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Abstract: Euler’s totient function, φ(n), is the arithmetic function defined as the number of
positive integers less than or equal to n that are relatively prime to n. In his 1922 paper [3],
Professor R. D. Carmichael conjectured that for each positive integer n, there exists at least one
positive integer m ̸= n such that φ(m) = φ(n).

In this paper, we consider some relevant literature and explore Carmichael’s totient conjecture
for particular values of φ(n) = k. Our main consideration will be the set Xk = {n ∈ N : φ(n) = k}.
In identifying Xk for k = 2t, 2ps, 22p, and 2pq, where p and q are distinct prime numbers, we
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find that Carmichael’s conjecture holds for those select cases, provide an algorithm, and some
related results. The conjecture remains an open problem in number theory [9].
Keywords: Carmichael Conjecture, Euler totient function, Fermat chain, Fermat primes, Fibonacci
numbers, Germain primes, Integer components, Primitive prime divisors.
2020 Mathematics Subject Classification: 11A07, 11Y11.

1 Introduction

1.1 Preliminaries

Euler’s totient function, φ(n), is the arithmetic function defined as the number of positive integers
less than or equal to n that are relatively prime to n. We write

φ(n) = |{x ∈ N : 1 ≤ x ≤ n, x relatively prime to n}| ,

where N = {1, 2, 3, . . .}. For example, φ(15) = 8 because |{1, 2, 4, 7, 8, 11, 13, 14}| = 8.
We state the following properties of φ for reference as they are used throughout the paper.

The reader is directed to Chapter 7 of [23] for further properties and proofs.

Proposition 1.1.1. If p is a prime number and a is a positive integer, then

φ(pa) = pa − pa−1 = pa
(
1− 1

p

)
= pa−1(p− 1).

Proposition 1.1.2. If m and n are relatively prime positive integers, then

φ(mn) = φ(m)φ(n).

Proposition 1.1.3. Let n = pa11 pa22 · · · parr be the prime-power factorization of the positive integer
n. Then

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pr

)
.

Corollary 1.1.4. Let n = pa11 pa22 · · · parr be the prime-power factorization of the positive integer
n. Then

n =
φ(n)

(p1 − 1)(p2 − 1) · · · (pr − 1)
· p1p2 · · · pr.

Corollary 1.1.4 is the main tool we will use to study Carmichael’s totient conjecture.

Proposition 1.1.5. Let a and b be positive integers, and d = gcd(a, b). Then

φ(ab) = d · φ(a)φ(b)
φ(d)

.
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Proof. Let a and b be positive integers, and d = gcd(a, b). Then

φ(ab) = ab ·
∏
p|ab

(
1− 1

p

)

= ab ·

∏
p|a

(
1− 1

p

)
·
∏

p|b

(
1− 1

p

)
∏

p|d

(
1− 1

p

)
= d ·

a
∏

p|a

(
1− 1

p

)
· b
∏

p|b

(
1− 1

p

)
d
∏

p|d

(
1− 1

p

)
= d · φ(a)φ(b)

φ(d)
,

as desired.

Proposition 1.1.5 takes Proposition 1.1.2 as a special case. To see this, let the gcd(a, b) = 1.

Proposition 1.1.6. If m and n are positive integers with m | n, then

φ(m) | φ(n).

We saw previously that φ(15) = 8, and in addition, φ(20) = 8 because

|{1, 3, 7, 9, 11, 13, 17, 19}| = 8.

Hence, the equation φ(n) = 8 has at least two solutions.
Fix a positive integer k. We denote the set of solutions of the equation φ(n) = k by

Xk = {n ∈ N : φ(n) = k} .

Moving forward, we refer to the number of solutions of the equation φ(n) = k as |Xk|.
Table 1 lists Xk for all k ≤ 50, and we see that |X8| = 5. Alois Pichler gave a similar table for
all k ≤ 200 in [19].

The general observation that |Xk| = 0 or |Xk| ≥ 2 [10,17,21,22,28] is the basis of this paper
and Carmichael’s totient conjecture [3]. The statement of Carmichael’s totient conjecture is as
follows.

Carmichael’s totient conjecture. For each positive integer n, there exists at least one
positive integer m ̸= n such that φ(m) = φ(n).

In what follows, we provide a brief history of the investigation of Carmichael’s totient
conjecture. Beginning in 1908, Carmichael tabulated all the solutions of φ(n) = k for k ≤ 1000

in the American Journal of Mathematics [1]. Wegner and Savitzky [32] later corrected this
table of Carmichael and extended it to k = 1978 by computer. In 1947, Klee [12] showed that
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Carmichael’s conjecture is valid below k = 10400, which extended the result of 1037 given in [3].
The lower bound for a counterexample was further extended to 1010,000 by Masai and Valette [15]
in 1982. In 1994, Schlafly and Wagon [25] showed that Carmichael’s conjecture is valid below
1010,000,000. In 1998, Ford [6] sharpened earlier work to show that any exception to this conjecture
must exceed 1010

10 . Grosswald [7] has proved that if there is a unique solution for φ(n) = k, then
32 | k. Donnelly [5] and Pomerance [21] have extended the study of this particular problem. For
a comprehensive review of earlier known results the reader is referred to Sivaramakrishnan [26].
Some authors have tended to focus on particular cases of Xk [16,18,29]. Schinzel [24], in effect,
deduced that for every k > 1, there exist infinitely many numbers mk such that φ(x) = mk

has exactly k solutions. Other authors have considered critical reviews of open problems in the
literature [4, 9, 13, 30, 31].

The conjecture is proven for all odd positive integers; see Proposition 1.1.7.

Proposition 1.1.7. If n is an odd positive integer, then φ(n) = φ(2n).

Proof. Since φ is multiplicative,

φ(2n) = φ(2)φ(n) = 1 · φ(n) = φ(n).

Additionally, we note that the unique odd positive integer k for which Xk ̸= {} is k = 1, and
X1 = {1, 2}. All other integers k for which Xk ̸= {} are even by Proposition 1.1.8.

Proposition 1.1.8. If n is a positive integer, then φ(n) = 1 or φ(n) is even.

Proof. If n = 1 or 2, then φ(n) = 1. Let n = pa11 pa22 · · · parr be the prime-power factorization of
the positive integer n > 2. That is, p1 < p2 < · · · < pr are prime numbers, and ai are positive
integers for all i = 1, 2, . . . . , r.

If n is even, then φ(n) is even by Proposition 1.1.3. If n is odd, then for each i = 1, 2, . . . , r,
pi is odd. Since pi is odd, pi − 1 is even, and so

φ(n) =
r∏

i=1

φ (paii ) =
r∏

i=1

pai−1
i (pi − 1)

is even. Thus, φ(n) = 1 or φ(n) is even.

