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Abstract: The infinite sequence of gaps (first differences) between successive odd composite
numbers contains only the numbers 2, 4, and 6. We prove that, for any natural number k, the
sequence of gaps contains infinitely many k-tuplets of consecutive gaps all equal to 2. Infinitely
many gaps equal 4. The sequence of gaps includes infinitely many gap pairs (4, 4) if the sequence
of positive primes has infinitely many pairs of successive primes that differ by 4 (cousin primes),
which is unproved but holds under a conjecture of Hardy and Littlewood. Gap triplets (4, 4, 4)

never occur. Infinitely many gaps equal 6 if and only if there are infinitely many twin primes.
Moreover, gap pairs (6, 6) occur infinitely often if other conjectures of Hardy and Littlewood are
true. Six of the 27 potential triplets of values of gaps between successive odd composite numbers
never occur: (4, 4, 4), (6, 6, 6), (6, 4, 4), (4, 4, 6), (6, 2, 6), and (6, 4, 6).
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1 Introduction

One enduring attraction of number theory is that even its humblest objects, the pebbles that lie
everywhere at our feet, are loaded with gold. Here we examine the infinite sequence of gaps
(first differences) between successive odd composite numbers. We find surprises and unanswered
questions.

The natural numbers N := {1, 2, 3, 4, . . .} (sequence A000027 in the OEIS [5]) may be
partitioned into the singleton set {1}, the prime numbers P = {2, 3, 5, 7, . . .} (sequence A000040
in the OEIS [5]), the even composite numbers E = {4, 6, 8, 10, . . .} (a subsequence of sequence
A005843 in the OEIS [5]), and the odd composite numbers O = {o1 = 9, o2 = 15, o3 = 21,

o4 = 25, . . .} (sequence A071904 in the OEIS [5]). The long-studied gaps between successive
primes (sequence A001223 in the OEIS [5]) remain mysterious in many respects. For example,
no one can prove whether there are infinitely many twin primes, i.e., gaps equal to 2 between
successive primes [3] or infinitely many cousin primes, i.e., gaps equal to 4 between successive
primes [3, 8–10]. Wolf [7, p. 336] first proposed calling a pair of primes with gap 4 “cousin”
primes.

The gaps between successive odd composite numbers (sequence A164510 in the OEIS [5]) are
less studied than the gaps between successive primes. Denote the gaps (first differences) between
successive odd composite numbers by gn := on+1 − on for all n ∈ N. Let the infinite sequence
G := (g1 = 6, g2 = 6, g3 = 4, g4 = 2, g5 = 6, g6 = 2, g7 = 4, g8 = 6, . . .) contain the gaps in
order of occurrence. It has been proved (OEIS A164510) and is easy to see that gn ∈ {2, 4, 6}
for all gn ∈ G. For to have a gap greater than or equal to 8 would require a sequence of 3 or
more primes p, p + 2, p + 4, . . . preceded and followed by odd composite numbers; but the only
sequence of 3 primes of the form p, p + 2, p + 4 is 3, 5, 7 and the preceding odd number 1 is not
composite; so, as claimed, gn ∈ {2, 4, 6} for all gn ∈ G.

Here we analyze whether gaps of size gn = 2, 4, 6 occur finitely or infinitely often in G and
whether ordered pairs and ordered triplets of these gaps occur finitely often, infinitely often, or
never in G.

2 Preliminaries

If f(x) and g(x) are real-valued functions of real x and g(x) > 0 for all x sufficiently large,
define f(x) ∼ g(x) to mean that f(x)/g(x) → 1 as x → ∞. If f(x) ∼ g(x), we say that f(x)
and g(x) are asymptotically equivalent. Define the floor function ⌊x⌋ of any positive real x to be
the largest nonnegative integer less than or equal to x.

