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Abstract: We extend the plane trigonometric approach that we used to prove the case n = 4

of Fermat’s Last Theorem, to the case n = 3. We show that all real positive triplets satisfying
aϕ + bϕ = cϕ for ϕ > 1 are triangles. As in the case of n = 4, we equate the Pythagorean
and Fermat descriptions of the triangles for a particular smaller side while fixing the other sides,
with ϕ = n being any positive integer. We hence show the existence of Fermat–Pythagoras
polynomials for n ≥ 3. For the case n = 3, we explicitly derive an analytic expression for the
roots of the polynomials. We prove from this expression that the real roots, which are equal to
the length of the sides, are irrational.
Keywords: Pythagorean theorem, Diophantine equations, Fermat’s Last Theorem.
2010 Mathematics Subject Classification: 51N20, 11D41.

1 Introduction

Fermat’s Last Theorem, completely proved by Wiles [12] in 1995, has a long and interesting
history. Numerous proofs for smaller exponents have been provided over time by mathematicians
such as Euler, Legendre, Lamé and others [3, 5, 10]. In every case, the problem is to prove
Fermat’s statement true or false [5]: that there exist no positive integers (a, b, c) for a positive
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integer exponent n > 2 such that an + bn = cn. Historically and traditionally, the proofs for
smaller exponents and special cases have used the algebraic techniques of Diophantine analysis.
A fundamental strategy element is the use of Fermat’s method of infinite descent [4]. A distinction
in the present approach is that it is trigonometric, which to the best of our knowledge departs from
traditional approaches, and offers interesting additional insights.

In [9], we proved that the Fermat equation for n = 4, a4 + b4 = c4, with (a, b, c) ∈ R>0,
represents acute triangles. By means of a geometric construction that fixes two sides (including
the largest side) of a triangle, we derived Fermat–Pythagoras polynomials Ξ4 for the smaller
third side. We showed that the values of the real roots Ξ4 are the lengths of this variable side
satisfying the Fermat equation for n = 4. We used algebraic and geometric arguments to
prove that Ξ4 cannot have rational roots. We now extend the approach, showing the existence
of Fermat–Pythagoras polynomials Ξn for all positive integers n. We explicitly derive the roots
of these polynomials for Ξ3, and prove that their real roots cannot be rational.

We will restate definitions and terminology from [9] and extend them as relevant to the present
work. First, we generalize the Fermat equation and show that the triplets satisfying the equation
are all triangles. We refer only to plane triangles throughout the work. Let ϕ ≥ 1 be a real
number. Let (a, b, c) be a triplet of positive real numbers such that

aϕ + bϕ = cϕ. (1)

We will call ϕ the Fermat index of (a, b, c). We allow ϕ to take values as large as required to
satisfy (1). For some choices of the triplet (a, b, c), ϕ might not satisfy (1) at any finite value,
however large. In these cases, aϕ+bϕ−cϕ might approach the limiting value of 0 only as ϕ grows
unboundedly large. For completeness of our definition of the Fermat index, we accommodate for
this possibility and define ϕ to take values from the affinely extended positive real number line
greater than or equal to 1 , ϕ ∈ R̄≥1 = {R≥1} ∪ {+∞}, following the definition in [1].

Let the positive integer values of ϕ be represented by n, so that ϕ = n ∈ Z≥1. Then (1) for
integer Fermat index is

an + bn = cn. (2)

In this paper, we analyze (2) for n = 3

a3 + b3 = c3. (3)

We will first show that (1) represents triangles, which are obtuse for 1 < n < 2 and acute for
n > 2.

Theorem 1.1. The triplet (a, b, c) satisfying (1) forms a plane triangle with c the longest side.

