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Abstract: In this paper, we introduce some feature of the Fermatian numbers. The finite sum
formulas of these numbers is calculate. The exponential generating function of Fermatian numbers
is found and some of its identities is calculated. Another number sequence is obtained from the
partial row sums of these numbers and these numbers were examined. At the same time, another
polynomial has been defined as a generalization of these numbers, depending on powers of z.
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1 Introduction

In mathematics, sequences of real numbers hold a significant place due to their inherent properties
and the wide range of applications these properties enable. Among these sequences, the most
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famous and important one is the Fibonacci sequence. Fibonacci numbers have found applications
in numerous fields, ranging from nature and art to architecture and engineering.

Over time, numerous generalizations of these number sequences have been proposed, leading
to the definition of many diverse and intriguing numbers. Fermatian numbers can be given as an
example of such numbers.

An aim of this paper is to seek some further analogues for Fermatian numbers, z,, defined

s L

for integers z by

= (1.1)
£ (1)

They get their name from the French mathematician, Pierre de Fermat (1607-1665) [12]. These
numbers constitute the ordered set of integer solutions of the congruence in Fermat’s Little

Theorem, given below as Theorem 1.1.

Theorem 1.1.
z"* =1(modp), p a prime. (1.2)

For an integer z> 1, if a composite integer x divides z*~! — 1, then x is called a Fermat
pseudoprime to base z. Shanks called any integer solution of (1.2), including even numbers and
other composites, a Fermatian number [5, 13]. Carlitz[3] used z, =[n], though it is less suggestive

for some of the generalized analogies. Carlitz himself used [#] with other meanings [2]. Some of
the results here have been established in slightly different forms in other papers [14, 16].

2 Fermatian numbers

zn 18 the n-th Fermatian number of index z:

_Znén (n <0)
2 n-1 (2.1)
Z,=<1+z+2°+---+2 (n>0)
1 (n=0)
so that
1 =n, (2.2)
and
1!=n! (2.3)
where
Zn !=;nzn—1"'ln * (24)

For example, if we consider the Fermatian numbers of index 2, we have 2, = 3, and 23 = 7,
so that 2, and 2 are generalized Fermatian primes, and 26 = (22)?23, but 25 cannot be represented
as a product of Fermatian numbers of index 2. Some properties of these numbers may be found
in [15] and Carlitz and Moser [4]. Carlitz has also used Fermatian numbers in the development
of g-Bernoulli numbers and polynomials [2]. The first ten Fermatian numbers of the first ten
indices are displayed in Table 1.
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Table 1. First 10 Fermatian numbers of the first 10 indices

i1l 23| 4| s 6 7 8 9 10
z|

1 1 2| 3] 4 5 6 7 8 9 10
2 1 3 7] 15| 31 63 127 255 511 1023
3 1[4 13| 40| 121] 364] 1093|3280 9841 29524
4 1 5| 21| 85| 341| 1365| 5461| 21845| 8738l 349525
5 1 6| 31| 156 781| 3906] 19531 97656 488281 2441406
6 1 7| 43| 259] 1555| 9331 55987| 335923| 2015539 12093235
7 1| 8| 57| 400 2801| 19608 137257| 960800 6725601 47079208
8 1 9| 73| 585| 4681| 37449 299593 2396745| 19173961| 153391689
9 1] 10| 91| 820] 7381| 66430| 597871 5380840| 48427561| 435848050
10 [ 10| 111 1001] 10000] 110000 1000000 | 10000111 10101111] 1110111111

The corresponding row and column sequences, {z,}" .{z,}, are obvious from their

construction, but the sequence,

z-1
{Z(z — n) } = {1, 3,7,16,39,105,315,1048,.. } ,
n:l—n

formed from adding along the forward diagonals, seems to be the sequence A103439 of [17]
defined by the row and column combination double sum

n-1 i

a,=> > (i-j+1)".
i~0 j=0
Row and column recurrence relations can be formed from the basic definitions and checked
against the values in this table.
Variations of the identities of Simson, Cassini, Catalan and Vajda have provided opportunities
for extensions and generalizations [9, 10, 11]. In its simplest Fibonacci form, the Simson identity

can be expressed as

I:nz - Fn—l N+l (_1)”_1 ) (24)

and it is trivial to show that the Fermatian analogue is

22—z .7 . =7"1 (2.5)

Ln " En1bn T

Other analogues of classical identities have been developed, but Tables 2, 3, 4 further
emphasize how these Fermatians constitute a family of generalized integers.

