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Abstract: Consider the problem of determining the possible numbers of balls of two different
colors in an urn such that if two are drawn out at random, the odds that they are different colors are
a given value. We present a general solution of this problem for all odds from nil to certainty. The
solution methods use relatively simple concepts from number theory such as modular inverses
and the Pell equation. We find upper bounds on the number of solutions and the magnitude of
solutions for those cases that have at most a finite number of solutions. We also define solution
classes for cases that have an infinite number of solutions, and identify cases having a determinate
number of solution classes.
Keywords: Pell equation, Modular inverses, Combinatorial probability, Quadratic Diophantine
equations, Linear congruences, Odds inversion.
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1 Introduction

Suppose an urn contains red and blue balls, and we would like to find the numbers of balls of
each color such that if two balls are drawn out, the probability that they are different colors is
any chosen value between 0 and 1. This problem, which is a generalization of a Varsity Math
problem from the U.S. National Museum of Mathematics [6], was treated in some detail in [4].
It has a number of interesting features. For instance, if the probability is 1

2
, the solutions are pairs

Copyright © 2025 by the Author. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8702-777X
moniot@fordham.edu


of successive triangular numbers. If the probability is less than 1
2
, then in most cases there is

an infinite number of solutions, and solutions for a given probability (though not necessarily all
solutions) can be found using the Pell equation. For a probability greater than 1

2
, the number of

solutions is finite and may be zero. That case was studied by [1], who found conditions for the
existence of solutions in some cases and characterized several families of solutions.

The seemingly closely related problem where the first ball is replaced before drawing the
second was solved in [2]. Perhaps surprisingly, probabilities greater than 1

2
cannot be achieved in

that case.
In this paper we solve the problem for all rational probabilities from 0 to 1 and find upper

bounds on the number and magnitude of possible solutions for those cases that have at most a
finite number of solutions. Some of this material was treated in [4] and [1], but neither of those
articles presented complete solutions except for some special cases.

2 Preliminaries

If we denote by x and y the numbers of red and blue balls, respectively, in an urn, then if we draw
out two balls, the probability that they are different colors is

P (x, y) =
2xy

(x+ y)(x+ y − 1)
. (1)

If we require P (x, y) to equal some desired value p
q

where p, q are relatively prime natural
numbers, then the odds-inversion problem is to find all values of (x, y) that yield that value.

Provided there are at least 2 balls in the urn, setting P (x, y) = p
q

we can rearrange (1) as the
Diophantine equation

px2 − 2(q − p)xy + py2 − px− py = 0. (2)

Since (2) is symmetrical in x and y, we adopt the convention x ≤ y to have distinct solutions.
In order for the solution to represent at least 2 balls in the urn, we require x ≥ 0, y ≥ 0, and
x+ y ≥ 2 for a solution to be admissible. Note that there are always 3 solutions of (2) that do not
correspond to at least 2 balls in the urn, but that will play a role in solving the equation. They are
(x, y) ∈ {(0, 0), (0, 1), (1, 0)}. We will call these the trivial solutions.

The equation simplifies if we make the following change of variables:

t = x+ y, v = y − x. (3)

Since we keep x ≤ y, we require v ≥ 0 for distinct solutions, and t > 1 for admissible solutions.
Note that x and y are integer if and only if t and v are integer and of the same parity.

In terms of (t, v), (2) becomes

(q − 2p)t2 + 2pt− qv2 = 0. (4)

If p
q
= 1

2
, the coefficient of t2 vanishes. That case will be solved separately. Otherwise, q−2p ̸= 0,

and we can remove the linear term by completing the square. Let

u = (q − 2p)t+ p. (5)

461



Then in terms of (u, v), (4) becomes

u2 −Dv2 = p2 (6)

where
D = q(q − 2p). (7)

If D > 0, which occurs for p
q
< 1

2
, (6) describes a hyperbola; if D < 0, p

q
> 1

2
and it describes

an ellipse. Since the changes of variables are linear, the shapes of (2) and (4) are the same class
of conic section as (6). If D = 0, then p

q
= 1

2
, which invalidates (6). In this case, (2) or (4) is a

parabola.
We will deal with each of these three categories of solutions in turn.

3 Parabolic case

This case is the original Varsity Math problem, which can be solved using only simple algebra.
The solution is given in [4], but we repeat it here since the proof is brief.

