
 

Copyright © 2025 by the Authors. This is an Open Access paper distributed under the  

terms and conditions of the Creative Commons Attribution 4.0 International License 

(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ 
 

Notes on Number Theory and Discrete Mathematics 

Print ISSN 1310–5132, Online ISSN 2367–8275 

2025, Volume 31, Number 3, 433–442 

DOI: 10.7546/nntdm.2025.31.3.433-442 

Fermatian row and column sums  

as a family of generalized integers 

Anthony G. Shannon 1 , Mine Uysal 2  and Engin Özkan 3  
1 Warrane College, University of New South Wales 

Kensington, NSW 2033, Australia  

e-mails: tshannon@warrane.unsw.edu.au , tshannon38@gmail.com 

2 Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yildirim University 

Erzincan, Türkiye 

e-mail: mine.uysal@erzincan.edu.tr 

3 Department of Mathematics, Faculty of Science, Marmara University 

Istanbul, Türkiye 

e-mail: engin.ozkan@marmara.edu.tr 

Received: 13 July 2025  Revised: 25 July 2025  

Accepted: 26 July 2025  Online First: 28 July 2025 

 

Abstract: In this paper, we introduce some feature of the Fermatian numbers. The finite sum 

formulas of these numbers is calculate. The exponential generating function of Fermatian numbers 

is found and some of its identities is calculated. Another number sequence is obtained from the 

partial row sums of these numbers and these numbers were examined. At the same time, another 

polynomial has been defined as a generalization of these numbers, depending on powers of z. 
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1 Introduction 

In mathematics, sequences of real numbers hold a significant place due to their inherent properties 

and the wide range of applications these properties enable. Among these sequences, the most 
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famous and important one is the Fibonacci sequence. Fibonacci numbers have found applications 

in numerous fields, ranging from nature and art to architecture and engineering. 

Over time, numerous generalizations of these number sequences have been proposed, leading 

to the definition of many diverse and intriguing numbers. Fermatian numbers can be given as an 

example of such numbers. 

An aim of this paper is to seek some further analogues for Fermatian numbers, ,nz  defined 

for integers z by 
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(1.1) 

They get their name from the French mathematician, Pierre de Fermat (1607–1665) [12]. These 

numbers constitute the ordered set of integer solutions of the congruence in Fermat’s Little 

Theorem, given below as Theorem 1.1. 

 

Theorem 1.1. 

  1 1  mod  , pz p   p a prime. (1.2) 

 

For an integer z > 1, if a composite integer x divides zx − 1  − 1, then x is called a Fermat 

pseudoprime to base z. Shanks called any integer solution of (1.2), including even numbers and 

other composites, a Fermatian number [5, 13].  Carlitz [3] used nz  = [n], though it is less suggestive 

for some of the generalized analogies. Carlitz himself used [n] with other meanings [2].  Some of 

the results here have been established in slightly different forms in other papers [14, 16]. 

2 Fermatian numbers 

zn is the n-th Fermatian number of index z: 

 2 1

( 0)

1 ( 0)

1 ( 0)

n

n

n

n

z z n

z z z z n

n



  


     
 

 

 

(2.1) 

so that 

 1 ,n n  (2.2) 

and 

 1 ! !,n n  (2.3) 

where 

 1! 1  n n n nz z z   . (2.4) 

For example, if we consider the Fermatian numbers of index 2, we have 22 = 3, and 23 = 7, 

so that 22 and 23 are generalized Fermatian primes, and 26 = (22)
223, but 28 cannot be represented 

as a product of Fermatian numbers of index 2. Some properties of these numbers may be found 

in [15] and Carlitz and Moser [4]. Carlitz has also used Fermatian numbers in the development 

of q-Bernoulli numbers and polynomials [2]. The first ten Fermatian numbers of the first ten 

indices are displayed in Table 1. 

https://en.wikipedia.org/wiki/Pierre_de_Fermat
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Table 1. First 10 Fermatian numbers of the first 10 indices 
 

 

The corresponding row and column sequences,    
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z z
 

 
 are obvious from their 

construction, but the sequence, 
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formed from adding along the forward diagonals, seems to be the sequence A103439 of [17] 

defined by the row and column combination double sum 
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Row and column recurrence relations can be formed from the basic definitions and checked 

against the values in this table. 

