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1 Introduction

The sequence of Fibonacci polynomials (Fn(x))n≥0 was introduced in [4], and is defined by the
initial conditions F0(x) = 0, F1(x) = 1, and the recurrence relation Fn+1(x) = xFn(x)+Fn−1(x)

for n ≥ 1. In the literature, there are generalizations of this well-known sequence (see, for
example, [1, 5–8, 10]), as well as applications involving these generalizations.

One important generalization is given in [10], where the authors defined the generalized
Fibonacci polynomial of order r ≥ 2, and study this sequence by using the introduced fundamental
system associated with the generalized Fibonacci polynomial of order r ≥ 2.

The generalized Fibonacci polynomials of order r ≥ 2, with initial conditions F0(x), F1(x),

. . . , Fr−1(x), is defined by the following recurrence relation:

Fn(x) = xFn−1(x) +
r−1∑
i=1

Fn−i−1(x), ∀n ≥ r. (1)

Thus, the generalized family of Fibonacci polynomials is defined by

Fr =
{(

F (s)
n (x)

)
n≥0

, 1 ≤ s ≤ r
}
, (2)

where F (s)
n (x) = xF

(s)
n−1(x)+

∑r−1
i=1 F

(s)
n−i−1(x), with initial conditions F (s)

n (x) for n = 0, 1, 2, . . . ,

r − 1 given by F
(s)
s−1(x) = 1 and F

(s)
n (x) = 0 for 0 ≤ n ̸= s− 1 ≤ r − 1.

Let (Fn(x))n≥0 be a generalized sequence of Fibonacci polynomials defined by the recursive
relation (1) and initial conditions F0(x) = α1, . . . , Fr−1(x) = αr. It was established in [10] that
Fn(x) is given by Fn(x) = α1F

(1)
n (x) + · · · + αrF

(r)
n (x), for all n ≥ 0. Moreover, the family of

Fibonacci polynomials Fr is linearly independent and form a fundamental system for the real
vector space of solutions of Equation (1). There are several properties involving this fundamental
system presented in [10]. Here we highlight some of these properties and new properties that
form the basis for presenting generating functions involving this system and an analytical study.
Moreover, the study of the asymptotic behavior of each sequence of the fundamental system permits
us to establish the asymptotic behavior of the generalized Fibonacci polynomial of order r ≥ 2.

The article is organized as follows. In Section 2, we give some preliminares results about
the fundamental system of the Fibonacci polynomials. In Section 3, we establish the generating
functions of the fundamental system and extend the results to the generalized Fibonacci polynomials
of order r ≥ 2. In Section 4, we stated an analytical study of the generalized Fibonacci polynomials
of order r ≥ 2 of type (1) in terms of the roots of characteristic polynomial associated with the
recurrence relation of sequence of type (1). Moreover, we established an asymptotic behavior of
the fundamental system and any sequence of type (1). Finally, some conclusions and remarks are
stated.

2 The fundamental system of Fibonacci polynomials

In this section, we introduces the fundamental system of Fibonacci polynomials. To do this, we
define the Casoratian matrix associated with the generalized family of Fibonacci polynomials (2)
and, as discussed in [12], the determinant of the Casoratian matrix and its relationship with the
companion matrix.
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Definition 2.1. The Casoratian matrix of the fundamental system of Fibonacci polynomials Fr is
given by the following matrix:

ĈF (n) =


F

(1)
n (x) F

(2)
n (x) · · · F

(r)
n (x)

F
(1)
n+1(x) F

(2)
n+1(x) · · · F

(r)
n+1(x)

...
... . . . ...

F
(1)
n+r−1(x) F

(2)
n+r−1(x) · · · F

(r)
n+r−1(x)

 .

The following lemma can be proven by induction.

Lemma 2.1. For each n ≥ 0, we have that (AF )
n = JF ĈF (n)JF , where JF is the antidiagonal

matrix given by JF = (cij)1≤i,j,≤r with cij = 1 for i + j = r + 1 and cij = 0, otherwise.
The companion matrix associated with the fundamental system of Fibonacci polynomials, AF , is
given by:

AF =


x 1 1 . . . 1 1

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0

 .

Note that the determinant of (AF )
n is equal to (−1)n(r+1) ̸= 0. Then the set Fr is linearly

independent. Moreover, we can prove the following proposition.