If A := (a1, a2, . . .) is any sequence of positive integers and x > 0, the counting function
#(A, x) of A at x is the number of elements of A less than or equal to x. By tradition, the counting
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function of the sequence of positive prime numbers is written π(x) and the number of positive
primes p ≤ x such that also p + 2 is prime is written π2(x), the twin prime counting function.
The prime number theorem (PNT) states:

π(x) ∼ x

log x
, x → ∞. (1)

As noted, N is the disjoint union of these subsets:

N = {1} ∪ P ∪ E ∪O. (2)

For n ∈ N, we have #(E, n) = ⌊n/2⌋ − 1. We subtract 1 from ⌊n/2⌋ because 2 ∈ P, not 2 ∈ E.
Counting the elements up to and including n in each subset of N gives

n = 1 + π(n) + (⌊n/2⌋ − 1) + #(O, n). (3)

Hence

n− ⌊n/2⌋ = π(n) + #(O, n) (4)

and n− ⌊n/2⌋ ∼ n/2. By the PNT, π(n)/(n/2) → 0 as n → ∞. Thus

#(O, n) ∼ n/2. (5)

Hence the sequence O of odd composite numbers is infinite, and therefore the sequence G of
the gaps (first differences) gn := on+1 − on between successive odd composite numbers is also
infinite.

3 Gaps equal to 2

Theorem 3.1. For any natural number k, the sequence G of gaps between consecutive odd
composite numbers contains infinitely many k-tuplets of consecutive gaps all equal to 2.

Proof 1. According to Hardy and Wright [2, Theorem 5, p. 5], there are blocks of consecutive
composite numbers whose length exceeds any given number N . Therefore there are infinitely
many k-tuplets of consecutive gaps all equal to 2.

Proof 2 by explicit construction. Fix k ∈ N. For every n ∈ N, the k + 1 numbers

o(j, n) := n · 2

(
k+1∏
h=1

(
3 + 2 · (h− 1)

))
+ 3 + 2 · (j − 1), j = 1, 2, . . . , k + 1, (6)

are odd, composite (because o(j, n) is divisible by 3 + 2 · (j − 1)), and consecutive elements of
the sequence O of odd composite numbers. The only term on the right that depends on j is the
last, 2 · (j − 1). Letting n run through N yields infinitely many (k+ 1)-tuples of consecutive odd
composite numbers. For j = 1, . . . , k,

o(j + 1, n)− o(j, n) = [2 · j]− [2 · (j − 1)] = 2, j = 1, 2, . . . , k + 1. (7)

This procedure constructs infinitely many k-tuples of successive gaps equal to 2 between
consecutive odd composite numbers.
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For example, set k = 5. Then 2 · 3 · 5 · 7 · 9 · 11 · 13 = 270270 and, by construction, for any
n ∈ N, each of n · 270270 + 3, n · 270270 + 5, n · 270270 + 7, n · 270270 + 9, n · 270270 + 11,
and n · 270270 + 13 is composite. Thus there are infinitely many 6-tuplets of consecutive odd
composite numbers with gap 2 and therefore G contains infinitely many 5-tuplets of consecutive
gaps all equal to 2.

4 Gaps equal to 4

Theorem 4.1. In the sequence G of gaps between successive odd composite numbers:

1. Infinitely many gaps equal 4.

2. G includes infinitely many gap pairs (gn, gn+1) = (4, 4) if P has infinitely many cousin
primes, which is an unproved consequence of the first conjecture (12) below of Hardy and
Littlewood [1] [6, eq. 3].

3. There are zero gap triplets (gn, gn+1, gn+2) = (4, 4, 4).

Proof.

1. Define a prime p > 2 to be a solo prime if and only if neither p + 2 is prime nor p − 2 is
prime. The first two solo primes are 23 and 37. Then gn = 4 if and only if the odd integer
on + 2 between on and on+1 = on + 4 is a solo prime. So there are infinitely many gaps
equal to 4 if and only if there are infinitely many solo primes.