Proof. First let (a, b, c) ∈ R>0, with b > a and ϕ ∈ (1,∞); and consider the expression

(a+ b)ϕ = bϕ[1 + (a/b)]ϕ,

which, on expanding [1 + (a/b)]ϕ as a convergent binomial series with k ∈ Z≥0, becomes

bϕ
∞∑
k=0

(
ϕ

k

)
(a/b)k, where

(
ϕ

k

)
:= ϕ(ϕ− 1) · · · (ϕ− k + 1)/k!,
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= bϕ + ϕabϕ−1 + bϕ
∞∑
k=2

(
ϕ

k

)
(a/b)k,

which holds for both integer and non-integer real values of ϕ. Since aϕ−1 < ϕbϕ−1,

(a+ b)ϕ > bϕ + aϕ + bϕ
∞∑
k=2

(
ϕ

k

)
(a/b)k. (4)

The k-th term of
∑∞

k=2

(
ϕ
k

)
(a/b)k is

tk = [ϕ(ϕ− 1) · · · (ϕ− k + 1)/k!](a/b)k,

so that
tk + tk+1 = tk{1 + [(ϕ− k)/(k + 1)](a/b)}.

Let n be the first integer that is greater than ϕ; then tn = [ϕ(ϕ−1) · · · (ϕ−n+1)/n!](a/b)n ≥ 0,
and in fact ∀ i ∈ Z≥0 ∋ r = n + 2i, tr ≥ 0, because

(
ϕ
r

)
is either 0 (when ϕ is an integer),

or contains the product of an even number of negative terms in the numerator (when ϕ is a
non-integer real number). Since 1 < ϕ < r, it follows that r − ϕ < r − 1 < r + 1. Therefore,
ϕ− r < 0 and |(ϕ− r)/(r + 1)| < 1 =⇒ 0 < tr + tr+1 ≤ tr, with the equality applying when
ϕ = n− 1. Hence

∞∑
k=2

(
ϕ

k

)
(a/b)k =

∞∑
k=2

tk =
n−1∑
k=2

tk + (tn + tn+1) + (tn+2 + tn+3) + · · · ,

which implies that

0 <
n−1∑
k=2

tk <
∞∑
k=2

(
ϕ

k

)
(a/b)k < (1 + a/b)n,

and from (4) leading to the inequality

(a+ b)ϕ > aϕ + bϕ = cϕ,

from which we conclude that a+ b > c. Since c > a and c > b, we get b+ c > a and c+ a > b.
Thus, for a ̸= b and ϕ > 1, (2) implies the triangle inequalities, which are necessary and sufficient
for the triplet (a, b, c) to form a triangle [7]. When ϕ = 1, (2) implies that (a, b, c) is a degenerate
triangle. For a = b, the triangle inequality is trivially satisfied, since in (2), 21/ϕa = c (taking
only the positive real root), thus 2a > c, but also c > a.

Conversely, consider a triangle (a, b, c) ∈ R>0 which is either degenerate or non-degenerate
(in the former case with c and at least one of a, b non-zero), with the length of all non-zero
sides greater than 1. Let c be (one of) the longest side(s). We have, in the degenerate case
a+ b = c, a < c, b ≤ c, and in the non-degenerate case, a+ b > c, a ≤ c, b ≤ c. First we assume
strict inequality, and defer the equality cases to Lemmas 1.1 and 1.3 (where they will be shown
to correspond to the extreme cases ϕ → 1 and ϕ → ∞). Thus, a+ b > c, a < c, b < c. Note also
that ln(c) > ln(a) and ln(c) > ln(b), where ln(.) refers to the natural logarithm. For every real
number x > 1, let y(x) = cx/(ax + bx). Then

y′(x) = cx{ax[ln(c)− ln(a)] + bx[ln(c)− ln(b)]}/(ax + bx)2

= [cx/(ax + bx)]{ax[ln(c)− ln(a)] + bx[ln(c)− ln(b)]}/(ax + bx),
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thus
y′(x) = y(x){ax[ln(c)− ln(a)] + bx[ln(c)− ln(b)]}/(ax + bx). (5)

