϱk,nϱk,n+1 − ϱk,0ϱk,1), if n is an even positive integer;

1
k
(ϱk,n+1ϱk,n − ϱk,0ϱk,1), if n is an even positive integer.

This completes the proof of Theorem 4.6.

Theorem 4.7. Let n ∈ N. Then prove that

n∑
i=1

(ξ2k,i + ϱ2k,i) =



1
k
(ξk,nξk,n+1 + ϱk,nϱk,n+1 − ξk,0ξk,1 − ϱk,0ϱk,1),

if n is an even positive integer;

1
k
(ξk,n+1ξk,n + ϱk,n+1ϱk,n − ξk,0ξk,1 − ϱk,0ϱk,1),

if n is an odd positive integer.
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5 Conclusion

The identities and summation formulas contained within not only improve our understanding of
quaternion sequences but also offer potential applications in diverse fields, including computer
graphics and quantum mechanics. By delving into these connections, scholars can uncover fresh
opportunities for employing quaternions in advanced mathematical and scientific settings.
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