We conclude that Xk is empty for all odd k ≥ 3 and only need to consider

k = 2µ
r∏

i=1

paii ,

where µ is a positive integer, p1 < p2 < · · · < pr are odd prime numbers, and ai are positive
integers for all i = 1, 2, . . . , r. Note that this does not imply that Xk ̸= {} if k is an even positive
integer. It can be seen directly in Table 1 that there are even integers for which Xk = {}; the
smallest of these is k = 14.
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Table 1. Xk = {n ∈ N : φ(n) = k} for all k ≤ 50

k |Xk| Xk

1 2 {1, 2}
2 3 {3, 4, 6}
4 4 {5, 8, 10, 12}
6 4 {7, 9, 14, 18}
8 5 {15, 16, 20, 24, 30}
10 2 {11, 22}
12 6 {13, 21, 26, 28, 36, 42}
14 0 ∅ ≡ {}
16 6 {17, 32, 34, 40, 48, 60}
18 4 {19, 27, 38, 54}
20 5 {25, 33, 44, 50, 66}
22 2 {23, 46}
24 10 {35, 39, 45, 52, 56, 70, 72, 78, 84, 90}
26 0 ∅
28 2 {29, 58}
30 2 {31, 62}
32 7 {51, 64, 68, 80, 96, 102, 120}
34 0 ∅
36 8 {37, 57, 63, 74, 76, 108, 114, 126}
38 0 ∅
40 9 {41, 55, 75, 82, 88, 100, 110, 132, 150}
42 4 {43, 49, 86, 98}
44 3 {69, 92, 138}
46 2 {47, 94}
48 11 {65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210}
50 0 ∅

Furthermore, the question of which positive integers k for which Xk is empty has been
answered by Vassilev-Missana in [31]. The result is the following:

“ Theorem 2. When the number A is given by

A = 2g ·
r∏

i=1

qBi
i ,

g = 1 and r ≥ 2, then the equation φ(x) = A does not have solutions iff the following two
conditions are valid simultaneously:

1. qr ̸= A/qBr
r + 1

2. The number A+ 1 is a composite one. ”
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From Proposition 1.1.3 and Table 1, we have the following observations.

Proposition 1.1.9. For any prime number x or x = 1 and for any prime number p ̸= x, we have
the following chain for the pairs (x, (p− 1)pik), where k = φ(x) and i = 0, 1, 2, . . . :

x| px p2x p3x p4x · · ·
k = φ(x)| (p− 1)k (p− 1)pk (p− 1)p2k (p− 1)p3k · · ·

. (1)

Proof. Let p be a prime number, and let x ̸= p be a prime number or x = 1. Since φ is
multiplicative, we have φ(pαx) = φ(pα)φ(x) = (p− 1)pα−1φ(x), which implies chart (1).

Example 1.1. If x = 1 and p = 2, then φ(1) = 1 and

α| 0 1 2 3 4 5 6 · · ·
2α · 1| 1 2 4 8 16 32 64 · · ·
φ(2α)| 1 1 2 4 8 16 32 · · ·

. (2)

If x = 1 and p = 3, then φ(1) = 1 and

α| 0 1 2 3 4 5 · · ·
3α · 1| 1 3 9 27 81 243 · · ·
φ(3α)| 1 2 6 18 54 162 · · ·

. (3)

If x = 2 and p = 3, then φ(2) = 1 and

α| 0 1 2 3 4 · · ·
3α · 2| 2 6 18 54 162 · · ·

φ(3α · 2)| 1 2 6 18 54 · · ·
. (4)

Proposition 1.1.10. For any positive integers x = Πr
i=1p

αi
i and y = Πr

i=1p
βi

i , where αi ≥ 1 and
βi ≥ 0, we have

φ(xy) = yφ(x). (5)

Proof. It is sufficient to prove (5) for y = pj , where 1 ≤ j ≤ r. From Proposition 1.1.3, we have

φ(xpj) = pjxΠ
r
i=1

(
1− 1

pi

)
= pjφ(x).

In Proposition 1.1.10, we do not need y | x; instead, we only need that each prime factor of y
is also a prime factor of x. In particular, if y | x, we immediately have the following corollary.

Corollary 1.1.11. For any positive integers x and t with t | x, we have φ(tx) = tφ(x).

Example 1.2. Let φ(x) = k, and let t | x. Then

α| 0 1 2 3 4 · · ·
tα · x| x tx t2x t3x t4x · · ·

φ(tα · x)| k tk t2k t3k t4k · · · .
(6)
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In particular, if t = x, then

α| 1 2 3 4 5 · · ·
xα| x x2 x3 x4 x5 · · ·

φ(xα)| k xk x2k x3k x4k · · · .
(7)

Theorem 1.1.12. Fix an arbitrary k ∈ N. Let n ∈ Xk and c ∈ N such that c|n and c|k. Then:
(i) φ(cn) = ck, and

(ii) φ
(
n
c

)
= k

c
whenever c|n

c
and 2|k

c
.

Proof. Part (i) follows directly from Corollary 1.1.11. To see this, identify t in the corollary with
c of the theorem.

To show part (ii), we use Proposition 1.1.5. We write

φ(n) = φ
(c
c
· n
)
= φ

(
c · n

c

)
.

Since c|n, we have n
c

is a positive integer. Since c|n
c
, we have gcd

(
c, n

c

)
= c. Then by Proposition

1.1.5,

φ
(
c · n

c

)
= c ·

φ(c)φ
(
n
c

)
φ(c)

= c · φ
(n
c

)
.

Thus,
φ(n) = c · φ

(n
c

)
= k,

or equivalently,

φ
(n
c

)
=

k

c

as desired.

Example 1.3 Consider X24 = {35, 39, 45, 52, 56, 70, 72, 78, 84, 90}. Here k = 24.
a. Let n = 84 and c = 4. We have c|n and c|k. Since φ(n) = 24, we conclude φ(cn) =

φ(336) = 96 = ck by part (i) of the theorem.

b. Let n = 72 and c = 2. We have c|n, c|k, n
c
= 36, and k

c
= 12. Since c|n

c
and 2|k

c
, we

conclude that φ(36) = 12 by part (ii) of the theorem.

c. Let n = 90 and c = 3. We have c|n, c|k, n
c
= 30, and k

c
= 8. Since c|n

c
and 2|k

c
, we

conclude that φ(30) = 8 by part (ii) of the theorem.

2 Main results

Fix a positive integer k. Given the equation φ(n) = k, we aim to determine the set

Xk = {n ∈ N : φ(n) = k}

and provide conditions for which it is empty.

In [8], Hansraj Gupta shows that any nonempty set Xk is bounded both above and below. We
state these results as Propositions 2.0.1 and 2.0.2.
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Proposition 2.0.1. Let k be a positive integer and p a prime number. Define

U(k) = k ·
∏

(p−1)|k

p

p− 1
.

If x ∈ Xk, then k ≦ x ≦ U(k).

Proof. Let x ∈ Xk. We have k ≦ x by the definition of Xk. From Corollary 1.1.4, it follows that

x

φ(x)
=
∏
p|x

p

p− 1
.

If p | x, then φ(p) | φ(x); that is, p− 1 | k. However, if p− 1 | k, then p may or may not divide
x. Hence, ∏

p|x

p

p− 1
≦
∏
p−1|k

p

p− 1
,

and so
x

φ(x)
≦
∏
p−1|k

p

p− 1
.

Multiplying both sides of the inequality by k, we obtain x ≦ U(k) as desired.

Proposition 2.0.2. Let Pj denote the product of the first j prime numbers. If x ∈ Xk and
Pj ≦ x < Pj+1, then x ≦ k · Pj

(p1−1)(p2−1)(p3−1)···(pj−1)
.

Proof. Let x ∈ Xk such that Pj ≦ x < Pj+1. From Corollary 1.1.4, it follows that

x

φ(x)
=
∏
p|x

p

p− 1
.

