Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2025, Volume 31, Number 3, 443–447 DOI: 10.7546/nntdm.2025.31.3.443-447

A new symmetric weighing matrix SW(22, 16)

Sheet Nihal Topno¹ and Shyam Saurabh²

¹ University Department of Mathematics, Ranchi University Ranchi, Jharkhand, India e-mail: sheetnihaltopno@ranchiuniversity.ac.in

² Department of Mathematics, Tata College, Kolhan University Chaibasa, Jharkhand, India e-mail: shyamsaurabh785@gmail.com

Received: 18 October 2024 Accepted: 24 July 2025 Revised: 2 June 2025 Online First: 28 July 2025

Abstract: The existence of symmetric weighing matrix SW(22, 16) is settled in this note through a theorem and exhaustive search.

Keywords: Symmetric weighing matrix, Type 1 matrix. **2020 Mathematics Subject Classification:** 05B15, 05B20.

1 Introduction

A weighing matrix W(n, k) of order n and weight k is a (0, 1, -1)-matrix such that $WW^{\top} = kI_n$, $k \leq n$. For an introduction to the fundamentals of weighing matrices, the authors refer readers to the seminal paper by Chan *et al.* [2]. Henceforth, a symmetric W(n, k) will be denoted as SW(n, k). Recently, construction of W(23, 16), W(25, 16), W(27, 16) and W(29, 16) have been settled by Ben-Av *et al.* [1]. Georgiou *et al.* [4] have proposed a method which resulted in the very first example of SW(30, 25). The smallest open case for symmetric weighing matrix with weight 16 is SW(22, 16) (see [3, Table 2.88]), which is settled in this note.

Copyright © 2025 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

2 Preliminary

Suppose GF(q) be a finite field of q (a prime power) elements. Observing the properties of a finite field Paley [5] defined a matrix $Q = [q_{ij}]$ of order q which is now termed as the *Paley core*. Let a_1, a_2, \ldots, a_q be the elements of GF(q) arranged in some random but fixed order, then Q is defined as

$$q_{ij} = \begin{cases} 0, & \text{if } a_j - a_i = 0\\ 1, & \text{if } a_j - a_i \text{ is a square element of } GF(q)\\ -1, & \text{if } a_j - a_i \text{ is a non-square element of } GF(q). \end{cases}$$

It has been established that $QQ^{\top} = qI_q$ and Q is a symmetric or skew according as $q \equiv 1 \pmod{4}$ or $q \equiv -1 \pmod{4}$ [5].

Let G be an additive Abelian group with elements g_i . Let $X \subseteq G$. For an arbitrary but fixed ordering of the elements of G, the matrix $M = [m_{ij}]$ defined by

$$m_{ij} = \chi(g_j - g_i),$$

$$\chi(g_j - g_i) = \begin{cases} 1, & g_j - g_i \in X \\ 0, & \text{otherwise} \end{cases}$$

is called the *type 1 incidence matrix* and the matrix $N = [n_{ij}]$, where

$$n_{ij} = \chi(g_j + g_i),$$

$$\chi(g_j + g_i) = \begin{cases} 1, & g_j + g_i \in X\\ 0, & \text{otherwise} \end{cases}$$

is called the *type 2 incidence matrix* of X in G. A matrix $A = [a_{ij}]$ of order n is called a *circulant* or *back circulant* matrix according as $a_{ij} = a_{1,j-i+1}$ or $a_{ij} = a_{1,i+j-1}$ where, j - i + 1 & i + j - 1 are reduced modulo n. In the definition of type 1 incidence matrix if the group G is cyclic, then the matrix in circulant.

Notation: An identity matrix and an all-1 matrix will be denoted as I and J, respectively. Their orders will be decided by the context. N^{\top} will denote the transpose of the matrix N. A circulant matrix B with first row $(abc \dots k)$ will be denoted as $B = \text{circ}(abc \dots k)$.

The following properties of type 1 and type 2 matrices due to Seberry [6] will be applied in the proof of the construction in Section 3.

Lemma 2.1. If X is a type 1 matrix and Z is a type 2 matrix defined on the same Abelian group with a fixed ordering, then

- (i) X^{\top} is a type 1 matrix and Z^{\top} is a type 2 matrix,
- (ii) $Z^{\top} = Z, XZ = Z^{\top}X^{\top}, ZX = X^{\top}Z^{\top} and XZ^{\top} = ZX^{\top}.$

3 The construction

The construction relies on the following theorem, and the main result is a corollary of it.

Theorem 3.1. Let $v \equiv -1 \pmod{4}$ be a prime power and t < v be a positive integer such that v = 2t + 1 and t + v is a perfect square. Further, if there exists a type I(0, 1, -1)-matrix P of order v such that $PP^{\top} = tI + J$, then there exists a symmetric weighing matrix SW(2v, v + t).

Proof. Consider the Paley core Q over GF(v). Then it will be a type 1 matrix with following properties:

$$QQ^{\top} = vI - J \quad \text{and} \\ Q^{\top} = -Q.$$
 (1)

Define the matrix $R = [r_{ij}]_{v \times v}$ by

$$r_{ij} = \begin{cases} 1, & \text{if } j = v - i + 1 \\ 0, & \text{otherwise.} \end{cases}$$

Then, R is a type 2 matrix such that

$$R = R^{\top} \quad \text{and} \\ RR^{\top} = RR = I.$$
⁽²⁾

Suppose the matrix P in the Theorem exists, then

$$P$$
 is type 1 matrix and $PP^{\top} = tI + J.$ (3)

Therefore, by virtue of Lemma 2.1

$$PRQ^{\top} = (PR)Q^{\top}$$

= $Q(PR)^{\top}$
= QRP^{\top} and
 $(PR)^{\top} = PR.$ (4)

We define a matrix

$$W = \begin{bmatrix} PR & -Q \\ Q & PR \end{bmatrix}$$

Then by virtue of equations (1), (2), (3) and (4), $WW^{\top} = (v+t)I_{2v}$ and $W^{\top} = W$. Thus W is a symmetric weighing matrix of order 2v and weight v + t.