Let ε = min([ln(c)− ln(a)], [ln(c)− ln(b)]). When we take away the terms ln(a) and ln(b) in (5)
we see that

0 < ε < {ax[ln(c)− ln(a)] + bx[ln(c)− ln(b)]}/(ax + bx) < ln(c),

hence we have
0 < εy(x) < y′(x) < ln(c)y(x),

and y is smooth and real analytic, so that with z ∈ R, for some value of z > 1∫ z

1

εdx <

∫ z

1

dy/y <

∫ z

1

ln(c)dx,

hence

ε(z − 1) < ln[y(z)/y(1)] < ln(c)(z − 1) =⇒ y(1)eε(z−1) < y(z) < y(1)e[ln(c)](z−1). (6)

Therefore, it is possible to choose z = z1 and z = z2 such that

y(1) < y(1)eε(z1−1) = 1 =⇒ z1 = 1− (1/ε) ln[y(1)] > 1,

y(1)eln(c)(z2−1) = 1 =⇒ z2 = 1− [1/ ln(c)] ln[y(1)] > 1.

Since ε < ln(c), 1 − (1/ε) ln[y(1)] > 1 − [1/ ln(c)] ln[y(1)]. In (6), the choice of z = z2
(respectively, z = z1), leads to y(z2) < 1 (respectively, y(z1) > 1). Thus, there exist 0 < ϵ1, ϵ2 <

1 such that 1 − ϵ1 ≤ y(z) ≤ 1 + ϵ2 whenever 1 − [1/ ln(c)] ln[y(1)] ≤ z ≤ 1 − (1/ε) ln[y(1)].
Since y is continuous in this interval, from Cauchy’s Intermediate Value Theorem [2], there exists
ϕ ∈ [1 − [1/ ln(c)] ln[y(1)], 1 − (1/ε) ln[y(1)]] such that y(ϕ) = 1, or cϕ = aϕ + bϕ. Moreover,
y′(x) > εy(x) > 0 ∀ x. Then, from Cauchy’s Mean Value Theorem [11], there exists some ξ

such that ∀ δ > 0, [y(ϕ+ δ)− y(ϕ)]/δ = y′(ξ) > 0, hence y(ϕ+ δ) > y(ϕ), and therefore x = ϕ

is the unique value at which y(x) = 1.

For rigor and completeness, the degenerate case a + b = c, a < c, b ≤ c, and the equality
cases arising from a + b > c, a ≤ c, b ≤ c must also be considered. Here we will call triangles
with a = c or b = c, or both, (isoceles and equilateral triangles) singular triangles in the context
of our approach.

Lemma 1.1. The Fermat index of a degenerate triangle is 1.

Proof. Let (a, b, c) ∈ R>0 such that for some finite ϕ > 1, aϕ+bϕ = cϕ =⇒ (aϕ+bϕ)2 = (cϕ)2.
Let γ be the angle opposite the longest side c of the corresponding triangle (a, b, c) with Fermat
index ϕ. As ϕ > 1 and ϕ → 1, (a, b, c) exists, and (a + b)2 → c2 =⇒ a2 + b2 − c2 → −2ab,

therefore, cos γ =
a2 + b2 − c2

2ab
→ −2ab

2ab
= −1. Hence,

lim
ϕ→1

(γ | aϕ + bϕ = cϕ)γ = π.
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Clearly the converse is true since a+b = c =⇒ ϕ = 1, and both a, b cannot be zero together.
In the case of one of the sides going to zero, ϕ is taken as 1 by definition (and is the Fermat index
of a degenerate triangle in any case). Note that if (a, b, c) is a finite degenerate triangle such that
there exists a finite common exponent ϕ > 1, a = aϕ1 , b = bϕ1 , c = cϕ1 =⇒ aϕ1 + bϕ1 = cϕ1 with
(a1, b1, c1) ∈ R>0, then from Theorem 1.1, (a1, b1, c1) is a non-degenerate, non-singular triangle
with Fermat index ϕ.