Since ∏
p|x

p

p− 1
≦

Pj

(p1 − 1)(p2 − 1)(p3 − 1) · · · (pj − 1)
,

we have the desired inequality after multiplying both sides by k.

In this way, Xk can be determined by calculating φ(x) for each x in the range of
k ≦ x ≦ U(k). Another method proposed by Gupta utilizes the sets Xk/φ(pd); see Section 4
in [8]. However, this requires that Xi are available for all i < k.

In what follows, we offer another approach by considering the arbitrary prime-power
factorization of k and checking the prime combinations for a solution n.

2.1 Case 1: The set X2t and Fermat primes

Suppose that we are tasked to find all positive integers n such that φ(n) = 2t for some positive
integer t. Then, as in Corollary 1.1.4 with the identification φ(n) = 2t, n satisfies

n =
2t

(p1 − 1)(p2 − 1) · · · (pr − 1)
· p1p2 · · · pr.
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From here, we can find candidates for di = pi − 1 and hence for pi. For each pi, it follows
that pi − 1 | 2t by Proposition 1.1.5. Then, the aforementioned candidates are d1 = 1, d2 = 2,
and, in general, di = 2αi , where αi = 0, 1, . . . , t. The same pi = di + 1 must be prime. Hence,
p1 = 2, p2 = 3, and, in general, pi = 2αi + 1. In summary, we have

n = 2s
r∏

i=1

(2αi + 1) ,

where s ≧ 0 and 2αi + 1 is a prime number.
Furthermore, it is known that if 2αi + 1 is a prime number and αi > 0, then αi must be a

power of two, and so 2αi + 1 are Fermat primes [2]. The only known Fermat primes are F0 = 3,
F1 = 5, F2 = 17, F3 = 257, and F4 = 65537. Therefore, n may be written as

n = 2a · F b
0 · F c

1 · F d
2 · F e

3 · F
f
4 = 2a · 3b · 5c · 17d · 257e · 65537f , (1)

where 0 ≦ a ≦ t+ 1, and b, c, d, e, f ∈ {0, 1}.
Let us assume that n is of the form (1). Then, for each integer a in the range of 0 ≦ a ≦ t+1,

we can obtain a Diophantine equation corresponding to exactly one value of n as follows:
If a = 0, then

2t = φ(n) = φ
(
2a · 3b · 5c · 17d · 257e · 65537f

)
= φ

(
3b
)
· φ (5c) · φ

(
17d
)
· φ (257e) · φ

(
65537f

)
= 22

0b · 221c · 222d · 223e · 224f

= 2b · 22c · 24d · 28e · 216f

= 2b+2c+4d+8e+16f ,

yielding the Diophantine equation

t = b+ 2c+ 4d+ 8e+ 16f. (2)

The solution to this equation provides the odd element of X2t whereas the next provides the even
elements.

If 0 < a ≦ t+ 1, then

2t = φ(n) = φ
(
2a · 3b · 5c · 17d · 257e · 65537f

)
= φ (2a) · φ

(
3b
)
· φ (5c) · φ

(
17d
)
· φ (257e) · φ

(
65537f

)
= 2a−1 · 220b · 221c · 222d · 223e · 224f

= 2a−1 · 2b · 22c · 24d · 28e · 216f

= 2(a−1)+b+2c+4d+8e+16f ,

yielding the Diophantine equation

t = (a− 1) + b+ 2c+ 4d+ 8e+ 16f. (3)

Therefore, we have a method to determine t+2 distinct values for n, one of which is odd and
the remaining t+ 1 are even. This verifies with the result of [7] that |X2t | = min{t+ 2, 32}.

The following example demonstrates how we identify X2t using (1), (2), and (3).
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Example 2.1. Let us identify X512. Noting that 512 = 29, by (1), n ∈ X512 is of the form

n = 2a · 3b · 5c · 17d · 257e,

where 0 ≦ a ≦ 10 and b, c, d, e ∈ {0, 1}. If a = 0, then by (2),

b+ 2c+ 4d+ 8e = 9,

which has the solution b = e = 1, c = d = 0. This implies that n = 31 · 2571 = 771. If a = 1,
then by (3)

b+ 2c+ 4d+ 8e = 9,

which has the solution b = e = 1, c = d = 0. This implies that n = 21 · 31 · 2571 = 1542.
If a = 2, then by (3)

b+ 2c+ 4d+ 8e = 8,

which has the solution b = c = d = 0, e = 1. This implies that n = 22 · 2571 = 1028. If a = 3,
then by (3)

b+ 2c+ 4d+ 8e = 7,

which has the solution b = c = d = 1, e = 0. This implies that n = 23 · 31 · 51 · 161 = 2040.
If a = 4, then by (3),

b+ 2c+ 4d+ 8e = 6,

which has the solution b = e = 0, c = d = 1. This implies that n = 24 · 51 · 171 = 1360. If a = 5,
then by (3),

b+ 2c+ 4d+ 8e = 5,

which has the solution b = c = 1, d = e = 0. This implies that n = 25 · 31 · 171 = 1632. If a = 6,
then by (3),

b+ 2c+ 4d+ 8e = 4,

which has the solution b = c = e = 0, d = 1. This implies that n = 26 · 171 = 1088. If a = 7,
then by (3)

b+ 2c+ 4d+ 8e = 3,

which has the solution b = c = 1, d = e = 0. This implies that n = 27 · 31 · 51 = 1920. If a = 8,
then by (3),

b+ 2c+ 4d+ 8e = 2,

which has the solution b = d = e = 0, c = 1. This implies that n = 28 · 51 = 1280. If a = 9,
then by (3)

b+ 2c+ 4d+ 8e = 1,

which has the solution b = 1, c = d = e = 0. This implies that n = 29 · 31 = 1536. If a = 10,
then by (3)

b+ 2c+ 4d+ 8e = 0,

which has the solution b = c = d = e = 0. This implies that n = 210 = 1024.
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Algorithms

Given a positive integer t, we can now identify the set X2t by solving (2) and (3) for all a in the
range of 0 ≦ a ≦ t+1. The following Algorithm 1 is our initial attempt to find all such solutions.

Input: An empty list N and a positive integer t.

Algorithm 1 preimageEulerPhi (N, t)

1: for a← 0 to t+ 1 do
2: // Assumes a solution to (2) or (3) exists and finds by brute force
3: for f ← 0, 1 do
4: for e← 0, 1 do
5: for d← 0, 1 do
6: for c← 0, 1 do
7: for b← 0, 1 do
8: if a, b, c, d, e, f satisfies (2) or (3) then
9: n← 2a · 3b · 5c · 17d · 257e · 65537f

10: Append n to N

11: goto label
12: end if
13: end for
14: end for
15: end for
16: end for
17: end for
18: label
19: end for

We observe that t = b+2c+4d+8e+16f ≦ 31 and t−(a−1) = b+2c+4d+8e+16f ≦ 31

because b, c, d, e, f ∈ {0, 1}. Hence, (2) and (3) have solutions whenever

(i) a = 0 and t ≦ 31 and (ii) 0 < a ≦ t+ 1 and t− (a− 1) ≦ 31, respectively.

This means that we are performing excess checks if t > 31. We modify Algorithm 1 in the
following way to reduce this number.

