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1 Introduction

A weighing matrix W (n, k) of order n and weight k is a (0, 1,−1)-matrix such that WW⊤ = kIn,
k ≤ n. For an introduction to the fundamentals of weighing matrices, the authors refer readers
to the seminal paper by Chan et al. [2]. Henceforth, a symmetric W (n, k) will be denoted as
SW (n, k). Recently, construction of W (23, 16), W (25, 16), W (27, 16) and W (29, 16) have been
settled by Ben-Av et al. [1]. Georgiou et al. [4] have proposed a method which resulted in the
very first example of SW (30, 25). The smallest open case for symmetric weighing matrix with
weight 16 is SW (22, 16) (see [3, Table 2.88]), which is settled in this note.
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2 Preliminary

Suppose GF (q) be a finite field of q (a prime power) elements. Observing the properties of a
finite field Paley [5] defined a matrix Q = [qij] of order q which is now termed as the Paley core.
Let a1, a2, . . . , aq be the elements of GF (q) arranged in some random but fixed order, then Q is
defined as

qij =


0, if aj − ai = 0

1, if aj − ai is a square element of GF (q)

−1, if aj − ai is a non-square element of GF (q).

It has been established that QQ⊤ = qIq and Q is a symmetric or skew according as
q ≡ 1 (mod 4) or q ≡ −1 (mod 4) [5].

Let G be an additive Abelian group with elements gi. Let X ⊆ G. For an arbitrary but fixed
ordering of the elements of G, the matrix M = [mij] defined by

mij = χ(gj − gi),

χ(gj − gi) =

1, gj − gi ∈ X

0, otherwise
,

is called the type 1 incidence matrix and the matrix N = [nij], where

nij = χ(gj + gi),

χ(gj + gi) =

1, gj + gi ∈ X

0, otherwise

is called the type 2 incidence matrix of X in G. A matrix A = [aij] of order n is called a circulant
or back circulant matrix according as aij = a1,j−i+1 or aij = a1,i+j−1 where, j− i+1 & i+ j−1

are reduced modulo n. In the definition of type 1 incidence matrix if the group G is cyclic, then
the matrix in circulant.

Notation: An identity matrix and an all-1 matrix will be denoted as I and J , respectively. Their
orders will be decided by the context. N⊤ will denote the transpose of the matrix N . A circulant
matrix B with first row (abc . . . k) will be denoted as B = circ(abc . . . k).

The following properties of type 1 and type 2 matrices due to Seberry [6] will be applied in
the proof of the construction in Section 3.

Lemma 2.1. If X is a type 1 matrix and Z is a type 2 matrix defined on the same Abelian group
with a fixed ordering, then

(i) X⊤ is a type 1 matrix and Z⊤ is a type 2 matrix,

(ii) Z⊤ = Z, XZ = Z⊤X⊤, ZX = X⊤Z⊤ and XZ⊤ = ZX⊤.
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3 The construction

The construction relies on the following theorem, and the main result is a corollary of it.

Theorem 3.1. Let v ≡ −1 (mod 4) be a prime power and t < v be a positive integer such that
v = 2t + 1 and t + v is a perfect square. Further, if there exists a type 1 (0, 1,−1)-matrix P of
order v such that PP⊤ = tI + J , then there exists a symmetric weighing matrix SW (2v, v + t).

Proof. Consider the Paley core Q over GF (v). Then it will be a type 1 matrix with following
properties:

QQ⊤ = vI − J and

Q⊤ = −Q.
(1)

Define the matrix R = [rij]v×v by

rij =

1, if j = v − i+ 1

0, otherwise.

Then, R is a type 2 matrix such that

R = R⊤ and

RR⊤ = RR = I.
(2)

Suppose the matrix P in the Theorem exists, then

P is type 1 matrix and PP⊤ = tI + J. (3)

Therefore, by virtue of Lemma 2.1

PRQ⊤ = (PR)Q⊤

= Q(PR)⊤

= QRP⊤ and

(PR)⊤ = PR.

(4)

We define a matrix

W =

[
PR −Q

Q PR

]
Then by virtue of equations (1), (2), (3) and (4), WW⊤ = (v + t)I2v and W⊤ = W . Thus W is
a symmetric weighing matrix of order 2v and weight v + t.

Corollary 3.1. There exists a SW (22, 16).

Proof. Here v = 11. The only possible value of t = 5.
Consider the Paley core Q = circ(0−+−−−+++−+).
The type 1 matrix P = circ(000− 0 +−0−−−) satisfies PP⊤ = 5I + J .
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Hence, the desired symmetric weighing matrix SW (22, 16) =

0 0 0 − 0 + − 0 − − − 0 − + − − − + + + − +

0 0 − 0 + − 0 − − − 0 + 0 − + − − − + + + −
0 − 0 + − 0 − − − 0 0 − + 0 − + − − − + + +

− 0 + − 0 − − − 0 0 0 + − + 0 − + − − − + +

0 + − 0 − − − 0 0 0 − + + − + 0 − + − − − +

+ − 0 − − − 0 0 0 − 0 + + + − + 0 − + − − −
− 0 − − − 0 0 0 − 0 + − + + + − + 0 − + − −
0 − − − 0 0 0 − 0 + − − − + + + − + 0 − + −
− − − 0 0 0 − 0 + − 0 − − − + + + − + 0 − +

− − 0 0 0 − 0 + − 0 − + − − − + + + − + 0 −
− 0 0 0 − 0 + − 0 − − − + − − − + + + − + 0

0 + − + + + − − − + − 0 0 0 − 0 + − 0 − − −
− 0 + − + + + − − − + 0 0 − 0 + − 0 − − − 0

+ − 0 + − + + + − − − 0 − 0 + − 0 − − − 0 0

− + − 0 + − + + + − − − 0 + − 0 − − − 0 0 0

− − + − 0 + − + + + − 0 + − 0 − − − 0 0 0 −
− − − + − 0 + − + + + + − 0 − − − 0 0 0 − 0

+ − − − + − 0 + − + + − 0 − − − 0 0 0 − 0 +

+ + − − − + − 0 + − + 0 − − − 0 0 0 − 0 + −
+ + + − − − + − 0 + − − − − 0 0 0 − 0 + − 0

− + + + − − − + − 0 + − − 0 0 0 − 0 + − 0 −
+ − + + + − − − + − 0 − 0 0 0 − 0 + − 0 − −


As usual, + and − represent 1 and −1, respectively.

Remark 1. The matrix P in the above corollary is the result of exhaustive computer search.
The search resulted in only one inequivalent matrix P corresponding to the Paley core Q in the
corollary.

4 Conclusion

Theorem 3.1 can generate a family of symmetric weighing matrices for suitable values of v and t.
However, the existence of SW (2v, t+v) relies upon the existence of the matrix P . Table 1 shows
the coverage of the Theorem 3.1 for v ≤ 200.

For v ≥ 43, the exhaustive search for the existence of the matrix P demands a high volume
of memory and time. Further studies could be made to theorize the existence of matrix P or to
reduce the search-space for search algorithms which would result in symmetric weighing matrices
of higher orders.
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Table 1. Existence of symmetric weighing matrix by Theorem 3.1

v t SW (2v, t+ v) Existence of P
3 1 SW (6, 4) Exists
11 5 SW (22, 16) Exists
43 21 SW (86, 64) Unresolved
67 33 SW (134, 100) Unresolved
131 65 SW (262, 196) Unresolved
171 85 SW (342, 256) Unresolved
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