Lemma 1.2. For obtuse non-degenerate triangles, 1 < ϕ < 2 and for acute triangles ϕ > 2.

Proof. Let γ be the (largest) angle opposite c for a triangle (a, b, c) such that a, b, c > 1 (all
triangles can be scaled thus). For any x ∈ R>0, let h(x) = cx and l(x) = ax + bx. From
Theorem 1.1, there is a unique finite real number x = ϕ such that (2) holds for non-singular
triangles. Set x = ϕ + y, so that h(ϕ + y) = c(ϕ+y) = cϕey ln(c) = aϕey ln(c) + bϕey ln(c), and
similarly l(ϕ+y) = aϕey ln(a)+ bϕey ln(b). Since ln(c) > ln(a) and ln(c) > ln(b), for 1 ≤ ϕ+y <

ϕ =⇒ 1 − ϕ ≤ y < 0, l(ϕ + y) > h(ϕ + y) and for ϕ < ϕ + y < ∞ =⇒ 0 < y < ∞,
l(ϕ+ y) < h(ϕ+ y). Hence,

aϕ+y + bϕ+y > cϕ+y, 1− ϕ ≤ y < 0;

aϕ+y + bϕ+y = cϕ+y, y = 0; (7)

aϕ+y + bϕ+y < cϕ+y, y > 0.

When the Fermat index of (a, b, c) is 1 < ϕ < 2, (7) implies that a2 + b2 < c2, and
cos γ = (a2 + b2 − c2)/2ab < 0, thus π/2 < γ < π and the triangle is obtuse. When 2 < ϕ < ∞,
then from (7), a2 + b2 > c2, and cos γ = (a2 + b2 − c2)/2ab > 0, therefore, γ < π/2 and the
triangle is acute. Obtuse triangles transition to acute ones as ϕ increases, passing through the
right triangle at ϕ = 2.

Lemma 1.3. For a singular triangle with sides (as, bs, c), with one or both of (as, bs) = c,

lim
a,b→as,bs

ϕ → ∞. (8)

Proof. First let as < c, bs = c. Let us begin with (a, b, c) such that aϕ + bϕ = cϕ for some finite
ϕ > 1. We first assume b > a. Dividing throughout by b, and letting b = bs− ϵ = c− ϵ =⇒ c =

b+ ϵ,

(a/b)ϕ + 1 = (1 + ϵ/b)ϕ = 1 + ϕϵ/b+ δ(ϵ),

where δ(ϵ) =
∞∑
k=2

(
ϕ

k

)
(ϵ/b)k, with

(
ϕ

k

)
:= ϕ(ϕ− 1) · · · (ϕ− k + 1)/k!,

thus, (a/b)ϕ/ϕ = ϵ/b+ δ(ϵ)/ϕ.

(9)

Moreover, ϕ is a function of ϵ. Since limϵ→0 δ(ϵ) → 0, limϵ→0(a/b)
ϕ/ϕ → 0; the limit on the

left-hand side of the equation, assumed indeterminate, can be evaluated with the application of the
L’Hôpital rule [11].We differentiate the numerator and denominator by ϕ in the interval (1,∞).
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We thus obtain limϵ→0(a/b)
ϕ ln(a/b) → 0 =⇒ (a/b)ϕ → 0 =⇒ limϵ→0(ϕ) ln(a/b) → −∞,

since a < b, ln(a/b) < 1, and limϵ→0 ϕ → ∞. Conversely, ϕ → ∞ =⇒ ϵ → 0 in (9), and
b → bs = c will satisfy the limit. Therefore, any non-singular triangle (a, b, c) ∈ R>0 must have
a finite ϕ, and any triangle with two equal longest sides cannot have a finite ϕ. Now let both
as, bs = c, so that a → as = c and b → bs = c. Let ϵ1 and ϵ2 both be small positive real numbers,
and let a = c − ϵ1 and b = c − ϵ2. The two possibilities are: a subsequence in which ϵ1 > ϵ2
(which is covered by our previous analysis), or a subsequence in which ϵ1 = ϵ2 = ϵ → 0, from
which we get 2[c− ϵ]ϕ = cϕ, which, on taking positive real ϕ-th roots (since c and c− ϵ ∈ R>0),
leads to the equation