Algorithm 2 preimageEulerPhi (N, t)

1: for a← 0 to t+ 1 do
2: if [a == 0 and t ≦ 31] or [a ≦ t+ 1 and t− (a− 1) ≦ 31] then ▷ Modification
3: Algorithm 1 ▷ Lines 2 through 18
4: end if
5: end for
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We next visit a familiar problem. Recall the 0/1 knapsack problem, that is, given a set of
positive integers a1, a2, . . . , an and an integer s, we want to find x1, x2, . . . , xn ∈ {0, 1} such that

s = a1x1 + a2x2 + · · ·+ anxn.

With this in mind, we see that the problems posed in (2) and (3) are, in fact, 0/1 knapsack
problems. In Algorithms 1 and 2, we solved these by implementing a brute-force method.
Alternatively, we observe that the sequence (an) = (1, 2, 4, 8, 16) satisfies the inequality

j−1∑
i=1

ai < aj for all j = 2, 3, . . . , n.

This means that (an) is a super-increasing sequence. Rosen [23] provides an algorithm to easily
solve knapsack problems for such sequences. We implement it as follows in Algorithm 3.

Input: A list A whose elements are the terms of a super-increasing sequence (in increasing order),
positive integers s and n, which are the sum and number of terms in the sequence, respectively,
and an empty list X that will contain the solution x1, x2, . . . , xn.

Algorithm 3 knapsackSuperInc (A, s, n, X)

1: if A [n] ≤ s then
2: X [n]← 1

3: else
4: X [n]← 0

5: end if
6: for j ← n− 1 to 1 do
7: if A [j] ≤ s−

∑n
i=j+1 X [i]A [i] then

8: X [j]← 1

9: else
10: X [j]← 0

11: end if
12: end for

Then, we further modify our Algorithm 2 by replacing the brute-force method of Algorithm 1
with Algorithm 3. See Algorithm 4.
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Algorithm 4 preimageEulerPhi (N, t)

1: A = (1, 2, 4, 8, 16)

2: Declare an array X of 5 integers
3: for a← 0 to t+ 1 do
4: if [a == 0 and t ≤ 31] or [a ≤ t+ 1 and t− (a− 1) ≤ 31] then
5: if a == 0 then
6: knapsackSuperInc(A, t, 5, X)

7: else
8: knapsackSuperInc(A, t− a+ 1, 5, X)

9: end if
10: n← 2a · 3X[1] · 5X[2] · 17X[3] · 257X[4] · 65537X[5]

11: Append n to N

12: end if
13: end for

Lastly, we note that solving equations (2) and (3) is akin to finding the base-2 representations
of t and t − a + 1, respectively. That is to say, this representation returns b, c, d, e, and f , the
same array of integers X from Algorithm 4. Consequently, we may interchange the knapsack
super-increasing sequence method with another base-10 to base-2 conversion method.

We conclude this section with some further results about the set X2t .

Theorem 2.1.2. If n ∈ X2t and n is an even number, then 2n ∈ X2t+1 , and conversely.

Proof. Since gcd(2, n) = 2, we have φ(2n) = 2φ(n) = 2t+1.

Remark 1. This can alternatively be seen as a corollary of the previous result. See Corollary
1.1.11.

Assume that we have the set X2t available. Then, using Theorem 2.1.2, we can find most even
elements of X2t+1 . To find the odd element, set a = 0 in (2). Then, the remaining even element
is found using Proposition 1.1.7. We demonstrate this in the next example.

Example 2.2. We begin by considering X1 = {1, 2}. 2 ∈ X2, so 4 ∈ X2. Solving (2) with t = 1,
we find 3 ∈ X2. Then 6 ∈ X2. Thus, X2 = {3, 4, 6}.

4, 6 ∈ X2, so 8, 12 ∈ X4. Solving (2) with t = 2, we find 5 ∈ X4. Then 10 ∈ X4. Thus,
X4 = {5, 8, 10, 12}.

8, 10, 12 ∈ X4, so 16, 20, 24 ∈ X8. Solving (2) with t = 3, we find 15 ∈ X8. Then 30 ∈ X8.
Thus, X8 = {15, 16, 20, 24, 30}.

16, 20, 24, 30 ∈ X8, so 32, 40, 48, 60 ∈ X16. Solving (2) with t = 4, we find 17 ∈ X16. Then
34 ∈ X16. Thus, X16 = {17, 32, 34, 40, 48, 60}.

More generally, we have

Theorem 2.1.4. If n ∈ X2t and n is an even number, then 2a · n ∈ X2a+t for all 1 ≦ a ≦ t.
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Proof. Let d = gcd(2a,m). Since m is an even number, we can write m = 2kb, where k ∈ N and
gcd(2, b) = 1. Notice that d = min{2a, 2k}. If d = 2a, then

φ(2a ·m) = d · φ(2
a)φ(m)

φ(d)
= 2a · 2

a−1 · 2t

2a−1
= 2a+t.

If d = 2k, then

φ(2a ·m) = d · φ(2
a)φ(m)

φ(d)
= 2k · 2

a−1 · 2t

2k−1
= 2a+t.

2.2 Case 2: The set X2ps

In this section, we investigate the set X2ps for some odd prime number p and positive integer s.
Alois Pichler mentions [4] that X2ps = {} for all positive integers s whenever p > 3 and 2ps + 1

is not prime. We verify this for X2ps for s = 1, 2, 3, and 4 in the following theorems.

Theorem 2.2.1. Let p be an odd prime number such that p ̸= 3. If 2p + 1 is prime, then
X2p = {2p+ 1, 4p+ 2}. If 2p+ 1 is not prime, then X2p = {}.

For the sake of completeness, in the case that p = 3, we have X6 = {7, 9, 14, 18}.

Proof. Let p be an odd prime number such that p ̸= 3. Suppose that 2p+ 1 is prime. If X2p ̸= {},
then there exists an n ∈ X2p such that φ(n) = 2p. Then, as in Corollary 1.1.4 with the
identification φ(n) = 2p, n satisfies

n =
2p

(p1 − 1)(p2 − 1) · · · (pr − 1)
· p1p2 · · · pr.

From here, we can find candidates for di = pi − 1 and hence for pi. For each pi, it follows
that pi − 1 | 2p by Proposition 1.1.5. We look to the positive divisors of 2p (that is, 1, 2, p, and
2p). Then, the aforementioned candidates are d1 = 1, d2 = 2, d3 = p, and d4 = 2p. The same
pi = di + 1 must be prime. Hence, p1 = 2, p2 = 3, and p3 = 2p + 1 are the candidate prime
factors of n. This leads to the following cases:

i. If p1 = 2 is the only prime factor of n, then

n =
2p

1
· 2 = 22 · p

so that
φ(n) = φ(22 · p)

= φ(22) · φ(p)
=
(
22 − 21

)
(p− 1)

= 2p− 2.

Since φ(n) = 2p, we have φ(n) = 2p = 2p− 2, which implies that 0 = 2. Hence, there is
no such n.
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ii. If p2 = 3 is the only prime factor of n, then

n =
2p

2
· 3 = 3 · p

so that
φ(n) = φ(3 · p)

= φ(3) · φ(p) (p ̸= 3)

= (3− 1) (p− 1)

= 2p− 2.