Theorem 3.1. If P (x, y) = 1
2
, then the number of solutions is infinite, and all of the admissible

solutions of (2) are pairs of successive triangular numbers.

Proof. If p
q
= 1

2
, then (4) becomes

t = v2. (8)

Solving back for x and y, for any integer value of v we find

x =
t− v

2
=

v(v − 1)

2
, y =

t+ v

2
=

v(v + 1)

2
.

If v > 1, these are pairs of successive triangular numbers. There is an infinite number of
solutions.

4 Elliptical case

This case was solved in [1] for the special class of probabilities of the form m
2m−1

. Here we solve
it for all probabilities in the elliptical regime.

We can write probabilities greater than 1
2

in the form P (x, y) = m
2m−n

, where m,n ∈ Z+. To
have this in lowest terms, we require gcd(m,n) = 1. We exclude the probability P (x, y) = 1

because it is an exception to some general statements we will be making. It has the single
admissible solution (x, y) = (1, 1). Therefore, we require m > 1 and 1 ≤ n < m so that
1
2
< P (x, y) < 1.

Setting p = m and q = 2m− n in (4) and solving for v2,

v2 =
t(2m− nt)

2m− n
. (9)

Now, v2 ≥ 0 requires t ≤ 2m
n

. Equality only occurs when n = 1, for which the solutions
(x, y) = (m,m) and (m−1,m) always exist [1]. Following [1], we call these balanced solutions.
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(The other possibility, namely t = m when n = 2, is excluded, since in that case m must
be odd, while v = 0 is even, giving fractional x, y.) Also, x + y ≥ 2 implies t > 1. For
imbalanced solutions, therefore, 1 < t < 2m

n
, and in case n = 1, we have the stricter inequality

1 < t < 2m− 1.

4.1 Solution

Since the two balanced solutions exist if and only if n = 1 and they are known, we now seek only
imbalanced solutions.

Theorem 4.1. If there are imbalanced solutions (t, v) giving P (t, v) = m
2m−n

, where m > 1,
1 ≤ n < m, and gcd(m,n) = 1, they are of the form

t = aa′, v =
√
a′(b′n mod a), (10)

where a is a member of a pair of integers (a, b) such that ab = 2m − n with a > 1, b > 1, and
gcd(a, b) = 1, and a′ and b′ are the least positive modular inverses of a (mod b) and b (mod a),
respectively.

Proof. Let w = v2. If (t, v) is a solution of (9), w is integer. Rewrite (9) as

(2m− n)w = t(2m− nt). (11)

The right-hand side is a factorization of the left-hand side. Therefore, there must exist positive
integers a, b, w1, and w2 such that t = aw1 and 2m − nt = bw2, with ab = 2m − n and
w1w2 = w. Since aw1 = t ≤ 2m

n
− 1 = 2m−n

n
= ab

n
, we have w1 ≤ b/n. We can turn this

into a strict inequality, since for n = 1, we have t < 2m − 1 = ab so w1 < b, while for n > 1,
w1 ≤ b

n
< b. So we can write 0 < w1 < b. Similarly, since t > 1, bw2 = 2m−nt < 2m−n = ab,

so we have 0 < w2 < a.
By construction, t ≡ 0 (mod a) and 2m − nt ≡ 0 (mod b). Now, 2m − n = ab =⇒

2m − n ≡ 0 (mod ab) =⇒ 2m ≡ n (mod ab). This implies both 2m ≡ n (mod a) and
2m ≡ n (mod b). Then since 2m− nt ≡ 0 (mod b) =⇒ 2m ≡ nt (mod b), we have

2m ≡ n (mod b) =⇒ nt ≡ n (mod b). (12)

If gcd(n, b) = 1, then a modular inverse of n (mod b) exists, and the congruence (12) reduces
to t ≡ 1 (mod b). Since t = aw1, w1 must be a modular inverse of a (mod b). In order for this
modular inverse to exist, it is necessary that a > 1, b > 1, and gcd(a, b) = 1. Since 0 < w1 < b,
we denote this by w1 = a′, the least positive modular inverse of a (mod b).