21/ϕ = c/(c− ϵ) =⇒ ϕ = ln(2)/ ln[c/(c− ϵ)], (10)

from which we conclude that limϵ→0 ϕ → ∞; conversely limϕ→∞ ϵ → 0.

Lemma 1.4. The triplet (a, b, c) satisfying (3) forms an acute triangle with c being the longest
side.

The main result of our paper is the proof of the following theorem:

Theorem 1.2. There exists no rational triangle with a Fermat index of 3.

In Section 2, we recall the framework used in [9], and apply it for the proof of Theorem 1.2,
followed by the proof in Section 3.

We will now state some definitions and lemmas (omitting proofs of those in [9]). Degenerate
triangles are ruled out by definition, and from Lemma 1.4, obtuse and right triangles are also
ruled out. Therefore, for the proof of Theorem 1.2, we need to consider acute triangles alone. We
will call a triplet (a, b, c) an integer triplet (respectively, rational triplet), and the corresponding
triangle, if it exists, an integer triangle (respectively, rational triangle), if, and only if, all of
a, b and c are positive integers (respectively, rational numbers). A triplet (a, b, c) (and the
corresponding triangle, if it exists) will be called primitive if, and only if, it is an integer triplet
(respectively, triangle), and the greatest common divisor of a, b and c is 1.

Lemma 1.5 ( [9]). For any integer triplet (a, b, c) satisfying (2), a2 + b2 − c2 is even.

2 Framework for the proof of Theorem 1.2

In this section, we recall the framework used in [9]. We also include a couple of results important
for the analysis.

2.1 Construction

We consider a construction as shown in Figure 1 below.
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Figure 1. Construction for the proof.

At O, the origin of the Cartesian coordinate system in two dimensions, place a line segment
OL of length c, at an angle θ to OX . Along OX , mark a line segment OQ of length a. This is
labeled x in Figure 1, and will be primarily used to indicate the variable length of side a. Denote
the length of the side LQ in triangle OLQ by b. We will refer to the sides of OLQ by their
respective lengths in the rest of the paper. Let the angle opposite side a be λ, that opposite side
b be θ, and that opposite side c be γ. Note that, since we are looking for integer (hence rational)
values of x (side a) and b, we allow cos θ to only take on rational values. The projection of c on
side x is α = p/q, and that on side b is β = r/s, where p, q (respectively r, s) are either 1 or
positive coprime integers (α, β are either positive integers or irreducible common fractions), and
hence cos θ = p/(qc), cosλ = r/(sc). We use the notation x | y to mean that x divides y. Then,
in any integer triangle (x, b, c), from the cosine law, (x2 + c2 − b2)/(2ac) = p/(qc), and from
Lemma 1.5, 2 | (x2 + c2 − b2), and respectively for side b, therefore

q | x. (11)

Since we are looking for positive values of x and b, it is sufficient to restrict θ to the first quadrant.
Without loss of generality, we will allow c to only take positive integer values. We will define
the triangle “rotated” around the altitude QN as axis in Figure 1, with c at an angle λ to the
X-axis, and side b swapped with side x, as the transposed triangle, indicated by the operation
(x, b, c)T = (b, x, c).