Since φ(n) = 2p, we have φ(n) = 2p = 2p− 2, which implies that 0 = 2. Hence, there is
no such n.

iii. If p3 = 2p+ 1 is the only prime factor of n, then

n =
2p

2p
· (2p+ 1) = 2p+ 1

so that
φ(n) = φ(2p+ 1)

= 2p.

iv. If p1 = 2 and p2 = 3 are the only prime factors of n, then

n =
2p

1 · 2
· (2 · 3) = 2 · 3 · p

so that
φ(n) = φ(2 · 3 · p)

= φ(2) · φ(3) · φ(p) (p ̸= 3)

= (2− 1) (3− 1)(p− 1)

= 2p− 2.

Since φ(n) = 2p, we have φ(n) = 2p = 2p− 2, which implies that 0 = 2. Hence, there is
no such n.

v. If p1 = 2 and p2 = 2p+ 1 are the only prime factors of n, then

x =
2p

1 · 2p
· [2 · (2p+ 1)] = 2 · (2p+ 1) = 4p+ 2

so that
φ(n) = φ (2 · (2p+ 1))

= φ(2) · φ(2p+ 1)

= (2− 1) (2p+ 1− 1)

= 2p.
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vi. If p1 = 3 and p2 = 2p+ 1 are the only prime factors of n, then

n =
2p

2 · 2p
· [3 · (2p+ 1)] =

1

2
· [3 · (2q + 1)] ,

which is a contradiction as n /∈ N. Hence, there is no such n.

vii. If p1 = 2, p2 = 3, and p3 = 2p+ 1 are the only prime factors of n, then

n =
2p

1 · 2 · 2p
· [2 · 3 · (2p+ 1)] = 3 · (2p+ 1)

so that
φ(n) = φ (3 · (2p+ 1))

= φ(3) · φ(2p+ 1)

= (3− 1) (2p+ 1− 1)

= 4p.

Since φ(n) = 2p, we have φ(n) = 2p = 4p, which implies that p = 0. This is a
contradiction. Hence, there is no such n.

Thus, if 2p + 1 is prime, then n = 2p + 1 or n = 4p + 2, that is, X2p = {2p + 1, 4p + 2}.
Otherwise, if 2p + 1 is not prime, we may discard the cases assuming so, and observe that there
are then no such n, that is, X2p = {}.

Next, we consider X2p2 . Using the same method as in the proof of Theorem 2.2.1, we have

Theorem 2.2.2. Let p be an odd prime number such that p ̸= 3. If 2p2 + 1 is not prime, then
X2p2 = {}.

Proof. Let p be an odd prime number such that p ̸= 3. Suppose that 2p2 + 1 is not prime. For
the sake of contradiction, suppose that X2p2 ̸= {}. Then, there exists an n ∈ X2p2 such that
φ(n) = 2p2. As in Corollary 1.1.4 with the identification φ(n) = 2p2, n satisfies

n =
2p2

(p1 − 1)(p2 − 1) · · · (pr − 1)
· p1p2 · · · pr.

From here, we can find candidates for di = pi − 1 and hence for pi. For each pi, it follows
that pi − 1 | 2p2 by Proposition 1.1.5. We look to the positive divisors of 2p2 (that is, 1, 2, p, 2p,
p2 and 2p2). Then, the aforementioned candidates are d1 = 1, d2 = 2, d3 = p, d4 = 2p, d5 = p2,
and d6 = 2p2. The same pi = di + 1 must be prime. Hence, p1 = 2, p2 = 3, and p3 = 2p + 1

(provided that 2p + 1 is prime) are the candidate prime factors of n. This leads to the following
cases:

i. If p1 = 2 is the only prime factor of n, then

n =
2p2

1
· 2 = 22 · p2
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so that
φ(n) = φ(22 · p2)

= φ(22) · φ(p2)
=
(
22 − 21

)
(p2 − p1)

= 2p2 − 2p.

Since φ(n) = 2p2, we have φ(n) = 2p2 = 2p2 − 2p, which implies that 2p = 0. This is a
contradiction. Hence, there is no such n.

ii. If p1 = 3 is the only prime factor of n, then

n =
2p2

2
· 3 = 3 · p2

so that
φ(n) = φ(3 · p2)

= φ(3) · φ(p2)
= (3− 1) (p2 − p1)

= 2p2 − 2p.

Since φ(n) = 2p2, we have φ(n) = 2p2 = 2p2 − 2p, which implies that 2p = 0. This is a
contradiction. Hence, there is no such n.

iii. If p1 = 2p+ 1 is the only prime factor of n, then

n =
2p2

2p
· (2p+ 1) = p · (2p+ 1)

so that
φ(n) = φ (p · (2p+ 1))

= φ(p) · φ(2p+ 1)

= (p− 1) (2p+ 1− 1)

= (p− 1) · 2p
= 2p2 − 2p.

Since φ(n) = 2p2, we have φ(n) = 2p2 = 2p2 − 2p, which implies that 2p = 0. This is a
contradiction. Hence, there is no such n.

iv. If p1 = 2 and p2 = 3 are the only prime factors of n, then

n =
2p2

1 · 2
· (2 · 3) = 2 · 3 · p2

so that
φ(n) = φ

(
2 · 3 · p2

)
= φ(2) · φ(3) · φ(p2)
= (2− 1) (3− 1)(p2 − p)

= 2p2 − 2p.

Since φ(n) = 2p2, we have φ(n) = 2p2 = 2p2 − 2p, which implies that 2p = 0. This is a
contradiction. Hence, there is no such n.
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v. If p1 = 2 and p2 = 2p+ 1 are the only prime factors of n, then

n =
2p2

1 · 2p
· [2 · (2p+ 1)] = 2 · p · (2p+ 1)

so that
φ(n) = φ (2 · p · (2p+ 1))

= φ(2) · ϕ(p) · φ(2p+ 1)

= (2− 1) (p− 1)(2p+ 1− 1)

= 2p2 − 2p.

Since φ(n) = 2p2, we have φ(n) = 2p2 = 2p2 − 2p, which implies that 2p = 0. This is a
contradiction. Hence, there is no such n.

vi. If p1 = 3 and p2 = 2p+ 1 are the only prime factors of n, then

n =
2p2

2 · 2p
· [3 · (2p+ 1)] =

p

2
· 3 · (2p+ 1),

which is a contradiction as n /∈ N. Hence, there is no such n.

vii. If p1 = 2, p2 = 3, and p3 = 2p+ 1 are the only prime factors of n, then

n =
2p2

1 · 2 · 2p
· [2 · 3 · (2p+ 1)] = 3 · p · (2p+ 1)

so that
φ(n) = φ (3 · p · (2p+ 1))

= φ(3) · ϕ(p) · φ(2p+ 1)

= (3− 1) (p− 1)(2p+ 1− 1)

= 2
(
2p2 − 2p

)
= 4p2 − 4p.

Since φ(n) = 2p2, we have φ(n) = 2p2 = 4p2 − 4p, which implies that 2p2 − 4p =

2p(p − 2) = 0. If 2p = 0, we have a contradiction, and if p = 2, we have a contradiction.
Hence, there is no such n.

Thus, X2p2 = {}, which is a contradiction. We conclude that X2p2 = {}.

Proven similarly, we were able to show Theorems 2.2.3 and 2.2.4.

Theorem 2.2.3. Let p be an odd prime number such that p ̸= 3. If 2p3 + 1 is not prime, then
X2p3 = {}.

Theorem 2.2.4. Let p be an odd prime number such that p ̸= 3. If 2p4 + 1 is not prime, then
X2p4 = {}.