Variations of the identities of Simson, Cassini, Catalan and Vajda have provided opportunities 

for extensions and generalizations [9, 10, 11]. In its simplest Fibonacci form, the Simson identity 

can be expressed as   

  
12

1 1    1
n

n n nF F F


    , 
(2.4) 

and it is trivial to show that the Fermatian analogue is   

 2

1 1  n n nz z z  = 
1nz 
. (2.5) 

Other analogues of classical identities have been developed, but Tables 2, 3, 4 further 

emphasize how these Fermatians constitute a family of generalized integers. 

Cassini’s identity is a particularly important and interesting identity for certain sequences 

such as the Fibonacci sequence. This identity provides information not only about the magnitude 

of the numbers, but also about the structural properties of the sequence. Cassini’s identity reveals 

a structural relationship between consecutive terms of the Fibonacci sequence, highlighting how 

“regular” and mathematically profound the sequence is. This identity is also connected to the 

n→ 

z↓ 
1 2 3 4 5 6 7 8 9 10 

1 1 2 3 4 5 6 7 8 9 10 

2 1 3 7 15 31 63 127 255 511 1023 

3 1 4 13 40 121 364 1093 3280 9841 29524 

4 1 5 21 85 341 1365 5461 21845 87381 349525 

5 1 6 31 156 781 3906 19531 97656 488281 2441406 

6 1 7 43 259 1555 9331 55987 335923 2015539 12093235 

7 1 8 57 400 2801 19608 137257 960800 6725601 47079208 

8 1 9 73 585 4681 37449 299593 2396745 19173961 153391689 

9 1 10 91 820 7381 66430 597871 5380840 48427561 435848050 

10 1 11 111 1111 11111 111111 1111111 11111111 111111111 1111111111 
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determinants of certain matrices. Cassini’s identity can assist in proving other theorems related to 

the Fibonacci sequence. It is particularly useful in contexts where the method of mathematical 

induction is applied. Cassini’s identity is also related to certain number theory problems or 

combinatorial structures involving Fibonacci numbers. In this sense, it finds applications in 

applied mathematics as well. Similar statements can be made for other identities (Catalan, 

d’Ocagne, Vajda, …) as well. 

Theorem 2.1 (Cassini Identity). For n Z  we have, 

2

1 1  n n nz z z   = 1nz  . 

Proof. For the proof, we use the Equality (1.1). 

 

 
 

 
 

 
 

 
 

 

 

 

 

1 1

2

1 1

1 1 2 2

2

1 1

2

21

2

1

1 1 1 1

1 1 1 1

1 1 2
 

1

2
 

1

1
 

1

  .

n n n n

n n n

n n n n n

n n n

n

n

z z z z
z z z

z z z z

z z z z z

z

z z z

z

z z

z

z

 

 

 

 





   
  

   

     




  




 






 

Thus, the proof is completed.  

Theorem 2.2 (Catalan Identity). For ,n t Z  we have, 

2  n t n t nz z z   = 
1nz 
. 

Proof.  For the proof, we use the equality (1.1). 
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Note that, if 1t   is taken then Cassini identitiy is obtained.  

Thus, the proof is completed.  

Theorem 2.3 (d’ Ocagne Identity). For ,n mZ , we have 
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Thus, the proof is completed.  

Theorem 2.4 (Vajda Identity). For , ,n m rZ , we have 

 .n

n m n r n n m r r mz z z z z z z      

Proof.  
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Thus, the proof is obtained.  
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Theorem 2.5. (Gelin–Cesaro Identity) For 2n  , we have 

  
24 2 3 4

1 2 1 2  1 .n

n n n n n nz z z z z z z z

          

Proof.  We will use Cassini and Catalan identities to prove the theorem. Thus,  

 

 

4 4

1 2 1 2 1 1 2 2

1 2 2 4

2

2 3 2 4

2

22 3 4

 

1 .

n n n n n n n n n n

n n

n

n

n

n

n

z z z z z z z z z z

z z z z

z z z

z z z

       

 





  

 













 

 

Thus, the proof is completed.  

Theorem 2.6. Exponential generating function is as follows: 
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Thus, the proof is completed.  

3 Fermatian row sums 

It is obvious that from Table 1 that 1 1n nz zz    and from the partial row sums in Table 2 that 

1 .n nu zu n   Elements of these two recurrence relations are displayed in Table 2. 