Now (1) can also be written as the following (dual) trigonometric equation:

sinϕ θ + sinϕ λ = sinϕ γ = sinϕ(θ + λ) (12)

Equation (12) is derived by invoking the sine rule [11]: sinλ/x = sin θ/b = sin γ/c = 1/(2R)

where R is the circumradius of the triangle with sides x, b and c.
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Theorem 2.1 and the following Corollary 2.1.1 are needed to show that the Fermat index
ϕ is strictly increasing with θ, and has a unique value at every θ. This enables us to use the
construction in Section 2 to examine ϕ for increasing values of x, at every rational cos θ, thereby
introducing a systematic and complete coverage of all possible rational values of the sides of the
triangles, and to derive some useful properties of the Fermat–Pythagoras polynomials.

Theorem 2.1. Let ω = max[θ, (π − θ)/2]. For constant c and θ, γ in the interval (ω, π − θ] is a
continuous, strictly decreasing and bijective function of ϕ.

Proof. As shown in the proof to Theorem 1.1 and implied by (5), given a triangle (x, b, c),
xz + bz − cz is strictly decreasing for z ≥ 1. Refer to Figure 1; let us hold c and α constant
(hence angle θ constant) while x increases in the interval [0, 2α). From the construction, we see
that γ is strictly decreasing with respect to x; since θ is constant, as x increases, λ increases, and
γ decreases. This implies that, since 0 ≤ γ ≤ π − θ, cos γ is strictly increasing with respect
to x. For each triangle, (2) can also be written in the trigonometric form (12). Consider two
triangles at x1 and x2, respectively, with angles γ1 > γ2 and λ1 < λ2, sides (x1, b1, c), (x2, b2, c),
circumradii R1, R2 and Fermat indices ϕ1, ϕ2. We will consider the following two cases: 1)
γ1, γ2 ∈ (π/2, π − θ), and 2) γ1, γ2 ∈ (0, π/2), with the condition that γ1 > γ2 in both cases.

Case 1 (π − θ > γ1 > γ2 > π/2): Since we have 2R1 sin γ1 = 2R2 sin γ2 = c, and x2 > x1 =⇒
R2 sinλ2 > R1 sinλ1, the relations together yield: sinλ2/ sin γ2 > sinλ1/ sin γ1. Taking the
ϕ1-th powers and subtracting 1 from both sides then gives

[sinϕ1 λ2 − sinϕ1 γ2]/ sin
ϕ1 γ2 > [sinϕ1 λ1 − sinϕ1 γ1]/ sin

ϕ1 γ1

(note that ϕ1 > 1). Using sin γ2 > sin γ1 > 0 we further obtain

[sinϕ1 λ2 − sinϕ1 γ2]/ sin
ϕ1 γ2 > [sinϕ1 λ1 − sinϕ1 γ1]/ sin

ϕ1 γ2,

which leads to
sinϕ1 λ2 − sinϕ1 γ2 > sinϕ1 λ1 − sinϕ1 γ1, (13)

in which the right-hand side, from (12), gives sinϕ1 λ1 − sinϕ1 γ1 = − sinϕ1 θ, which upon
substitution in (13) yields

sinϕ1 θ + sinϕ1 λ2 > sinϕ1 γ2. (14)

Now we multiply (14) throughout with the factor (2R2)
ϕ1 and get

xϕ1

2 + bϕ1

2 > cϕ1 , (15)

which from the analysis in Lemma 1.2 and (7) leads to ϕ2 > ϕ1.

Case 2 (π/2 > γ1 > γ2 > 0): Recalling the law of cosines [11] as cos γ = (x2 + b2 − c2)/2xb,

x1 < x2 ⇐⇒ γ1 > γ2 ⇐⇒ cos γ1 < cos γ2,

which implies
(x2

1 + b21 − c2)/2x1b1 < (x2
2 + b22 − c2)/2x2b2,
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because
x1 < x2 ∧ b1 < b2, =⇒ x2

1 + b21 − c2 < x2
2 + b22 − c2,

and since 2 < ϕ < ∞, this implies from (7) in Lemma 1.2, that there exists ϵ > 0∧ ϕ1 = 2+ ϵ ∋
(x1)

ϕ1+(b1)
ϕ1−(c)ϕ1 = 0, at which value of ϕ we also have (x2)

ϕ1+(b2)
ϕ1−(c)ϕ1 > 0, (because

x1 < x2∧b1 < b2). It follows from (7) that there must exist ϕ2 > ϕ1, such that xϕ2

2 +bϕ2

2 −cϕ2

2 = 0.