Proposition 2.1. Consider (Fn(x))n≥0 to be any sequence of polynomials of type (1), then,
Fn(x) = xFn−1(x) +

∑r−1
i=1 Fn−i−1(x), with initial conditions α1, . . . , αr. Then,

Fn(x) = α1F
(1)
n (x) + α2F

(2)
n (x) + · · ·+ αrF

(r)
n (x). (3)

Therefore, Fr is a basis for the real vector space of solutions of Equation (1), and we have the
following definition.

Definition 2.2. The fundamental system of Fibonacci polynomials is given by r copies of (1),
represented in compact form:{

F
(s)
n (x) = xF

(s)
n−1(x) + F

(s)
n−2(x) + · · ·+ F

(s)
n−r(x), n ≥ r,

F
(s)
n (x) = δs−1,n, 0 ≤ n ≤ r − 1,

where δs−1,n is a Kronecker delta defined by 1 if n = s− 1, and 0 otherwise.

First, consider some properties of the fundamental system of the generalized Fibonacci
polynomial of order r ≥ 2. Let Fr be the fundamental system of Fibonacci polynomials. Then, in
Proposition 1.6 [10], for each n ≥ 1, it holds that F (1)

n (x) = F
(r)
n−1(x). In addition, for all n ≥ j

and 1 ≤ j ≤ r − 1, we have

F (j)
n (x) =

j∑
i=1

F
(r)
n−i(x). (4)

Thus, we can establish a relationship between Fn(x), that is, any sequence of the type (1) and
F

(r)
n (x) as follows.
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Proposition 2.2. Let (Fn(x))n≥0 be a sequence of generalized Fibonacci polynomials of type (1),
with initial conditions α1, α2, . . . , αr. Then, for all n ≥ r, holds

Fn(x) =
r−1∑
i=1

(
r−1∑
j=i

αj

)
F

(r)
n−i(x) + αrF

(r)
n (x).

3 The generating functions

In this section, we will provide the generating functions for each sequence of the fundamental
system, and by using properties of this family of sequences we will derive a generating function
for a generalized Fibonacci polynomial of order r ≥ 2 of type (1).

In what follows, the generating function for each sequence of the fundamental system is given.

Theorem 3.1. The generating function F (s)(t, x) for the generalized Fibonacci polynomials is
given by

(1− xt−
r∑

n=2

tn)F (s)(t, x) =
r−1∑
n=0

F (s)
n (x)tn − xt

r−2∑
n=0

F (s)
n (x)tn − t2

r−3∑
n=0

F (s)
n (x)tn

− · · · − tr−1F
(s)
0 (x)

Proof. Consider the sequence (Fn(x))n≥0 defined by the recurrence relation:

F (s)
n (x) = xF

(s)
n−1(x) + F

(s)
n−2(x) + · · ·+ F

(s)
n−r(x), (5)

Denote F (s)(t, x) =
∑∞

n=0 F
(s)
n (x)tn. We multiply both sides of the relation (5) and sum over all

values of n ≥ r, getting

∞∑
n=r

F (s)
n (x)tn =

∞∑
n=r

(xF
(s)
n−1(x) + F

(s)
n−2(x) + · · ·+ F

(s)
n−r(x))t

n.

That is,
∞∑
n=r

F (s)
n (x)tn = x

∞∑
n=r

F
(s)
n−1(x)t

n +
∞∑
n=r

F
(s)
n−2(x)t

n + · · ·+
∞∑
n=r

F
(s)
n−r(x)t

n.

Thus, adjusting the indices and isolating F (t, x), we obtain

(1− xt−
r∑

n=2

tn)F (s)(t, x) =
r−1∑
n=0

F (s)
n (x)tn − xt

r−2∑
n=0

F (s)
n (x)tn

− t2
r−3∑
n=0

F (s)
n (x)tn − · · · − tr−1F

(s)
0 (x).

Note that, according to Equation (4), we have that F (j)
n (x) can be expressed in terms of

F
(r)
n (x). Thus, we can take s = r in the previous proposition and considering that F (s)

n (x) = δs−1,n,

for 0 ≤ n ≤ r − 1, we obtain a generating function for the generalized Fibonacci polynomials
F

(r)
n (x), which will be used in the following results.
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Corollary 3.1. The generating function for (F (r)
n (x))n≥0 is

F (r)(t, x) =
tr−1

1− xt−
∑r

n=2 t
n
. (6)

Given (Fn(x))n≥0 a sequence of generalized Fibonacci polynomials of type (1), since Fn(x) is
given in terms of sequences of the fundamental system, then we obtain the following proposition.