We conjecture that the result holds for all positive integers s. Related work can be seen in [19].

521



2.3 Case 3: The set X22p

Theorem 2.3.1. Let p be an odd prime number such that p ≡ 1 (mod 6). If 22p + 1 is prime,
then X22p = {22p+ 1, 23p+ 2}. If 22p+ 1 is not prime, then X22p = {}.

Proof. Let p be an odd prime number such that p ≡ 1 (mod 6). Suppose that 22p + 1 is prime.
If X22p ̸= {}, then there exists an n ∈ X22p such that φ(n) = 22p. Then, as in Corollary 1.1.4
with the identification φ(n) = 22p, n satisfies

n =
22p

(p1 − 1)(p2 − 1) · · · (pr − 1)
· p1p2 · · · pr.

From here, we can find candidates for di = pi − 1 and hence for pi. For each pi, it follows
that pi − 1 | 22p by Proposition 1.1.5. We look to the positive divisors of 22p (that is, 1, 2, p,
22, 2p, and 22p). Then, the aforementioned candidates, are d1 = 1, d2 = 2, d3 = p, d4 = 22,
d5 = 2p, and d6 = 22p. The same pi = di +1 must be prime. Hence, p1 = 2, p2 = 3, p3 = 5, and
p4 = 22p+ 1 are the candidate prime factors of n.

As before, we next check every possible prime factor combination of n using the above
candidates. There are 24 − 1=15 such combinations. Let us see if we can lighten that a bit.

We observe that 22p + 1 is the largest prime number whose totient is 22p. Hence, any n

consisting of 22p+1 as a prime factor must either be identically 22p+1, or any additional prime
factors must have a totient of one. Otherwise, φ(n) > 22p. Only the numbers one and two have
this property, so we may safely disregard all combinations that include a prime factor of 22p + 1

except for n = 22p+ 1 and n = 2(22p+ 1). This leads to the following 23 − 1 + 2 = 9 cases:

1. If p1 = 2 is the only prime factor of n, then

n =
22p

1
· 2 = 23p

so that
φ(n) = φ

(
23p
)

= φ
(
23
)
φ (p)

= 22 (p− 1) .

Since φ(n) = 22p, we have φ(n) = 22p = 22(p − 1), which implies that 0 = 1. This is a
contradiction. Hence, there is no such n.

2. If p1 = 3 is the only prime factor of n, then

n =
22p

2
· 3 = 2 · 3 · p,

so that
φ(n) = φ (2 · 3 · p)

= φ(2)φ (3)φ (p)

= 2 (p− 1) .

Since φ(n) = 22p, we have φ(n) = 22p = 2(p− 1), which implies that p = −1. This is a
contradiction. Hence, there is no such n.
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3. If p1 = 5 is the only prime factor of n, then

n =
22p

4
· 5 = 5p,

so that
φ(n) = φ (5p)

= φ(5)φ (p)

= 22 (p− 1) .

Since φ(n) = 22p, we have φ(n) = 22p = 22(p − 1), which implies that 0 = 1. This is a
contradiction. Hence, there is no such n.

4. If p1 = 22p+ 1 is the only prime factor of n, then

n =
22p

22p
·
(
22p+ 1

)
= 22p+ 1,

so that
φ(n) = φ

(
22p+ 1

)
= 22p.

Hence, 22p+ 1 ∈ X22p.

5. If p1 = 2 and p2 = 3 are the only prime factors of n, then

n =
22p

1 · 2
· 2 · 3 = 22 · 3 · p

so that
φ(n) = φ

(
22 · 3 · p

)
= φ

(
22
)
φ(3)φ (p)

= 22 (p− 1) .

Since φ(n) = 22p, we have φ(n) = 22p = 22(p − 1), which implies that 0 = 1. This is a
contradiction. Hence, there is no such n.

6. If p1 = 2 and p2 = 5 are the only prime factors of n, then

n =
22p

1 · 4
· 2 · 5 = 2 · 5 · p

so that
φ(n) = φ (2 · 5 · p)

= φ (2)φ(5)φ (p)

= 22 (p− 1) .

Since φ(n) = 22p, we have φ(n) = 22p = 22(p − 1), which implies that 0 = 1. This is a
contradiction. Hence, there is no such n.
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7. If p1 = 2 and p2 = 22p+ 1 are the only prime factors of n, then

n =
22p

1 · 22p
· 2
(
22p+ 1

)
= 2

(
22p+ 1

)
so that

φ(n) = φ
(
2
(
22p+ 1

))
= φ (2)φ

(
22p+ 1

)
= 22p.

Hence, 2 (22p+ 1) ∈ X22p.

8. If p1 = 3 and p2 = 5 are the only prime factors of n, then

n =
22p

2 · 4
· 3 · 5 =

p

2
· 3 · 5,

which is a contradiction because n /∈ N. Hence, there is no such n.

9. If p1 = 2, p2 = 3, and p3 = 5 are the only prime factors of n, then

n =
22p

1 · 2 · 4
· 2 · 3 · 5 = 3 · 5 · p,

so that
φ(n) = φ (3 · 5 · p)

= φ (3)φ(5)φ (p)

= 23 (p− 1) .

Since φ(n) = 22p, we have φ(n) = 22p = 23(p − 1), which implies that p = 2. This is a
contradiction. Hence, there is no such n.

We conclude that if 22p + 1 is prime, then X22p = {22p+ 1, 23p+ 2}, and if X22p is not
prime, then X22p = {}.

Example 2.3.

a. Take p = 7, then 22p = 28. Note that 22p + 1 = 29 is a prime number. Then X22p =

{29, 58}.

b. Take p = 13, then 22p = 52. Note that 22p + 1 = 53 is a prime number. Then X22p =

{53, 106}.

c. Take p = 19, then 22p = 76. Note that 22p + 1 = 77 is a composite number. Then
X22p = {}.

d. Take p = 31, then 22p = 124. Note that 22p + 1 = 125 is a composite number. Then
X22p = {}.
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e. Take p = 37, then 22p = 148. Note that 22p + 1 = 149 is a prime number. Then X22p =

{149, 298}.

f. Take p = 43, then 22p = 172. Note that 22p + 1 = 173 is a prime number. Then X22p =

{173, 346}.

Criteria for which X2lq is empty are given by Vassilev-Missana in [30]. See Theorem 2 on
page 508.

2.4 Case 4: The set X2pq and Germain primes

The following result verifies Carmichael’s totient conjecture for k = 2pq, where p and q are odd
prime numbers such that p < q. In proving so, we encounter the Germain primes, which further
leads to some related results.

Theorem 2.4.1. Let k = 2pq, where p and q are odd prime numbers such that p < q.

a. If q = 2p+ 1 is prime, then q2, 2q2 ∈ Xk.

b. If 2pq + 1 is prime, then 2pq + 1, 2(2pq + 1) ∈ Xk.

c. Otherwise, Xk = {}.

Proof. Let p and q be odd prime numbers such that p < q, and let k = 2pq. If Xk ̸= {}, then
there exists an x ∈ Xk such that φ(x) = 2pq. Then, as in Corollary 1.1.4 with the identification
φ(x) = 2pq, x satisfies

x =
2pq

(p1 − 1)(p2 − 1) · · · (pr − 1)
· p1p2 · · · pr.