If n > 1, it is possible to have d = gcd(n, b) > 1. Since 2m − n = ab, d must divide
2m. It cannot divide m since gcd(m,n) = 1, so d = 2. Thus in this case nt ≡ n (mod b)

has 2 solutions. If t = aw1 is the solution satisfying t ≡ 1 (mod b), then the second solution
is t ≡ (aw1 +

b
2
) (mod b). But this solution cannot satisfy t ≡ 0 (mod a). Therefore the only

solution is t = aa′.
Now, from 2m ≡ n (mod a), we have 2m− nt ≡ n− nt (mod a). Then

t ≡ 0 (mod a) =⇒ bw2 = 2m− nt ≡ n (mod a). (13)
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Now, since we showed that a > 1, b > 1, and gcd(a, b) = 1, a modular inverse of b (mod a),
which we denote by b′, exists. Then the congruence (13) can be solved, giving w2 ≡ b′n (mod a).
Above we showed 0 < w2 < a. Therefore we can set w2 = b′nmod a where b′ is the least positive
modular inverse of b (mod a). Thus v2 = w = w1w2 = a′(b′nmod a). In taking the square root,
we use only the positive branch since v ≥ 0 as noted above. Thus t, v are of the form (10).

This theorem provides a method of solving (1), by testing all factorizations ab = 2m − n

satisfying the conditions of the theorem, rejecting any that do not yield t = aa′ < 2m
n

and
v2 = a′(b′n mod a) a perfect square.

Corollary 4.1. For the probability P (x, y) =
m

2m− n
, if 2m− n is a prime power, then there are

no imbalanced solutions. If n > 1, then there are no solutions.

Proof. If 2m − n is a prime power, it is not possible to find a factorization ab = 2m − n with
a > 1 and b > 1 and gcd(a, b) = 1 to give a solution in the form (10). It is necessary for the prime
factors of a and b to be in disjoint nonempty subsets of those of 2m − n, which is not possible
for a set of size 1. By Theorem 4.1, there can be no other imbalanced solutions. Therefore, there
are no imbalanced solutions. Balanced solutions occur only for n = 1, so for n > 1 there are no
solutions.

4.2 Upper bound on number of solutions

Theorem 4.2. The upper bound on the number of distinct admissible solutions (x, y) giving
probability P (x, y) = m

2m−n
with m > 1, 1 ≤ n < m, and gcd(m,n) = 1 is 2k if n = 1 and

2k − 2 if n > 1, where k = ω(2m− n), the number of distinct prime factors of 2m− n.

Proof. If 2m−n is a prime power, for which k = 1, then by Corollary 4.1 there are no imbalanced
solutions. If n = 1, there are always the two balanced solutions, so the number of solutions is 2,
and the bound holds and is always met for this case. If n > 1, there are no solutions, so the bound
of 0 holds as well.

Otherwise, k > 1. There are 2k − 2 distinct ways to partition the k prime power factors of
2m− 1 into two products a and b satisfying the conditions a > 1, b > 1, and gcd(a, b) = 1. (The
number of subsets of k distinct primes is 2k, but the two subsets giving either a = 1 or b = 1 are
excluded.)

For each such pair (a, b), there is a solution (t, v) if and only if t = aa′ < 2m
n

and
v2 = a′(b′n mod a) is a perfect square. (Note that the alternative solution in which a and
b are swapped will appear in one of the other partitions of the set of k prime power factors.)
We require v ≥ 0, and t = aa′ is unique for a given (a, b), and so each pair (a, b) yields at most
one solution (t, v), which yields at most one solution (x, y).

Therefore each of the 2k − 2 choices of (a, b) yields at most one imbalanced solution (x, y).
Theorem 4.1 excludes any other imbalanced solutions than those of this form. If n = 1, there are
also 2 balanced solutions. Including these gives the upper bound of 2k for all solutions. If n > 1,
there can be only the 2k − 2 imbalanced solutions.
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Note: With n = 1, this paper proves Conjectures 1 and 2 of [1]. It also generalizes them to
include n > 1, i.e., to all probabilities greater than 1

2
. (Their Conjecture 2 needs to be slightly

modified, as it includes the balanced solutions and allows a = 1 or b = 1. The balanced solutions
do not result from any choices of (a, b) where ab = 2m− 1, and the factorizations with a = 1 or
b = 1 do not yield admissible solutions. Theorem 4.1 is a corrected statement of Conjecture 2.)

4.2.1 Examples

When n = 1, the bound for k > 1 is achieved in some cases. Here are two examples:

• P = 8
15

, k = 2: 4 solutions {(2, 4), (4, 6), (7, 8), (8, 8)}.

• P = 1008
2015

, k = 3: 8 solutions {(72, 84), (315, 336), (392, 414), (594, 616), (672, 693),
(924, 936), (1007, 1008), (1008, 1008)}.