Proposition 3.1. Let (Fn(x))n≥0 be a sequence of generalized Fibonacci polynomials of type (1),
with initial conditions α1, α2, . . . , αr. Then, for every n ≥ 0, the generating function is defined
by

F (y, x) =
r∑

n=1

αny
nF (n)(y, x).

Proof. Consider the sequence (Fn(x))n≥0 defined by the recurrence relation:

Fn(x) = α1F
(1)
n (x) + α2F

(2)
n (x) + · · ·+ αrF

(r)
n (x), (7)

Multiply both sides of the relation (7) by yn and sum over all values of n ≥ 0:

∞∑
n=0

Fn(x)y
n = α1

∞∑
n=0

F (1)
n (x)yn + α2

∞∑
n=0

F (2)
n (x)yn + · · ·+ αr

∞∑
n=0

F (r)
n (x)yn.

Thus, we can adjust the indices and rewrite the expression in terms of each generating
function. We have:

F (y, x) = α1yF
(1)(y, x) + α2y

2F (2)(y, x) + · · ·+ αry
rF (r)(y, x) (8)

=
r∑

n=1

αny
nF (n)(y, x). (9)

This completes the proof.

In general, by Proposition 2.2 and Corollary 3.1, we get the generating function for a generalized
Fibonacci polynomial of order r ≥ 2 of type (1) in terms of the generating function of F (r)(x).

Proposition 3.2. Let (Fn(x))n≥0 be a sequence of generalized Fibonacci polynomials of type (1),
with initial conditions α1, α2, . . . , αr. Then, for every n ≥ 0, the generating function is defined
by

F (y, x) =

(
r−1∑
i=1

Ωiy
i + αr

)
F (r)(y, x) +

r−1∑
i=1

αiy
i−1,

where F (r)(y, x) is the generating function of the sequence F
(r)
n (x) and Ωi =

(∑r−1
j=i αj

)
.

Proof. Consider the sequence (Fn(x))n≥0 defined by the recurrence relation:

Fn(x) =
r−1∑
i=1

(
r−1∑
j=i

αj

)
F

(r)
n−i(x) + αrF

(r)
n (x). (10)
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By multiplying both sides of the relation (10) by yn and summing over all values of n ≥ r−1,
we obtain

∞∑
n=r−1

Fn(x)y
n =

∞∑
n=r−1

Ω1F
(r)
n−1(x)y

n + · · ·+ αr−1F
(r)
n−r+1(x)y

n + αrF
(r)
n (x)yn.

and we can rewrite the above expression in terms of F (r)(y, x) and F (y, x):

F (y, x)−
r−2∑
n=0

Fn(x)y
n = Ω1y(F

(r)(y, x)−
r−3∑
n=0

F (r)
n (x)yn) + · · ·

+ αr−1y
r−1F (r)(y, x) + αr(F

(r)(y, x)−
r−2∑
n=0

F (r)
n (x)yn).

Removing the null terms, it follows that:

F (y, x) = Ω1yF
(r)(y, x) + Ω2y

2F (r)(y, x) + · · ·

+ αr−1y
r−1F (r)(y, x) + αrF

(r)(y, x) +
r−2∑
n=0

Fn(x)y
n.

Therefore,

F (y, x) =

(
r−1∑
i=1

Ωiy
i + αr

)
F (r)(y, x) +

r−1∑
i=1

αiy
i−1,

where F (r)(y, x) is the generating function of the sequence (F
(r)
n (x))n≥0 and

Ωi =
(∑r−1

j=i αj

)
.

4 Analytical study

It is well known that the analytical formula for linear recursive sequences is related to the roots of
the associated characteristic polynomial (see, for example, [3,13]). The characteristic polynomial
associated to the generalized Fibonacci polynomial Fn(x) = xFn−1(x)+

∑r−1
i=1 Fn−i−1(x) is given

by P (t) = tr − xtr−1 − tr−2 − · · · − t− 1. It was shown in [10] that the roots of P (t) are simple
and that the number of real roots for x ≥ 1 is given by

2M , where M =

{
0, if deg(P ) is odd, where deg is the degree of P.
1, if deg(P ) is even.