Thus, we see that  nz = 
1

1

n

nz z 

   as in 5 3 = 
4

 4121 40 81  3 3    , and the Fermatian numbers 

and their corresponding row sum numbers follow a neat and consistent, but not unsurprising, 

pattern of the form 

 1

1
 ~  ,

1

n

n

z
zu n

z






 

(3.1) 

or 

 1 ~    .n nn zu z   (3.2) 
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Table 2. Partial sums { } nu and Fermatians { }nz  

 n→ 

z↓ 
1 2 3 4 5 6 7 Sloane # Sloane # Sloane: nu  

 1 1 2 3 4 5 6 7 A000027  1 1nu    

  un 1 3 6 10 15 21 28  A000317 1
1nu n   

 2 1 3 7 15 31 63 127 A000225   2 1 /1n   

  un 1 4 11 26 57 120 247  A000295 2
1nu n   

 3 1 4 13 40 121 364 1093 A003462   3 1 / 2n   

 un 1 5 18 58 179 543 1636  A000340 3
1nu n   

 4 1 5 21 85 341 1365 5461 A002450   4 1 / 3n   

 un  1 6 27 112 453 1818 7279  A014825 4
1nu n   

 5 1 6 31 156 781 3906 19531 A003463   5 1 / 4n   

 un 1 7 38 194 975 4881 24412  A014827 5
1nu n   

 6 1 7 43 259 1555 9331 55987 A003464   6 1 / 5n   

  un 1 8 51 310 1865 11196 67183  A014829 16 nu n   

 7 1 8 57 400 2801 19608 137257 A023000   7 1 / 6n   

  un 1 9 66 466 3267 22875 160132  A4830 17 nu n   

 8 1 9 73 585 4681 37449 299593 A023001   8 1 / 7n   

  un 1 10 83 668 5349 42798 342391  A048440 18 nu n   

 9 1 10 91 820 7381 66430 597871 A002452   9 1 / 8n   

  un 1 11 102 922 8303 74733 672604  A048441 19 nu n   

 

The generalizability of these Fermatians is further emphasized when we consider the 

conjectured series of column entries from Table 1 in Table 3 below. It opens up new connections 

among known sequences by means of these Fermatians, with almost Pascal triangle coefficients 

to generate the numbers. 

Table 3. Conjectured column sequences from Table 1 

z 1 2 3 4 5 6 7 8 9 nv  

1 1 1 1 1 1 1 1 1 1 The conjectured 

equations 

  1
1 1

n
z

z
   

are set out in Table 4 

2 3 4 5 6 7 8 9 10 11 

3 7 13 21 31 43 57 73 91 111 

4 15 40 85 156 259 400 585 120 1111 

5 31 121 341 781 1555 2801 4681 7381 11111 

6 63 364 1365 3906 9333 19608 37449 66430 111111 

7 127 1093 5461 19531 55987 137257 299593 597871 1111111 

8 255 3280 21845 97656 335923 960800 2396745 5380840 11111111 

9 511 9841 87381 488281 2015539 6725601 19173961 48427561 111111111 

10 1023 29524 349525 2441406 12093235 47079208 153391689 435848050 1111111111 
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Table 4. Some z polynomials  

n 1 2 3 4 5 

nv  

1 z+2 2 3 3z z   3 24 6 4z z z    4 3 25 10 10 5z z z z     
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Theorem 3.1.  The following equality is satisfied. 
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Proof. The proof is shown by induction over n.  

Corollary 3.1. There is the following relation between Fermatian numbers and polynomials 
nv : 
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This completes the proof.  

Theorem 3.2. For 1n  , the finite sum given below exists: 
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Proof. We use the equality  nz = 
1

1

n
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   for the proof. Thus,  

For 1n  ,       1 z = 
0

0 ,z z  

For 2n  ,       2  z = 
1

1 ,z z  

For 3n  ,       3 z = 
2

2 ,z z  
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For 4n  ,       
4  z = 3

3 ,z z  

            

For n k ,       
kz = 1

1 .k

kz z 

   

If the necessary operations are performed, then 

 
1

0

k
i

k

i

z z




  

is obtained.  

Theorem 3.3. The limit of 
nz  is as follows:  
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This completes the proof.  

4 Conclusion 

This leads into the work of Barry [1] and the connections with Fibonacci and Jacobsthal sequences 

as well as q-binomial coefficients. These also further strengthen the concept of families of 

generalized integers. These are also exemplified by Fontené’s generalized integers [6] where he 

used an arbitrary sequence of real or complex numbers instead of the natural numbers. Morgan 

Ward [18] had independently rediscovered these and so Gould [7] developed some striking 

theorems for what he termed the Fontené–Ward generalized binomial coefficients, though as 

indicated earlier there has not been much consistency of notation, as also noted by Hoggatt and 

Bicknell [8]. 
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