Cassini’s identity is a particularly important and interesting identity for certain sequences
such as the Fibonacci sequence. This identity provides information not only about the magnitude
of the numbers, but also about the structural properties of the sequence. Cassini’s identity reveals
a structural relationship between consecutive terms of the Fibonacci sequence, highlighting how
“regular” and mathematically profound the sequence is. This identity is also connected to the
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determinants of certain matrices. Cassini’s identity can assist in proving other theorems related to
the Fibonacci sequence. It is particularly useful in contexts where the method of mathematical
induction is applied. Cassini’s identity is also related to certain number theory problems or
combinatorial structures involving Fibonacci numbers. In this sense, it finds applications in
applied mathematics as well. Similar statements can be made for other identities (Catalan,
d’Ocagne, Vajda, ...) as well.

Theorem 2.1 (Cassini Identity). For ne Z* we have,

Z .z 2. =1

£Ln1bnil T &n

Proof. For the proof, we use the Equality (1.1).

) ()7
e (1-z) (1-z) (1-2) (1-2)
1-z" 2" 42" -1+ 22" - 72"
(1-2)
—z™ "y 27"
(1-2)

—z“’l(z—l)2

(1-2)

Thus, the proof is completed. [

Theorem 2.2 (Catalan Identity). For n,t e Z" we have,

Z .7 722=7

_ n-1
Zn-t&n+t &n .

Proof. For the proof, we use the equality (1.1).

) r)er)

Lo tlnit — £n (1_2) (1_2) (1—2) (1—2)

1-z2" =" 2" 14 22" -2

(1-2)
_Zn+t _ Zn—t + 22n
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_ _Zn—t 1- Zt ’
1-z

__on-t 2
=—1 Z;.

Note that, if t =1 is taken then Cassini identitiy is obtained.
Thus, the proof is completed.
Theorem 2.3 (d’ Ocagne Identity). For n,me Z , we have

z"+z"
Z 7 Z. .7 =

EmEnil T Emaén T e
1-z

Proof.
_(-zn)f-z) (1o -z)
L0Zny —Znni, = (1_2) (1_2) - (1_2) (1_2)
_1_ Zn+1_zm+zm+n+l_1+ Zn+Zm+l—Zm+n+l
(1-2)
2"(1-2)+z" (1-z2)

(1-2)

Thus, the proof is completed.

Theorem 2.4 (Vajda Identity). For n,m,r € Z, we have

n
ZoimZoir — ZnZnsmir =L L 2.
Proof.
(1_ Zn+m) (1_ Zn+r) (1_ Zn) (1_ Zn+m+r)
Z Z A = -

Loim Lo ~Lnlnimer = (1_ Z) (1_ Z) (1_ z) (l— Z)

1_ Zn+r _ Zn+m + Zm+2n+r _1+ Zn+m+r + Zn _ Zm+2n+r

(1-2)
(1— zr)(z” - me)
(1-2)°
(1-2")z"(1-2")
(1-2)

Thus, the proof is obtained.
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Theorem 2.5. (Gelin—Cesaro Identity) For n>2, we have
Z..2 .7 .7 z! :—22”‘3(1+z)2—;4.

n-1£n-2%&n+1&n+2 ~ £n n

Proof. We will use Cassini and Catalan identities to prove the theorem. Thus,

4 4

AR ANy S AN Sl Al SR AP AR S0 Rl A8
_ n-1,n-2_2 4
=-2"7""25 - 7

Thus, the proof is completed. 0

Theorem 2.6. Exponential generating function is as follows:

n X ZX

2. X —-e

n=0 n! 1_2

e

Proof.
2 X" &(1-z" X"
Zz”n_z[lz ]m
1 & x"—(2x)
1 zz(; n!
= i{ix“ —i(zx)"}
1-7| & o
e —e”
- 1-z
Thus, the proof is completed. [

3 Fermatian row sums

It is obvious that from Table 1 that z, =zz, , +1 and from the partial row sums in Table 2 that

u, = zu, , +n. Elements of these two recurrence relations are displayed in Table 2.