For r = 2, F0(x) = 0 and F1(x) = 1, we have the well-known extension of the Binet

formula given by: Fn(x) =
αn + βn

α+ β
, where α =

x+
√
x2 + 4

2
and β =

x−
√
x2 + 4

2
are roots of

P (t) = t2 − xt− 1, its associated characteristic equation.
Thus, we can state the following proposition.

Proposition 4.1. Let Fr be the fundamental system of Fibonacci polynomials. Then for r = 2

and n ≥ r, we have: F
(2)
n (x) =

αn − βn

α− β
and F

(1)
n (x) =

αβn − βαn

α− β
, where α =

x+
√
x2 + 4

2
and

β =
x−

√
x2 + 4

2
are roots of P (t) = t2 − xt− 1.
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Consider the following results for the case of r ≥ 3.

Lemma 4.1 ([10]). Given the polynomial equation P (t) = tr − xtr−1 − tr−2 − · · · − t − 1, the
number of real roots for x ≥ 1 is given by:

2M , where M =

{
0, if deg(P ) is odd,
1, if deg(P ) is even.

Proposition 4.2 ([10]). Given the polynomial equation P (t) = tr − xtr−1 − tr−2 − · · · − t− 1,
we have that its roots are simple.

Before starting the next result, we highlight the following definition, as presented in [9].

Definition 4.1 ([9]). A matrix A ∈ Rn×n is called non-negative if each entry aij is non-negative,
and we denote this by A ≥ 0. The set of distinct eigenvalues of a matrix A, denoted by σ(A), is
called the spectrum of A. The spectral radius of a matrix A is defined by ρ(A) = maxλ∈σ(A) |λ|.

Theorem 4.1 (Perron’s Theorem [9]). If A ≥ 0, irreducible and primitive, then the following
statements are true.

• ρ(A) > 0;

• ρ(A) ∈ σ(A);

• ρ(A) is the unique eigenvalue on the spectral radius of A.

By applying Perron’s Theorem for the characteristic polynomial P (t) = det(AF−tIr), where
AF is the companion matrix associated, we obtain the next result.

Lemma 4.2. Given the polynomial equation P (t) = tr − xtr−1 − tr−2 − · · · − t− 1 with x ≥ 1,
then x1 > |xj| for j = 2, . . . , r, where x1 is the unique positive real root of P (t).

Proof. Note that AF has only real and non-negative entries, that is, AF ≥ 0 and is in fact
primitive, using the Frobenius test, taking n ≥ r. Furthermore, by construction, AF , for x > 0,

are irreducible. Thus, by Perron’s Theorem, it follows that ρ(AF ) ∈ σ(AF ), ρ(AF ) > 0 and
ρ(AF ) is the unique eigenvalue in the spectral radius of AF , that is, x1 > |xj|, for j = 2, . . . , r,
where x1 is the unique positive real root of P (t).

Now, under the previous results, we will study the asymptotic behavior of the sequences of
the fundamental system generalized Fibonacci polynomials.

Proposition 4.3. Let Fr be the fundamental system of generalized Fibonacci polynomials. Then
for r = 2 and n ≥ r, we have

lim
n→∞

F
(1)
n (x)

F
(1)
n−1(x)

= lim
n→∞

F
(2)
n (x)

F
(2)
n−1(x)

.

Proof. For r = 2, the associated characteristic polynomial is P (t) = t2 − xt− 1 = 0, with roots

z =
x+

√
x2 + 4

2
and y =

x−
√
x2 + 4

2
. Note that for any fixed x ≥ 1 ∈ R, F

(j)
n (x)

F
(j)
n−1(x)

is a positive
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real number, and

F (j)
n (x) = Aj

(
x+

√
x2 + 4

2

)n

+ Bj

(
x−

√
x2 + 4

2

)n

is a solution of F (j)
n (x)− xF

(j)
n−1(x)− F

(j)
n−2(x) = 0, with constants Aj and Bj .

Thus, the expression F
(j)
n (x)

F
(j)
n−1(x)

becomes:

Azn +Byn

Azn−1 +Byn−1
.

This can be rewritten as
Az +By (y/z)n−1

A+By (y/z)n−1 .

Noting that
∣∣y
z

∣∣ < 1, for any x ≥ 1, limn→∞ (y/z)n−1 = 0. Therefore,

lim
n→∞

Az +By
(
y
z

)n−1

A+By
(
y
z

)n−1 =
Az

A
= z =

x+
√
x2 + 4

2
.