Corollary 3.1. There exists a SW(22, 16).

Proof. Here v = 11. The only possible value of t = 5. Consider the Paley core $Q = \operatorname{circ}(0 - + - - - + + - +)$. The type 1 matrix $P = \operatorname{circ}(000 - 0 + -0 - -)$ satisfies $PP^{\top} = 5I + J$. Hence, the desired symmetric weighing matrix SW(22, 16) =

Γo	0	0	_	0	+	_	0	_	_	_	0	_	+	_	_	_	+	+	+	_	+
0	0	_	0	+		0	_	_	_	0	+	0	_	+	_	_		+	+	+	_
0	_	0	+	_	0	_	_	_	0	0	_	+	0	_	+	_	_	_	+	+	+
_	0	+	_	0	_	_	_	0	0	0	+	_	+	0	_	+	_	_	_	+	+
0	+	_	0	_	_	_	0	0	0	_	+	+	_	+	0	_	+	_	_		+
+	_	0	_	_	_	0	0	0	_	0	+	+	+	_	+	0	_	+	_	_	_
_	0	_	_	_	0	0	0	_	0	+	_		+	+	_		0	_	+	_	_
0	_	_	_	0	0	0	_	0	+	-		_		+		_		0	_	+	_
	_	_		0	0	_	0	+	—	0			—		+	+		+	0	—	+
	_	0	0	0	_	0	+							— —				— —		0	— —
_	0	0		<u> </u>						_	+			_	+	+			+		
	-	-	0		0	+					-	+				+	+	+			0
0	+	_		+	+	_	_		+	_	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	0	_	0	+	_	0	_		_
_	0	+	_	+	+	+	_	_	_		0	0	_	0	+	_	0		_	_	0
+	_	0	+	_	+		+		_	_	0	_	-	+		0		_	_	0	0
-	+	—	0	+	_	+	+	+	_	—	-	0	+	—	-	—		_	0	0	0
-	_	+	_	0	+	_	+	+	+	—	0	+	_	0	—	_	_	0	0	0	-
-	-	—	+	—	0	+	-	+	+	+	+	-	0	—	—	-	0	0	0	-	0
+	—	—	—	+	—	0	+	—	+	+	-	0	—	—	—	0	0	0	—	0	+
+	+	_	—	_	+	_	0	+	_	+	0	_	—	_	0	0	0	_	0	+	_
+	+	+	—	—	—	+	—	0	+	—	-	—	—	0	0	0	—	0	+	—	0
-	+	+	+	_	_	_	+	_	0	+	-	_	0	0	0	_	0	+	_	0	_
+	_	+	+	+	_	_	_	+	_	0	-	0	0	0	_	0	+	_	0	_	_
L																					_

As usual, + and - represent 1 and -1, respectively.

Remark 1. The matrix *P* in the above corollary is the result of exhaustive computer search. The search resulted in only one inequivalent matrix *P* corresponding to the Paley core *Q* in the corollary.

4 Conclusion

Theorem 3.1 can generate a family of symmetric weighing matrices for suitable values of v and t. However, the existence of SW(2v, t+v) relies upon the existence of the matrix P. Table 1 shows the coverage of the Theorem 3.1 for $v \le 200$.

For $v \ge 43$, the exhaustive search for the existence of the matrix P demands a high volume of memory and time. Further studies could be made to theorize the existence of matrix P or to reduce the search-space for search algorithms which would result in symmetric weighing matrices of higher orders.

v	t	SW(2v,t+v)	Existence of P
3	1	SW(6,4)	Exists
11	5	SW(22, 16)	Exists
43	21	SW(86, 64)	Unresolved
67	33	SW(134, 100)	Unresolved
131	65	SW(262, 196)	Unresolved
171	85	SW(342, 256)	Unresolved

Table 1. Existence of symmetric weighing matrix by Theorem 3.1

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable suggestions and comments, which have helped improve the clarity of the paper.

References

- [1] Ben-Av, R., & Dula, G., Goldberger, A., Kotsireas, I., & Strassler, Y. (2024). New weighing matrices via partitioned group actions. *Discrete Mathematics*, 347(5), Article ID 113908.
- [2] Chan, H. C., Rodger, C. A., & Seberry, J. (1986). On inequivalent weighing matrices. Ars Combinatoria, 21-A, 299–333.
- [3] Craigen, R. & Kharaghani, H. (2007). Orthogonal designs. In: Colbourn, C. J., & Dinitz, J. H. (Eds.). *Handbook of Combinatorial Designs* (2nd ed.). Chapman & Hall/CRC, Boca Raton, FL, pp. 280–295.
- [4] Georgiou, S. D., Stylianou, S. & Alrweili, H. (2023). On symmetric weighing matrices. *Mathematics*, 11(9), Article ID 2076.
- [5] Paley, R. E. A. C. (1933). On orthogonal matrices. *Journal of Mathematical Physics*, 12(1–4), 311–320.
- [6] Seberry, J. (2017). Orthogonal Designs: Hadamard Matrices, Quadratic Forms and Algebras. Springer International Publishing AG.