Thus, we see that 2, =z, ,+2" " asin 3, = 121=40+81=3, +3*, and the Fermatian numbers

and their corresponding row sum numbers follow a neat and consistent, but not unsurprising,
pattern of the form

2" -1 (3.1)
~ZU,, +N,
z-1
or
n-~z,, —z,. (3.2)



Table 2. Partial sums { u,} and Fermatians { z }

2 "1z 3] 4 5 6 7 Sloane # | Sloane # | Sloane: u, =
1 1| 2 4 5 6 7 | A000027 u, ,+1
un| 1| 3 10 15 21 28 A000317 | lu,, +n
2 1| 3| 7| 15| 31 63 127 | A000225 (2"-1)/1
uo | 1| 4] 11| 26| 57| 120 247 A000295 | 2u_,+n
3 1| 4| 13| 40| 121| 364| 1093 | A003462 (3'-1)/2
uo | 1| 5| 18| 58| 179 | 543 | 1636 A000340 | 3u_, +n
4 1| 5| 21| 85| 341| 1365| 5461 | A002450 (4"-1)/3
uo| 1| 6] 27| 112] 453 | 1818 | 7279 A014825 | 4u_, +n
5 1| 6| 31[156| 781 | 3906 | 19531 | A003463 (5"-1)/4
uo | 1| 7] 38(194| 975| 4881 | 24412 A014827 | 5u_,+n
6 1| 7| 43]259|1555| 9331| 55987 | A003464 (6"-1)/5
uo | 1| 8| 51(310] 1865 11196 | 67183 A014829 | 6u_, +n
7 1| 8| 57400 |2801 | 19608 | 137257 | A023000 (7"-1)/6
un | 1| 9| 664663267 | 22875 | 160132 A4830 | Tu ,+n
8 1| 9| 735854681 | 37449 | 299593 | A023001 (8"-1)/7
uo | 1]10| 836685349 | 42798 | 342391 A048440 | 8u_,+n
9 1| 10| 918207381 | 66430 | 597871 | A002452 (9"-1)/8
uo | 1| 111102922 | 8303 | 74733 | 672604 A048441 | 9u_, +n

The generalizability of these Fermatians is further emphasized when we consider the

conjectured series of column entries from Table 1 in Table 3 below. It opens up new connections
among known sequences by means of these Fermatians, with almost Pascal triangle coefficients
to generate the numbers.

Table 3. Conjectured column sequences from Table 1

11| 2] 3 4 5 6 7 8 9 v, =

1 1 1 1 1 1 1 1 1{The conjectured
2 3 4 5 6 7 8 9 10 11|equations

3 7 13 21 31 43 57 73 o1 | 1 "

4| 15| 40| 85 156 259 400 585 120 111 E{(”l) - }
5 | 31| 121] 341 781 1555 2801 4681 7381 T yre set out in Table 4
6 | 63 364 1365  3906]  9333| 19608 37449 66430 111111

7 | 127] 1093 5461] 19531] 55987 137257] 299593 597871 1111111

8 | 255 3280 21845 97656| 335923| 960800] 2396745 5380840 11111111

9 | 511| 9os4l| 87381 488281 2015539 6725601] 19173961] 48427561 111111111

10 | 1023| 29524] 349525| 2441406 12093235| 47079208 153391689 435848050 1111111111
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Table 4. Some z polynomials

n 1 2 3 4 5

1 z+2 z°+3z+3 22 +47°+62+4 z* +52° +102* +10z2+5
n 1 2 3 4 5

(z+1) -1 (z+1) -1 (z+1) -1 (z+1) -1 (z+1) -1

z z z z 4

% 6 7
z° +62* +152° +20z° +152+ 6 2% +72°+212* +352° +3522 + 212+ 7
n
(z+1)° -1 (z+1)' -1
z z

Theorem 3.1. The following equality is satisfied.

U n(n+1)
1-z) > u +u, = .
( ); l n 2
Proof. The proof is shown by induction over n. 0

Corollary 3.1. There is the following relation between Fermatian numbers and polynomials v, :

—(z+1) =v,.
Proof.
1-(z+1)
(z+) = ( ( ) )
" (1-(z+1))
(1—(2 +1)")
B -7
=-V..
This completes the proof. L]

Theorem 3.2. For n>1, the finite sum given below exists:

For n=1, Z=172,+7,
For n=2, ,= 7, +7,
For n=3, 2,= 7,+17°,




For n=4, ,= ,+7°

For n=Kk, =127 ,+7"

If the necessary operations are performed, then

1S obtained.

Theorem 3.3. The limit of z, is as follows:

Proof.

since Z>1, we have

This completes the proof.

4 Conclusion

This leads into the work of Barry [1] and the connections with Fibonacci and Jacobsthal sequences
as well as g-binomial coefficients. These also further strengthen the concept of families of
generalized integers. These are also exemplified by Fontené’s generalized integers [6] where he
used an arbitrary sequence of real or complex numbers instead of the natural numbers. Morgan
Ward [18] had independently rediscovered these and so Gould [7] developed some striking
theorems for what he termed the Fontené—Ward generalized binomial coefficients, though as
indicated earlier there has not been much consistency of notation, as also noted by Hoggatt and

Bicknell [8].
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