Thus, the limit of the expression is x+
√
x2 + 4

2
.

Note that for x = 1, we have x+
√
x2 + 4

2
= Φ, where Φ is the well-known golden ratio. For

x > 1, we have x+
√
x2 + 4

2
< x+ 1. Therefore, we get:

Φ ≤ lim
n→∞

F
(1)
n (x)

F
(1)
n−1(x)

= lim
n→∞

F
(2)
n (x)

F
(2)
n−1(x)

< x+ 1.

In general, for r > 2, we have the following proposition.

Proposition 4.4. Let Fr be the fundamental system of generalized Fibonacci polynomials. Then
for each r > 2 and n ≥ r, we have

lim
n→∞

F
(1)
n (x)

F
(1)
n−1(x)

= · · · = lim
n→∞

F
(r)
n (x)

F
(r)
n−1(x)

.

Proof. Similarly, for r > 2, the associated characteristic polynomial is

P (t) = tr − xtr−1 − tr−2 − · · · − t− 1.

Let x1, . . . , xr be the roots of P (t). Then F
(j)
n (x) = Aj1x

n
1 + · · · + Ajrx

n
r is a solution of

F
(j)
n (x) = xF

(j)
n−1(x) +

∑r−1
i=1 F

(j)
n−i−1(x), with constants Aj1, . . . , Ajr.

Thus, the expression F
(j)
n (x)

F
(j)
n−1(x)

becomes

Aj1x
n
1 + · · ·+ Ajrx

n
r

Aj1x
n−1
1 + · · ·+ Ajrxn−1

r

.
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Now, we can divide both the numerator and the denominator by xn−1
1 , where x1 is the unique

positive real root:

Aj1x1 + · · ·+ Ajrxr

(
xr

x1

)n−1

Aj1 + · · ·+ Ajr

(
xr

x1

)n−1 .

Observing that
∣∣∣xj

x1

∣∣∣ < 1 for j = 2, . . . , r, by Lemma 4.2, limn→∞

(
xj

x1

)n−1

= 0. Thus, as n
increases, we get:

lim
n→∞

Aj1x1 + · · ·+ Ajrxr

(
xr

x1

)n−1

Aj1 + · · ·+ Ajr

(
xr

x1

)n−1 =
Aj1x1

Aj1

= x1.

Thus, we have the following theorem.

Theorem 4.2. Let Fr be the fundamental system of Fibonacci polynomials. Then for each fixed
r ≥ 2, 1 ≤ j ≤ r, x ≥ 1 and n > r, we have

Φ ≤ lim
n→∞

F
(j)
n (x)

F
(j)
n−1(x)

< x+ 1.

Proof. Let us now prove the inequality Φ < x1. Assume that t = x1 and r > 2. Then we have:
tr − xtr−1 − tr−2 − · · · − t− 1 = 0, and since the number t is positive, we have:

tr − xtr−1 − tr−2 > 0.

Dividing both sides by tr−2, we obtain:

t2 − xt− 1 > 0.

This inequality has the solution t >
x+

√
x2 + 4

2
. Therefore, we conclude that x1 >

x+
√
x2 + 4

2
,

therefore x1 > Φ and the equality occurs in the case r = 2.

Then, it remains only to prove the inequality x1 < x+ 1.

Here we will use Lagrange’s Theorem: If t is a positive root of a polynomial with a leading
coefficient 1, then t < 1 + |L|1/p, where L is the first coefficient with negative sign in the
polynomial, and p is the subsequent number of the position of this coefficient after the leading one.
For our particular polynomial, we have L = −x and p = 1. Then we obtain t = x1 < 1 + x.

Corollary 4.1. Let Fr = {{F (s)
n }n≥0; 1 ≤ s ≤ r} be the fundamental system of Fibonacci

numbers. Then for each r ≥ 2, 1 ≤ j ≤ r, and n > r, we have

Φ ≤ lim
n→∞

F
(j)
n

F
(j)
n−1

≤ 2.