For n > 1, a search determined that the bound for k > 1 is not achieved for any probabilities
for which there is at least one solution having both x and y less than 1000. The search found 5
cases with 3 solutions (all having k ≥ 4, so the bound is 14 or more), and none with more. This
is not surprising considering that the maximum acceptable values of a′ and b′ are much smaller
than those allowed when n = 1. The case with the smallest m is:

• P = 715
1428

(n = 2), k = 4: 3 solutions {(55, 65), (130, 143), (275, 286)}.

4.3 Upper bound on magnitude of solutions

Theorem 4.3. If p
q
> 1

2
, any admissible solutions of (2) obey

t = x+ y ≤ 2p

2p− q
. (14)

Proof. This follows immediately by requiring v2 ≥ 0 and t > 0 in (4).

5 Hyperbolic case

For this case, where p
q
< 1

2
and D > 0, it is most convenient to work with (6). If u < 0, it yields

negative x, y, so we seek only solutions where u > 0. We also require v ≥ 0 to have x ≥ y.

5.1 Case of D square

If D is square, then (6) factors:

(u−
√
Dv)(u+

√
Dv) = p2. (15)

This case was solved in [4]. The method of solution is to factor p2 into a product of two of its
divisors, say d1d2 = p2, equate u −

√
Dv = d1 and u +

√
Dv = d2, and solve these two linear

equations for u and v. Solutions that do not yield integer x, y are rejected. It is clear that this
method yields all solutions that exist.
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5.1.1 Upper bound on number of solutions for D square

When D is square, the number of solutions is finite, since the number of ways to factor p2 is finite.

Theorem 5.1. The number of distinct admissible solutions of (2) when p
q
< 1

2
and D is square is

less than or equal to k−3
2

where k is the number of divisors of p2.

Proof. According to (15), any solution of (6) must correspond to a factorization d1d2 = p2.
Interchanging the factors d1 and d2 yields the same solution except changing the sign of v, so
for distinct solutions one can require d1 ≤ d2 which implies d1 ≤ p. Each of these solutions
(u, v) yields at most one solution (x, y). Thus the number of distinct solutions of (2) is less than
or equal to the number of divisors of p2 that are less than or equal to p. Since p itself is always
a divisor, and the other divisors occur in pairs d1 and p2

d1
, the number of divisors giving distinct

solutions is k+1
2

where k is the number of divisors of p2. This number includes the two trivial
solutions having v ≥ 0. Removing them gives the bound k−3

2
.

Note that this bound is 0 if p is prime.

5.1.2 Examples

A search of probability ratios p
q

with q < 106 having square D and a nonzero bound on the
number of solutions found only 4 cases achieving the bound, which is 3 for all of those cases.
The instance with the smallest p is:

• P = 323
648

, k−3
2

= 3: 3 solutions {(570, 646), (646, 731), (12 236, 13 685)}.

5.1.3 Upper bound on magnitude of solutions for D square

Theorem 5.2. If p
q
< 1

2
with D square, all positive solutions of (2) obey the bound

t = x+ y ≤ (p− 1)2

2(q − 2p)
. (16)

Proof. Setting p2 = d1d2 with d1 = d and d2 = p2

d
in (15) for some divisor d of p2 and solving

for u yields

u =
p2 + d2

2d
=

1

2

(
p2

d
+ d

)
.

The extrema occur when d = 1 or d = p2, giving the bound

u ≤ 1

2

(
p2 + 1

)
.

This gives

t =
u− p

q − 2p
≤ (p− 1)2

2(q − 2p)
.

5.2 Case of D nonsquare

We first show that an infinite number of admissible solutions of (2) can be found by solving the
Pell equation. Next we examine the classes to which solutions can belong, and then proceed to a
method for finding all solutions.
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5.2.1 Infinite number of solutions

Theorem 5.3. The Diophantine equation (2) has an infinite number of admissible solutions for
any values of p and q such that D > 0 is nonsquare.

Proof. Divide both sides of (6) by p2. Then setting r = u
p

and s = v
p
, we have

r2 −Ds2 = 1. (17)

This is the well-known Pell equation, and for D > 0 nonsquare, it always has an infinite number
of integer solutions.