Brun announced in 1919 and proved in 1920 [4, p. 194] that, for some effectively computable
x0 ∈ N, if x ≥ x0, then

π2(x) <
100x

(log x)2
. (8)

Wu [11, p. 218, Theorem 3] proved that, for sufficiently large x,

π2(x) <
Kx

(log x)2
, (9)

where

K ≈ 4.48857 ≈ 3.3996 · C, C := 2
∏
p>2

(
1− 1

(p− 1)2

)
≈ 1.3203236, (10)

C is the twin prime constant, and the product is over primes p > 2. It follows that, as
x → ∞,

lim
x→∞

π2(x)

π(x)
< lim

x→∞

(
Kx

(log x)2

/ x

log x

)
= lim

x→∞

K

log x
= 0. (11)

Consequently, the ratio of the number of solo primes up to x divided by the number π(x) of
all primes up to x converges to 1 as x → ∞. Since π(x) → ∞ as x → ∞ and the fraction
of them that are solo primes converges to 1, the number of solo primes, and the number of
gaps gn = 4 between consecutive odd composite numbers, is infinite.
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2. Two consecutive gaps are of size 4 if and only if, for some n, the three numbers 2n + 1,

2n + 5, 2n + 9 are odd composites and 2n + 3 and 2n + 7 are prime. If p = 2n + 3 is the
first prime, then the second prime is p + 4 = 2n + 7. Define the prime pair (p, p + 4) to
be solo cousin primes if both p − 2 and p + 6 are composites, that is, if the cousin primes
(p, p+4) are neither the last two primes of a prime triplet (p, p+2, p+6) nor the first two
primes of a prime triplet (p, p+ 4, p+ 6). (The cousin primes (7, 11) do not correspond to
(gn, gn+1) = (4, 4) because 5 is prime and 13 is prime. The cousin primes (37, 41) do not
correspond to (gn, gn+1) = (4, 4) because 43 is prime. The cousin primes (43, 47) do not
correspond to (gn, gn+1) = (4, 4) because 41 is prime.)

Under parts of the first Hardy–Littlewood conjecture [6, eqs. 3, 7, 9], we now prove that
solo cousin primes occur infinitely often. For any finite strictly increasing sequence of
nonnegative numbers k1 := 0, . . . , kn with n < ∞, and for any real x > 0, let the
number of prime constellations of the form (p, p + k2, . . . , p + kn) such that p < x be
Px(p, p+ k2, . . . , p+ kn).

Then, according to the first Hardy–Littlewood conjecture [6, eqs. 3, 7, 9], as x → ∞, the
numbers of prime pairs (p, p + 4), the numbers of prime triplets (p, p + 2, p + 6), and the
numbers of prime triplets (p, p+4, p+6) such that p ≤ x are asymptotically equivalent to,
respectively,

Px(p, p+ 4) := 2
∏
p≥3

p(p− 2)

(p− 1)2

∫ x

2

dt

(log t)2
≈ 1.32032 . . .

∫ x

2

dt

(log t)2
, (12)

Px(p, p+ 2, p+ 6) :=
9

2

∏
p≥5

p2(p− 3)

(p− 1)3

∫ x

2

dt

(log t)3
≈ 2.85825 . . .

∫ x

2

dt

(log t)3
, (13)

Px(p, p+ 4, p+ 6) = Px(p, p+ 2, p+ 6). (14)

As x → ∞ the logarithmic integrals in (12)–(14) all go to infinity and Px(p, p+ 2, p+ 6)/

Px(p, p + 4) → 0 and Px(p, p + 4, p + 6)/Px(p, p + 4) → 0. Hence solo cousin primes
occur infinitely often and (gm, gm+1) = (4, 4) occurs infinitely often, given parts of the first
Hardy–Littlewood conjecture [6, eqs. 3, 7, 9].

3. Three consecutive gaps of size 4 occur if and only if, for some n ∈ N, all of 2n + 1,

2n+5, 2n+9, 2n+13 are odd composites and all of 2n+3, 2n+7, 2n+11 are prime. But
2n + 3, 2n + 7, 2n + 11 modulo 3 give three different residues, so one of them must be 0,
that is, divisible by 3. Hence not all of 2n+ 3, 2n+ 7, 2n+ 11 can be prime and therefore
no triplet (gn, gn+1, gn+2) = (4, 4, 4) can exist.

The first pair (gn, gn+1) = (4, 4) of consecutive gaps equal to 4 between consecutive odd
composite numbers occurs when o18 = 77, o19 = 81, and o20 = 85. The second such pair occurs
when o33 = 125, o34 = 129, and o35 = 133.
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5 Gaps equal to 6 and mixed triplets of gaps

Theorem 5.1. In the sequence G of gaps between successive odd composite numbers:

1. gn = 6 infinitely often if and only if there are infinitely many twin primes (if and only if the
twin prime conjecture is true).