Proposition 4.5. Let Fr be the fundamental system of generalized Fibonacci polynomials. Then
for each r ≥ 2, 1 ≤ j ≤ r, x ≥ 1 and n > r, we have

lim
x→∞

(
F

(j)
n (x)

F
(j)
n−1(x)

− x

)
= 0.
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Proof. Indeed,

F
(j)
n (x)

F
(j)
n−1(x)

− x =
F

(j)
n (x)− xF

(j)
n−1(x)

F
(j)
n−1(x)

=

∑r−1
i=1 F

(j)
n−i−2(x)

xF
(j)
n−2(x) +

∑r−1
i=1 F

(j)
n−i−2(x)

,

so, as the degree of F (j)
n−2(x) is greater than the degree of F (j)

n−3(x), . . . , F
(j)
n−r−1(x), it follows that

lim
x→∞

(
F

(j)
n (x)

F
(j)
n−1(x)

− x

)
= 0.

As seen in Figure 1, for r = 2, as we assign and increase the values of x, F
(1)
n (x)

F
(1)
n−1(x)

−x tends to

zero. For this case, we fix n = 10.

2000 4000 6000 8000 10000
x

Fn (x)

Fn-1 (x)
-x

Figure 1. Convergence of Fibonacci polynomials

Note that by Proposition 4.4 given ε > 0, there exists N1 ∈ N such that∣∣∣∣∣ F (j)
n (x)

F
(j)
n−1(x)

− x1

∣∣∣∣∣ < ε

2
, for all n > N1,

and by Proposition 4.5, given ε > 0, there exists N2 ∈ N such that∣∣∣∣∣ F (j)
n (x)

F
(j)
n−1(x)

− x

∣∣∣∣∣ < ε

2
, for all x > N2.

Let N = max{N1, N2}. Then, for all n > N and x > N, we have

|x1 − x| =

∣∣∣∣∣x1 −
F

(j)
n (x)

F
(j)
n−1(x)

+
F

(j)
n (x)

F
(j)
n−1(x)

− x

∣∣∣∣∣ ≤
∣∣∣∣∣x1 −

F
(j)
n (x)

F
(j)
n−1(x)

∣∣∣∣∣+
∣∣∣∣∣ F (j)

n (x)

F
(j)
n−1(x)

− x

∣∣∣∣∣ < ε

2
+

ε

2
= ε.

Since ε > 0 is arbitrary, we conclude that as n and x increase, |x1 − x| decreases, meaning
that x approaches the root of P (t). Therefore, we have the following result.
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Proposition 4.6. Let Fr be the fundamental system of generalized Fibonacci polynomials. Then
for r ≥ 2, 1 ≤ j ≤ r, x ≥ 1 and n > r, we have

lim
x→∞
n→∞

∣∣∣∣∣ F (j)
n (x)

F
(j)
n−1(x)

− x

∣∣∣∣∣ = 0.

In general, for any (Fn(x))n≥0 of type (1) we have the following proposition.

Proposition 4.7. Let (Fn(x))n≥0 be a sequence of generalized Fibonacci polynomials of type
(1), with initial conditions α1, α2, . . . , αr, then for all n ≥ 0. Then for each fixed r, j ≥ 1 and
n > r + 1, we have

lim
x→∞

(
Fn(x)

Fn−1(x)
− x

)
= 0.

Proof. Indeed,

Fn(x)

Fn−1(x)
− x =

α1F
(1)
n (x) + · · ·+ αrF

(r)
n (x)

α1F
(1)
n−1(x) + · · ·+ αrF

(r)
n−1(x)

− x

=
α1(F

(1)
n (x)− xF

(1)
n−1(x)) + · · ·+ αr(F

(r)
n − xF

(r)
n−1(x))(x)

α1F
(1)
n−1(x) + · · ·+ αrF

(r)
n−1(x)

=

∑r
j=1

∑r−1
i=1 αjF

(j)
n−i−1(x)

α1F
(1)
n−1(x) + · · ·+ αrF

(r)
n−1(x)

,

so, as the degree of F (j)
n−1(x) is greater than the degree of F (j)

n−2(x), . . . , F
(j)
n−r(x), for j = 1, . . . , r

it follows that

lim
x→∞

(
Fn(x)

Fn−1(x)
− x

)
= 0.

5 Conclusion

In this study, we explored additional properties of the generalized Fibonacci fundamental system,
applying it to generalized Fibonacci polynomials of type (1), that defines generalized Fibonacci
polynomials. We presented an analytical study of the fundamental system of the generalized
Fibonacci polynomial of order r ≥ 2. It established the generating function and provided the
asymptotic behavior for each sequence of the system. Moreover, the properties are extended to
any generalized Fibonacci of type (1). It seems to us that the results presented here are new in the
literature.
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