From here, we can find candidates for di = pi − 1 and hence for pi. For each pi, it follows
that pi − 1 | 2pq by Proposition 1.1.5. We look to the positive divisors of 2pq (that is, 1, 2, p, q,
2p, 2q, pq and 2pq). Then, the aforementioned candidates, are d1 = 1, d2 = 2, d3 = p, d4 = q,
d5 = 2p, d6 = 2q, d7 = pq, and d8 = 2pq. The same pi = di + 1 must be prime. Hence, p1 = 2,
p2 = 3, p3 = 2p+ 1, p4 = 2q + 1, and p5 = 2pq + 1 are the candidate prime factors of x.

As before, we next check every possible prime factor combination of x using the above
candidates. There are 25 − 1 = 31 such combinations. Let’s see if we can lighten that a bit.

We observe that 2pq + 1 is the largest prime number whose totient is 2pq. Hence, any x

consisting of 2pq+1 as a prime factor must either be identically 2pq+1, or any additional prime
factors must have a totient of one. Otherwise, φ(x) > 2pq. Only the numbers one and two have
this property, so we may safely disregard all combinations that include a prime factor of 2pq + 1

except for x = 2pq+1 and x = 2(2pq+1). Moving forward, we will further suppose that 2p+1,
2q + 1, and 2pq + 1 are prime. This leads to the following 24 − 1 + 2 = 17 cases:

i. If p1 = 2 is the only prime factor of x, then

x =
2pq

1
· 2 = 22pq,
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so that
φ(x) = φ

(
22pq

)
= φ

(
22
)
φ (p)φ(q)

= 2 (p− 1) (q − 1)

= 2(pq − p− q + 1).

Since φ(x) = 2pq, we have φ(x) = 2pq = 2(pq − p− q + 1), which implies that p+ q = 1.
This is a contradiction. Hence, there is no such x.

ii. If p1 = 3 is the only prime factor of x, then

x =
2pq

2
· 3 = 3pq,

so that
φ(x) = φ (3pq)

= φ (3)φ (p)φ(q)

= 2 (p− 1) (q − 1)

= 2(pq − p− q + 1).

Since φ(x) = 2pq, we have φ(x) = 2pq = 2(pq − p− q + 1), which implies that p+ q = 1.
This is a contradiction. Hence, there is no such x.

iii. If p1 = 2p+ 1 is the only prime factor of x, then

x =
2pq

2p
· (2p+ 1) = q(2p+ 1).

It must be that q = 2p+ 1. Then x = (2p+ 1)2, so

φ(x) = φ
(
(2p+ 1)2

)
= (2p+ 1)2 − (2p+ 1)

= 4p2 + 4p+ 1− 2p− 1

= 2p(2p+ 1)

= 2pq.

Hence, x = (2p+ 1)2 ∈ Xk if q = 2p+ 1.

iv. If p1 = 2q + 1 is the only prime factor of x, then

x =
2pq

2q
· (2q + 1) = p(2q + 1).

This is the same case as before with p and q interchanged. Here, there will be a contradiction
because we specified p < q.

v. If p1 = 2pq + 1 is the only prime factor of x, then

x =
2pq

2pq
· (2pq + 1) = 2pq + 1
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so that
φ(x) = φ (2pq + 1)

= 2pq.

Hence, x = 2pq + 1 ∈ Xk if 2pq + 1 is prime.

vi. If p1 = 2 and p2 = 3 are the only prime factors of x, then

x =
2pq

1 · 2
· 2(3) = 6pq.

It must be that p = q = 3, which is a contradiction. Hence, there are no such x.

vii. If p1 = 2 and p2 = 2p+ 1 are the only prime factors of x, then

x =
2pq

1 · 2p
· 2(2p+ 1) = 2q(2p+ 1).

It must be that q = 2p+ 1. Then x = 2(2p+ 1)2, so

φ(x) = φ
(
2(2p+ 1)2

)
= φ(2)φ

(
(2p+ 1)2

)
= (2p+ 1)2 − (2p+ 1)

= 4p2 + 4p+ 1− 2p− 1

= 2p(2p+ 1)

= 2pq.

Hence, x = 2(2p+ 1)2 ∈ Xk if q = 2p+ 1.

viii. If p1 = 2 and p2 = 2q + 1 are the only prime factors of x, then

x =
2pq

1 · 2q
· 2(2q + 1) = 2p(2q + 1).

This is the same case as before with p and q interchanged. Here, there will be a contradiction
because we specified p < q.

ix. If p1 = 2 and p2 = 2pq + 1 are the only prime factors of x, then

x =
2pq

1 · 2pq
· 2(2pq + 1) = 2(2pq + 1),

so that
φ(x) = φ (2(2pq + 1))

= φ(2)φ (2pq + 1)

= 2pq.

Hence, x = 2(2pq + 1) ∈ Xk if 2pq + 1 is prime.

x. If p1 = 3 and p2 = 2p+ 1 are the only prime factors of x, then

x =
2pq

2 · 2p
· 3(2p+ 1) =

q

2
· 3(2p+ 1),

which is a contradiction because q
2
/∈ N. Hence, there is no such x.
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xi. If p1 = 3 and p2 = 2q + 1 are the only prime factors of x, then

x =
2pq

2 · 2q
· 3(2q + 1) =

p

2
· 3(2q + 1),

which is a contradiction because p
2
/∈ N. Hence, there is no such x.

xii. If p1 = 2p+ 1 and p2 = 2q + 1 are the only prime factors of x, then

x =
2pq

2p · 2q
· (2p+ 1)(2q + 1) =

1

2
· (2p+ 1)(2q + 1)

which is a contradiction because 1
2
/∈ N. Hence, there is no such x.

xiii. If p1 = 2, p2 = 3, and p3 = 2p+ 1 are the only prime factors of x, then

x =
2pq

1 · 2 · 2p
· 2(3)(2p+ 1) =

q

2
· 2(3)(2p+ 1),

which is a contradiction because q
2
/∈ N. Hence, there is no such x.

xiv. If p1 = 2, p2 = 3, and p3 = 2q + 1 are the only prime factors of x, then

x =
2pq

1 · 2 · 2q
· 2(3)(2q + 1) =

p

2
· 2(3)(2q + 1),

which is a contradiction because p
2
/∈ N. Hence, there is no such x.

xv. If p1 = 2, p2 = 2p+ 1, and p3 = 2q + 1 are the only prime factors of x, then

x =
2pq

1 · 2p · 2q
· 2(2p+ 1)(2q + 1) =

1

2
· 2(2p+ 1)(2q + 1),

which is a contradiction because 1
2
/∈ N. Hence, there is no such x.

xvi. If p1 = 3, p2 = 2p+ 1, and p3 = 2q + 1 are the only prime factors of x, then

x =
2pq

2 · 2p · 2q
· 3(2p+ 1)(2q + 1) =

1

4
· 3(2p+ 1)(2q + 1),

which is a contradiction because 1
4
/∈ N. Hence, there is no such x.

xvii. If p1 = 2, p2 = 3, p3 = 2p+ 1, and p4 = 2q + 1 are the only prime factors of x, then

x =
2pq

1 · 2 · 2p · 2q
· 2(3)(2p+ 1)(2q + 1) =

1

4
· 2(3)(2p+ 1)(2q + 1),

which is a contradiction because 1
4
/∈ N. Hence, there is no such x.