Now, suppose (r, s) is the fundamental solution of (17), defined as the solution for which
r and s are positive and minimal. It can be found, for instance, by the method of continued
fractions. All positive solutions of (17) are then given by [3, §10.9]:

(rn + sn
√
D) = (r + s

√
D)n, n ∈ N. (18)

From (18) and (u, v) = (pr, ps), we have that if (u, v) is a solution of (6), and (r, s) is a solution
of (17), then (u′, v′) satisfying

u′ + v′
√
D = (u+ v

√
D)(r + s

√
D) (19)

is also a solution. This leads to the recurrence

un+1 = run +Dsvn, vn+1 = sun + rvn. (20)

Clearly, this generates positive solutions (un, vn), which give positive values (xn, yn). But because
the mapping from (u, v) to (x, y) involves division by 2(q − 2p), integer solutions (u, v) are not
guaranteed to yield integer (x, y). However, in [4] it is shown that this recurrence yields integer
(x, y) on at least every other iteration. Therefore the number of solutions to the odds inversion
problem is infinite for all probabilities in the hyperbolic regime, except those for which D is
square.

5.2.2 Solution classes

Other solutions may exist that are not generated by applying the recurrence (20) to (pr, ps).
Solutions can be grouped into classes based on whether they are related by (19) for some values
of r, s that are a solution of (17). Solving (19) for r and s gives

r =
uu′ −Dvv′

p2
, s =

vu′ − uv′

p2
. (21)

Two solutions (u, v) and (u′, v′) are members of the same class if and only if these expressions
for r and s are integer [5, §58].

Theorem 5.4. When p = 1, with D > 0 non-square, all solutions of (6) belong to a single class.
When p > 1, there are always at least three classes, namely those to which the trivial solutions
belong.
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Proof. When p = 1 the expressions in (21) are always integer, so there is only one class, to which
all solutions belong.

Now consider p > 1. The trivial solution (x, y) = (0, 0) corresponds to (u, v) = (p, 0).
The other two trivial solutions (x, y) = (0, 1) and (1, 0) correspond to (u, v) = (q − p, 1) and
(q−p,−1), respectively. Setting (u, v) = (p, 0) and (u′, v′) = (q−p,±1) in (21) gives s = ∓ q−p

p2
,

which is fractional if p > 1 since p and q are relatively prime. Setting (u, v) = (q − p, 1) and
(u′, v′) = (q − p,−1) gives s = 2(q−p)

p2
, which is also fractional if p > 1. Thus no two of the

trivial solutions are in the same class if p > 1. Since the trivial solutions always exist, these three
classes of solutions always exist.

If (u, v) is a solution of (6), then (u,−v) is also a solution. We call the classes to which these
two solutions belong conjugate classes. In most cases these classes are distinct, but in some cases
(in particular, for our problem, when v = 0 or p = 1), they may be the same. We call those classes
ambiguous classes [5, §58]. The fundamental solution of a class can be defined as the member
of the class for which v ≥ 0 is the least. If the class is not ambiguous, then u is also uniquely
determined. If the class is ambiguous, then we remove the ambiguity by requiring u > 0. If K is
a solution class, we will denote its conjugate class by K.

In what follows, we will denote the solution class of the trivial solution (u, v) = (p, 0) by K0,
the class of (q − p, 1) by K1, and that of (q − p,−1) by K−1 = K1.

Let a = q − p. Require a > p to have D > 0, and gcd(a, p) = 1. Then D = q(q − 2p) =

(a + p)(a− p) = a2 − p2 and (6) can be rewritten u2 − a2v2 = (1− v2)p2. Since all non-trivial
solutions have v2 > 1, we reverse the terms so both sides are positive, and write it in factored
form:

(av − u)(av + u) = (v2 − 1)p2. (22)

Observe that changing the sign of u or v yields the same equation. Changing one changes the
solution to the conjugate class, while changing both keeps the solution in the same class.

Lemma 5.1. If av ± u in (22) is divisible by p2, then the solution (u, v) belongs to K1 or K−1.

Proof. Suppose av−u = np2, where n is an integer. Inserting that solution (u, v) = (av−np2, v)

and the trivial solution (u′, v′) = (a, 1) into (21) and simplifying gives r = v − an and s = n.
These are integer, showing that this solution is in class K1. Changing the sign of u so that
av + u = np2 yields a solution in the conjugate class K−1.

Theorem 5.5. If p is prime, then (6) has exactly 3 solution classes, namely K0, K1, and K−1.