2. (gn, gn+1) = (6, 6) infinitely often if there are infinitely many prime quadruplets of the form
(p, p + 2, p + 6, p + 8), which is an unproved consequence of the first Hardy–Littlewood
conjecture [6, eq. 11].

3. There are zero triplets of gaps (gn, gn+1, gn+2) = (6, 6, 6), (6, 4, 4), (4, 4, 6), (6, 2, 6), and
(6, 4, 6) between successive odd composite numbers.

Proof.

1. A gap of size 6 occurs if for some n ∈ N, the numbers 2n + 1, 2n + 7 are composite and
p = 2n + 3, p + 2 = 2n + 5 are twin primes. Since the first odd composite number is
o1 = 9, we must have p > 7.

Conversely, if (p, p+ 2) are twin primes and p > 7, then both p− 2 and p+ 4 must be odd
composite numbers because (3, 5, 7) is the only triple of primes of the form (p, p+2, p+4).

Under the conjecture that there are infinitely many twin primes (p, p+ 2) with p > 7, there
are infinitely many gn = 6.

2. A pair (6, 6) of consecutive gaps equal to 6 between consecutive odd composite numbers
exists if, for some n ∈ N, 2n+1, 2n+7, 2n+13 are odd composites and 2n+3, 2n+5,

2n + 9, 2n + 11 = (p, p + 2, p + 6, p + 8) are prime. Because p > 7 and because
(3, 5, 7) is the only triple of primes of the form (p, p + 2, p + 4), it is not possible that
p − 2 be prime nor that p + 10 be prime, so odd numbers that immediately precede and
follow a prime quadruplet (p, p + 2, p + 6, p + 8) must be composite. Part of the first
Hardy–Littlewood conjecture [6, eq. 11] states that the number of such prime quadruplets
with p < x is asymptotic as x → ∞ to

Px(0, 2, 6, 8) :=
27

2

∏
p≥5

p3(p− 4)

(p− 1)4

∫ x

2

dt

(log t)4
≈ 4.15118 . . .

∫ x

2

dt

(log t)4
. (15)

Since the logarithmic integral in (15) goes to infinity as x → ∞, (gn, gn+1) = (6, 6) occurs
infinitely often.

3. A triplet (gn, gn+1, gn+2) = (6, 6, 6) of gaps between successive odd composite numbers
exists if and only if there exist three pairs of twin primes of the form p+ (0, 2, 6, 8, 12, 14)

while p− 2, p+ 4, p+ 10, and p+ 16 are odd composite numbers.

We now show that no such 6-tuple of primes can exist.

Define v := (0, 2, 6, 8, 12, 14). We cannot have p ≡ 0 (mod 5) because p is a prime, not
divisible by 5. If p ≡ 1 (mod 5), then (1+v) ≡ (1, 3, 2, 4, 3, 0) (mod 5), so p+14 is divisible
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by 5, not prime. If p ≡ 2 (mod 5), then (2+v) ≡ (2, 4, 3, 0, 4, 1) (mod 5), so p+8 is divisible
by 5, not prime. If p ≡ 3 (mod 5), then (3+v) ≡ (3, 0, 4, 1, 0, 2) (mod 5), so p+2 and p+12

are divisible by 5, not prime. If ph ≡ 4 (mod 5), then (4 + v) ≡ (4, 6, 0, 2, 1, 3) (mod 5), so
p+ 6 is divisible by 5, not prime. So every possible positive integer for p makes one of the
six numbers in v divisible by 5, not prime, so no such 6-tuple of consecutive primes exists,
and therefore no triplet (gn, gn+1, gn+2) = (6, 6, 6) of gaps between consecutive composite
numbers.