We conclude that

a. q2, 2q2 ∈ Xk if q = 2p+ 1 is prime,

b. 2pq + 1, 2(2pq + 1) ∈ Xk if 2pq + 1 is prime, and

c. Xk = {}, otherwise.
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Theorem 2.4.2. Let p be a Germain prime such that p ≥ 5, and k = 2p(2p + 1). Then k + 1 is
composite.

Proof. Let p be a Germain prime such that p ≥ 5, and k = 2p(2p + 1). It is known from
Forgues [27] that p is 2, 3, or p ≡ 5 (mod 6). Then

k + 1 = 2p(2p+ 1) + 1

= 4p2 + 2p+ 1

≡ 4 + 4 + 1 (mod 6)

≡ 3 (mod 6).

Thus, k + 1 = 6m+ 3 = 3(2m+ 1), where m ∈ N; that is, 3 divides k + 1.

An immediate consequence of Theorem 2.4.2 is that the only instance of
∣∣X2p(2p+1)

∣∣ = 4

comes from the Germain prime p = 3. See example (d), where k = 42.

Example 2.4.

a. Let p = 23 and q = 47. Then k = 2pq = 2162. We have 2p + 1 = 47 = q is prime, and
2pq + 1 = 2163 is composite. Thus,

Xk =
{
q2, 2q2

}
= {2209, 4418}.

b. Let p = 19 and q = 29. Then k = 2pq = 1102. We have 2p + 1 = 39 ̸= q is composite,
and 2pq + 1 = 1103 is prime. Thus,

Xk = {2pq + 1, 2(2pq + 1)} = {1103, 2206}.

c. Let p = 7 and q = 13. Then k = 2pq = 182. We have 2p + 1 = 15 ̸= q is composite, and
2pq + 1 = 183 is composite. Thus,

Xk = {} .

d. Let p = 3 and q = 7. Then k = 2pq = 42. We have 2p + 1 = 7 = q is prime, and
2pq + 1 = 43 is prime. Thus,

Xk =
{
q2, 2q2, (2pq + 1), 2(2pq + 1)

}
= {49, 98, 43, 86}.

Next, we attempt to generalize the result of Theorem 2.4.1. Let p be an odd prime number.
Additionally, let p and 2p + 1 be Germain primes. Then, 2p + 1 and 4p + 3 are prime numbers.
Consider

k = 22 · p · (2p+ 1) · (4p+ 3) = 4 · p · (2p+ 1) · (4p+ 3),

and let x = (4p+ 3)2 · (2p+ 1). Then
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φ(x) =
[
(4p+ 3)2 − (4p+ 3)

]
· 2p

= (4p+ 3) · (4p+ 2) · 2p
= 22 · p · (2p+ 1) · (4p+ 3)

= k.

Hence, (4p+ 3)2 · (2p+ 1), 2(4p+ 3)2 · (2p+ 1) ∈ Xk.
Similarly, consider k = 2p(2p+1), where p is a Germain prime, and let x = (2p+1)2. Then

φ(x) = (2p+ 1)2 − (2p+ 1)

= 2p(2p+ 1)

= k.

Hence, (2p+ 1)2, 2(2p+ 1)2 ∈ Xk. This is part (a) in Theorem 2.4.1.
Furthermore, consider k = 23p(2p + 1)(4p + 3)(8p + 7), where p, 2p + 1, and 4p + 3 are

Germain primes, and let x = (8p+ 7)2(4p+ 3)(2p+ 1). Then

φ(x) =
[
(8p+ 7)2 − (8p+ 7)

]
(4p+ 2)2p

= (8p+ 7)(8p+ 6)(4p+ 2)2p

= 23p(2p+ 1)(4p+ 3)(8p+ 7)

= k.

Hence, (8p+ 7)2(4p+ 3)(2p+ 1), 2(8p+ 7)2(4p+ 3)(2p+ 1) ∈ Xk.

The above discussions are specific cases of the following result.

Theorem 2.4.3. Let p be an odd prime number. Define g1 = p and gi = 2gi−1 + 1 for all i ≥ 2.
Suppose that gi is prime for all i = 2, 3, . . . ,m. Let k = 2m

∏m+1
i=1 gi. Then

g2m+1

m∏
i=2

gi, 2g
2
m+1

m∏
i=2

gi ∈ Xk.

Proof. Let x = g2m+1

∏m
i=2 gi. Then

φ(x) =
(
g2m+1 − gm+1

)
· φ

(
m∏
i=2

gi

)

= gm+1 (gm+1 − 1) · φ

(
m∏
i=2

gi

)

= gm+1 (2gm + 1− 1) · φ

(
m∏
i=2

gi

)

= 2gm+1gm · φ

(
m∏
i=2

gi

)
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= 2gm+1gm (g2 − 1) (g3 − 1) . . . (gm − 1)

= 2gm+1gm (2g1 + 1− 1) (2g2 + 1− 1) · · · (2gm−1 + 1− 1)

= 2mg1g2 · · · gm−1gmgm+1

= 2m
m+1∏
i=1

gi

= k.

Thus, x ∈ Xk, and so 2x ∈ Xk by Proposition 1.1.7.

Example 2.5.
a. Let p = 3. We have g1 = 3 and g2 = 7. Note that g1 is a Germain prime.

For k = 2
∏2

i=1 gi = 42, we have g22 = 49 ∈ Xk, and 2g22 = 98 ∈ Xk.

b. Let p = 5. We have g1 = 5, g2 = 11, g3 = 23, and g4 = 47. Note that g1, g2, and g3 are
Germain primes. For k = 23

∏4
i=1 gi = 475640, we have g24

∏3
i=2 gi = 558877 ∈ Xk, and

2g24 = 1117754 ∈ Xk.

c. Let p = 89. We have g1 = 89, g2 = 179, g3 = 359, g4 = 719, g5 = 1439, and
g6 = 2879. Note that g1, g2, g3, g4, and g5 are Germain primes. For k = 25

∏6
i=1 gi =

545153511332496992, we have g26
∏5

i=2 gi = 551087415423545941 ∈ Xk, and
2g26 = 1102174830847091882 ∈ Xk.

It is conjectured that there are infinitely many Germain prime numbers. The largest known is

2618163402417× 212618163402417 − 1,

which is 388,342 digits. The second largest known is

18543637900515× 2666667 − 1,

which is 200,701 digits.

3 Conclusion

We have shown that Carmichael’s totient conjecture holds in the following cases:

1. X2t , where t is a nonnegative integer.

2. X2ps , where p ̸= 3 is an odd prime number, s = 1, 2, 3, or 4, and 2ps + 1 is not prime.

3. X22p, where p is an odd prime number such that p ≡ 1 (mod 6).

4. Xk, where k = 2m
∏m+1

i=1 gi is the product of a power of 2 and a sequence of m+1 Germain
primes.

This was done primarily using Corollary 1.1.4. The most general case of Xk, where
k = 2µ

∏
pα, is Carmichael’s totient conjecture and remains open.
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As a general aside, the propositions, examples and particularly the conjectures in this paper
are a number theoretic exemplification of Iverson’s view of the importance of notation [11],
especially with ‘suggestivity’ leading to shrewd guessing, a necessary ingredient in undergraduate
development of the ability to think mathematically in capstone subjects and to recognize
conjectures in general [14, 20].
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