Proof. First, consider solutions for which gcd(u, v) = 1. Clearly, since gcd(a, p) = 1, av−u and
av+u cannot both be divisible by p. Therefore, if p is prime, the only possible partitioning of the
left-hand side of (22) is for one of these terms to be a multiple of p2 and the other not divisible
by p. Hence by Lemma 5.1 the solution is a member of either K1 or K−1.

Now, if gcd(u, v) > 1, for prime p the only possibility is gcd(u, v) = p, which reduces (6) to
the Pell equation. The fundamental solution gives (u, v) = (pr, ps). This solution results from
applying the recurrence (20) to (p, 0), which belongs to K0.
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5.2.3 Solution methods

The special cases p = 1 and p = 2 were treated in [4]. The smallest solutions of (2) are (x, y) =

(1, 2q − 1) and (1, q − 1), respectively. All larger solutions can be found via the recurrence

xn+1 = yn, yn+1 =
yn(yn − 1)

xn

, n = 1, 2, . . . (23)

This allows one to avoid solving the Pell equation for these cases. For p > 2, we proceed by
solving (6) and sifting for solutions that yield admissible (x, y).

If (u, v) is a fundamental solution of a class, then all solutions of the class are given by (19)
as r and s run over all solutions of (17), including (r, s) = (±1, 0) [5, §58]. Equivalently, one
can use the recurrence (20) with (r, s) the fundamental solution of (17).

If p is prime, according to Theorem 5.5 all solutions belong to one of the trivial-class solutions.
They can be generated by applying the recurrence (20) to the trivial solutions.

The number of solution classes of (6) is finite; a bound on the maximum magnitude of v for
the fundamental solution of any class is

|v| ≤ ps√
2(r + 1)

, (24)

where (r, s) is the fundamental solution of (17) [5, §58]. In principle, this bound allows one to
find the fundamental solutions of all classes by a search on v in a finite number of steps, from
which all solutions can be obtained via the recurrence (20). This method is quite efficient if the
bound on v is small. However, for some cases, even some with modest values of p and q, the
bound may be very large, rendering such a search impractical. The method of continued fractions
can be adapted to find the solutions more efficiently, as follows.

Hua [3, §11.5] provides a recursive method for finding all solutions of (6) for D>0 nonsquare,
which we state concisely here. If p2 <

√
D, then any solutions of (6) are found among the

convergents of
√
D. Due to periodicity this involves only a finite number of steps. If p2 >

√
D,

initiate the recursion by setting δ = 1 and f = p2. In later stages of the recursion, δ = ±1 will
carry the sign while we keep f > 0. The equation to be solved is u2 −Dv2 = δf . Now reduce
the right-hand side to be smaller in magnitude than

√
D as follows. Seek integers l, h satisfying

ηh =
l2 −D

δf
, h > 0, η = ±1. (25)

This requires that l2 − D ≡ 0 (mod f), with 0 ≤ l ≤ h
2
. The congruence (25) is equivalent to

l2 = D + fh. It is sufficient to search for perfect squares using the range −hmax ≤ h ≤ hmax

where

hmax = max

(
f

4
,
D

f

)
.

Since f >
√
D, it is guaranteed that h < f . There can be multiple solutions (l, h). For each one,

solve ξ2 −Dν2 = ηh. If h <
√
D, solve directly by searching the convergents of

√
D; otherwise

set δf = ηh and repeat recursively. Since f is reduced on each step, the recursion is guaranteed
to terminate. Once one has a solution to ξ2 −Dν2 = ηh, solutions to u2 −Dv2 = δf are given
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by

u =
Dν ± lξ

h
, v =

ξ ± lν

h
, (26)

using the same sign for each.
The solutions given by convergents are always coprime, while solutions of (6) may have

common divisors, which must also divide p2. To find these solutions, one can solve (6) divided
by the square of each divisor of p, using the method in the previous paragraph.

6 Conclusion

We have presented feasible solution methods for each of the regimes of this problem: elliptical
(probability > 1

2
), parabolic (probability = 1

2
), and hyperbolic (probability < 1

2
). Upper bounds

on the number of solutions, and on the magnitude of solutions, for the elliptical case and for those
hyperbolic cases having D a perfect square were obtained. It was shown that for hyperbolic cases
with D nonsquare, there are always solutions, and cases were identified for which there are just
1 or 3 solution classes. An open question is whether upper bounds on the number of solution
classes that are tighter than the bounds implied by (24) can be found in general.
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