Similarly, a triplet (gn, gn+1, gn+2) = (6, 4, 4) of gaps between successive odd composite
numbers exists if and only there exists a quadruplet of primes of the form p+(0, 2, 6, 10) :=

p + w. We cannot have p ≡ 0 (mod 3) because p is a prime, not divisible by 3. If
p ≡ 1 (mod 3), then (1 + w) ≡ (1, 0, 1, 2) (mod 3), so p+ 2 is divisible by 5, not prime. If
p ≡ 2 (mod 3), then (1 + w) ≡ (2, 1, 2, 0) (mod 3), so p + 10 is divisible by 3, not prime.
So every possible positive integer for p makes one of the four numbers p + w divisible by
3, not prime, so no such subsequence of consecutive primes exists. Therefore there exists
no triplet (gn, gn+1, gn+2) = (6, 4, 4) of gaps between consecutive composite numbers.

The same method may be used to prove the non-existence of triplets (gn, gn+1, gn+2) =

(4, 4, 6), (6, 2, 6), and (6, 4, 6).

The first pair (gn, gn+1) = (6, 6) of consecutive gaps equal to 6 between consecutive odd
composite numbers occurs when o1 = 9, o2 = 15, and o3 = 21. The second such pair occurs
when o25 = 99, o26 = 105, and o27 = 111.

Theorem 5.2. The triplets (gn, gn+1, gn+2) = (2, 4, 6) and (6, 4, 2) occur with asymptotically
equivalent frequency if parts of the first Hardy–Littlewood conjecture [6, eqs. 9, 11] are true.

Proof. The triplet (gn, gn+1, gn+2) = (2, 4, 6) occurs if and only if p+ (0, 4, 6) are all primes and
p−2 and p−4 and p+8 are all odd composite numbers. It is impossible that (p+4, p+6, p+8)

all be primes because (3, 5, 7) is the only triple of primes of the form (p′, p′ + 2, p′ + 4). It
is also impossible that (p − 4, p − 2, p) all be primes for exactly the same reason. It is also
impossible that (p − 4, p, p + 4, p + 6) all be primes with p − 2 odd composite because then
(p−4, p, p+4) = (p′, p′+4, p′+8) would have all three residue classes 0, 1, 2 (mod 3). However,
it is possible that (p− 2, p, p+ 4, p+ 6) = (p′, p′ + 2, p′ + 6, p′ + 8) with p′ = p− 2 could all be
primes.

According to part of the first Hardy–Littlewood conjecture [6, eq. 9], as x → ∞, the
number of prime triplets p + (0, 4, 6) such that p ≤ x is asymptotic to Px(p, p + 4, p + 6)

in (14). The conjectured asymptotic form of Px(p, p + 2, p + 6, p + 8) from (15) implies that
Px(p, p + 2, p + 6, p + 8)/Px(p, p + 4, p + 6) → 0 as x → ∞. Hence for large x almost all
prime triplets of the form (p, p + 4, p + 6) are not the last three primes of a prime quadruplet
(p, p+ 2, p+ 6, p+ 8) and hence are associated with a triplet (gn, gn+1, gn+2) = (2, 4, 6) of gaps
between consecutive odd composite numbers.

On the other hand, the triplet (gn, gn+1, gn+2) = (6, 4, 2) occurs if and only if (p, p+2, p+6)

are all primes and p − 2 and p + 4 and p + 8 are all odd composite numbers. When p and p + 2

are primes and p > 7, it is impossible that p− 2 also be prime, because (3, 5, 7) is the only triple
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of primes of the form (p′, p′ + 2, p′ + 4), so p− 2 is guaranteed to be an odd composite number.
When p+2 and p+6 are primes, it is impossible that p+4 be prime, for exactly the same reason.
So p+ 4 is guaranteed to be an odd composite number.

The conjectured asymptotic counting function Px(p, p + 2, p + 6, p + 8) in (15) [6, eq. 11]
implies that Px(p, p+ 2, p+ 6, p+ 8)/Px(p, p+ 2, p+ 6) → 0 as x → ∞. So for large x almost
all prime triplets of the form (p, p+ 2, p+ 6) are not the first three primes of a prime quadruplet
(p, p+ 2, p+ 6, p+ 8) and hence are associated with a triplet (gn, gn+1, gn+2) = (6, 4, 2) of gaps
between consecutive odd composite numbers.

