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Abstract: The existence of symmetric weighing matrix SW (22, 16) is settled in this note through
a theorem and exhaustive search.
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1 Introduction

A weighing matrix W (n, k) of order n and weight kis a (0, 1, —1)-matrix such that WW T = kI,,,
k < n. For an introduction to the fundamentals of weighing matrices, the authors refer readers
to the seminal paper by Chan et al. [2]. Henceforth, a symmetric W (n, k) will be denoted as
SW (n, k). Recently, construction of 1 (23, 16), W (25, 16), W (27, 16) and W (29, 16) have been
settled by Ben-Av et al. [1]. Georgiou et al. [4] have proposed a method which resulted in the
very first example of STV (30, 25). The smallest open case for symmetric weighing matrix with
weight 16 is ST/ (22, 16) (see [3, Table 2.88]), which is settled in this note.
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2 Preliminary

Suppose GF(q) be a finite field of ¢ (a prime power) elements. Observing the properties of a
finite field Paley [5] defined a matrix ) = [¢;;] of order ¢ which is now termed as the Paley core.
Let ay,as, ..., a, be the elements of GF'(¢) arranged in some random but fixed order, then ) is
defined as
0, ifaj—a; =0
¢i; =< 1, if a; — a; is a square element of GF'(q)

—1, if a; — a; is a non-square element of GF'(q).

It has been established that QQ' = ¢, and @ is a symmetric or skew according as
g =1 (mod 4) or g = —1 (mod 4) [5].

Let G be an additive Abelian group with elements g;. Let X C G. For an arbitrary but fixed
ordering of the elements of G, the matrix M = [m;;] defined by

m; = x(9; — i),
17 gj — G € X

x(gj —g:) =
’ 0, otherwise

is called the type I incidence matrix and the matrix N = [n;;], where

ni; = x(9; + 9i),

1, gi+ge€X

x(g; +9:) = ,
0, otherwise

is called the type 2 incidence matrix of X in G. A matrix A = [a;;] of order n is called a circulant
or back circulant matrix according as a;; = @y j—i4+1 OF a;; = a1,4j—1 wWhere, j —1+1&i+j—1
are reduced modulo n. In the definition of type 1 incidence matrix if the group G is cyclic, then
the matrix in circulant.

Notation: An identity matrix and an all-1 matrix will be denoted as [ and .J, respectively. Their
orders will be decided by the context. N'T will denote the transpose of the matrix N. A circulant
matrix B with first row (abc. .. k) will be denoted as B = circ(abc. . . k).

The following properties of type 1 and type 2 matrices due to Seberry [6] will be applied in
the proof of the construction in Section 3.

Lemma 2.1. If X is a type I matrix and Z is a type 2 matrix defined on the same Abelian group
with a fixed ordering, then

(i) X" isatype 1 matrix and Z " is a type 2 matrix,

(i) Z' =2, XZ=7"X",2X=X"Z"and XZ7" = ZX".
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3 The construction

The construction relies on the following theorem, and the main result is a corollary of it.

Theorem 3.1. Let v = —1 (mod 4) be a prime power and t < v be a positive integer such that
v =2t + 1 and t + v is a perfect square. Further, if there exists a type 1 (0,1, —1)-matrix P of
order v such that PP = tI + J, then there exists a symmetric weighing matrix SW (2v,v + t).

Proof. Consider the Paley core () over GF'(v). Then it will be a type 1 matrix with following
properties:

QQ" =vI—J and

(1)
Q' =-Q.
Define the matrix R = [r;;]vxv by
1, fj=v—i+1
rij =
0, otherwise.
Then, R is a type 2 matrix such that
R=R" and )
RR"=RR=1.
Suppose the matrix P in the Theorem exists, then
P is type 1 matrix and PP =tI+J. 3)
Therefore, by virtue of Lemma 2.1
PRQ" = (PR)Q"
= Q(PR)! "
= QRP" and
(PR)" = PR.
We define a matrix
PR —
W = =
© PR
Then by virtue of equations (1), (2), (3) and (4), WW T = (v +t)I5, and WT = W. Thus W is
a symmetric weighing matrix of order 2v and weight v + ¢. ]

Corollary 3.1. There exists a SW(22,16).

Proof. Here v = 11. The only possible value of £ = 5.
Consider the Paley core ) = circ(0 — + — — — + + + — +).
The type 1 matrix P = circ(000 — 0 + —0 — ——) satisfies PP" = 51 + J.
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Hence, the desired symmetric weighing matrix SW (22, 16) =

000 — 0 + — 0 — — —|0 + - - = 4+ 4+ o+ - 4+
0 0 — 0 - 0 — — — 0|+ o0 + - - - 4+ + + -
o - 0+ -0 --=--090|]-+ 0 -4+ - - - 4+ + +
- 0 + - 0 — — — 0 0 0|+ — 4+ 0 — + - - 4+ +
o+ -0 - - —-000 —|+4 + - 4+ 0 - + - - — +
+ -0 - - =000 - 0|+ + + -+ 0 - 4+ = = =
-0 - -~ 0 0 0 — 0 +|-— + 4+ + - + 0 — + -

0O - - — 00 0 — 0 4+ —|-— — 4+ + 4+ — 4+ 0 — + -
- 0 0 0 0 + — 0 -+ + + - + 0 - +
- =00 0 - 0 + — 0 —|+ — = — + + + — + 0 -
- 00 0 — 0 4+ — 0 — —|— + — — — + + 4+ — + 0
O + - + + + - = — 4+ —=[0 0 0 — 0 + — 0 — — -
- 0o+ -+ + 4 - = - 4]0 0 - 0 + - 0 - = =0
+ - 0 + - 4+ + + - -0 — 0 + 0 —~ 0 0
- 4+ - 0 + - 4+ + + - —|— 0 + — 0 — — — 0 0 0
-+ 0 + — + + + —|0 + — 0 - -0 0 0 -
- - -+ - 0 4+ — + 4+ 4|+ - 0 - — =0 0 0 — 0
+ - - — 4+ - 0 + — 4 +|-— 0 - — — 0 0 0 — 0 +
+ 4+ - - — 4+ - 0 + - +]0 - -0 0 0 - 0 + -
+ + 4+ - -+ -0 4+ -|- = -0 0 0 - 0 + = 0
-+ + 4+ - - = + O /- - 0 0 0 —-— 0 + — 0 -
+ - + + + - - - + 0|l— 0 0 0 — 0 - 0 -
As usual, 4+ and — represent 1 and —1, respectively. ]

Remark 1. The matrix P in the above corollary is the result of exhaustive computer search.
The search resulted in only one inequivalent matrix P corresponding to the Paley core () in the

corollary.

4 Conclusion

Theorem 3.1 can generate a family of symmetric weighing matrices for suitable values of v and ¢.
However, the existence of S (2v, t+v) relies upon the existence of the matrix P. Table 1 shows
the coverage of the Theorem 3.1 for v < 200.

For v > 43, the exhaustive search for the existence of the matrix P demands a high volume
of memory and time. Further studies could be made to theorize the existence of matrix P or to
reduce the search-space for search algorithms which would result in symmetric weighing matrices
of higher orders.
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Table 1. Existence of symmetric weighing matrix by Theorem 3.1

’ v ‘ t ‘ SW (2v,t + v) ‘Existence of P

3 11 SW(6,4) Exists
115 | Sw(22,16) Exists
43 | 21 SW (86, 64) Unresolved

67 | 33| SW(134,100) Unresolved
131 | 65 | SW(262,196) Unresolved
171 | 85 | SW(342,256) Unresolved
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