We have shown that, for large x, almost all prime triplets of the form (p, p + 4, p + 6) are
associated with a triplet (gn, gn+1, gn+2) = (2, 4, 6) and almost all prime triplets of the form
(p, p+2, p+6) are associated with a triplet (gn, gn+1, gn+2) = (6, 4, 2), and these triplets of gaps
between consecutive odd composite numbers are not associated with other prime configurations.
Since the asymptotic counting function Px(p, p+2, p+6) in (13) of prime triplets p+ (0, 2, 6) is
conjectured in (14) to equal the asymptotic counting function Px(p, p+4, p+6) of prime triplets
p+(0, 4, 6), the counting functions of (gn, gn+1, gn+2) = (2, 4, 6) and (gn, gn+1, gn+2) = (6, 4, 2)

are (under these Hardy–Littlewood conjectures) asymptotically equivalent.

6 Numerical example and conjecture

We listed the 4 544 947 488 gaps (first differences) between the 4 544 947 489 odd composite
numbers less than 1010. Check: 5× 109 (even numbers up to and including 1010, including 2) +
4 544 947 489 (odd composite numbers less than 1010, excluding 1) + 455 052 511 (= π(1010),
the number of primes less than 1010, including 2) = 1010 exactly. The exclusion of 1 from the
odd composite numbers balances the double counting of 2 in the primes and the even numbers.

As all gaps equal 2, 4, or 6, we counted the frequency of each of the 27 = 3 × 3 × 3

possible (in principle) triplets of values of the successive 4 544 947 486 overlapping triplets
of gaps (Table 1). For example, the triplet (gn, gn+1, gn+2) = (2, 4, 6) occurs 2 531 697 times;
(gn, gn+1, gn+2) = (6, 4, 2) occurs 2 532 818 times; (gn, gn+1, gn+2) = (6, 2, 4) occurs 2 535 001
times; and (gn, gn+1, gn+2) = (4, 2, 6) occurs 2 535 136 times. The close similarity of these four
frequencies suggests that these four triplets may occur with asymptotically equivalent frequency.
The sum of all frequencies in the table equals 4 544 947 486, which is the number of overlapping
triplets in the list of 4 544 947 488 gaps between consecutive composite numbers less than 1010.
As noted above, six of the 27 potential triplets of values of gaps between successive odd composite
numbers cannot occur. The forbidden triplets of gaps are (gn, gn+1, gn+2) = (4, 4, 4), (6, 6, 6),
(6, 4, 4), (4, 4, 6), (6, 2, 6), and (6, 4, 6).

For x=1010, from (14) P1010(p, p+4, p+6)≈2715284.5779 . . . and P1010(p, p+2, p+6, p+8)

≈ 181074.8947 . . .. Hence P1010(p, p + 2, p + 6, p + 8)/P1010(p, p + 4, p + 6) ≈ 0.0667 . . ..
The estimated number of triplets (gn, gn+1, gn+2) = (2, 4, 6) of gaps between consecutive odd
composite numbers less than 1010 is P1010(p, p + 4, p + 6) − P1010(p, p + 2, p + 6, p + 8) ≈
2534209.6832 . . . whereas the exact number of such triplets of gaps is 2 531 697, according to
Table 1. The estimated number deviates from the counted number by less than 0.1 percent of the
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Table 1. Counts of the triplets of gaps (first differences)
between the successive odd composite numbers less than 1010.

gn+2 = 2

gn ↓ gn+1 → 2 4 6
2 3366240715 350832730 22348479

4 328672780 22164954 2190526

6 22164330 2532818 160326

gn+2 = 4

gn ↓ gn+1 → 2 4 6

2 328671794 22164954 2191655

4 44322586 0 320961

6 2535001 0 20202

gn+2 = 6

gn ↓ gn+1 → 2 4 6

2 22165315 2531697 160317

4 2535136 0 20210

6 0 0 0

counted number. Similarly, the exact number of triplets of gaps (gn, gn+1, gn+2) = (6, 4, 2) between
consecutive odd composite numbers less than 1010 is 2 532 818, also very close to the asymptotic
estimate.

We conjecture that the frequency of (gn, gn+1, gn+2) = (4, 2, 6) is asymptotically equivalent to
the frequency of (gn, gn+1, gn+2) = (6, 2, 4). The counts in Table 1 are 2 535 136 and 2 535 001,
respectively.
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