From Cases 1 and 2, it holds that for fixed c, θ

x1 < x2 ⇐⇒ γ1 > γ2 ⇐⇒ ϕ1 < ϕ2. (16)

Assuming that θ ≤ π/3, a singular triangle occurs when x = c (or b = c, if θ ≥ π/3 to
begin with). For the condition x = c, γ = (π − θ)/2, and if b = c, γ = θ. When γ = ω,
from Lemma 1.3, ϕ = ∞; however, in the limit as γ → ω, the geometric condition of (16) is
always satisfied. Thus, the interval (ω, π − θ] is a bijection of ϕ ∈ [1,∞), with the special points
ϕ(π − θ) = 1, ϕ(π/2) = 2 and limγ→ω ϕ → ∞ defining degenerate, right and singular triangles,
respectively.

Corollary 2.1.1. For constant c and θ, let γ+ = γ ∋ x = max(b, c). Then, γ in the interval
(0, γ+) is a continuous, strictly increasing and bijective function of ϕ.

Proof. At the value of x for which x = max(b, c), (x, b, c) is singular, and hence is not an obtuse
triangle, and π/2 > λ2 > λ1 > 0. Then, as x increases, λ → π/2. Therefore, an analysis similar
to Case 1 of Theorem 2.1 applies in this case also, except that (applying the same terminology)
the governing equation becomes:

sinϕ γ + sinϕ θ = sinϕ λ. (17)

Since sinλ2 > sinλ1 and sin γ2 < sin γ1, we have sinϕ1 λ2 − sinϕ1 γ2 > sinϕ1 λ1 − sinϕ1 γ1 =

sinϕ1 θ from (17). This leads to

sinϕ1 θ + sinϕ1 γ2 < sinϕ1 λ2. (18)

Now we multiply (18) throughout with the factor (2R2)
ϕ1 and get

bϕ1

2 + cϕ1 < xϕ1

2 , (19)

which from the analysis in Lemma 1.2 and (7) leads to ϕ2 < ϕ1.
For π/2 < λ < π, it holds that λ2 > λ1 =⇒ cosλ2 < cosλ1 < 0 =⇒ − cosλ2 > − cosλ1,

hence (x2
2 − c2 − b22)/2b2c > (x2

1 − c2 − b21)/2b1c =⇒ b22 + c2 − x2
2 < b21 + c2 − x2

1 < 0

because b2 > b1. Then from Lemma 1.2, and (7), there exist ϵ > 0 and ϕ1 = 2 − ϵ such that
bϕ1

1 + cϕ1 − xϕ1

1 = 0, and 0 < δ < 1 such that b1 = bδ2, x1 = xδ
2, so that with ϕm = δϕ1 < ϕ1,

bϕm

2 +cϕ1 −xϕm

2 = 0 =⇒ bϕm

2 +cϕm −xϕm

2 < 0. From Lemma 1.2, and (7), this leads to ϕ2 < ϕ1

such that bϕ2

2 + cϕ2 − xϕ2

2 = 0.

Theorem 1.2 is now equivalent to the following statement.

Theorem 2.2. There exists no primitive triangle with Fermat index 3.
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2.2 Fermat–Pythagoras polynomials

Theorem 2.2 specifies only primitive triangles, because any rational triangle can be scaled to a
primitive triangle. Hence, for all possible integer values of c and rational cos θ, the absence of
primitive triangle solutions implies the absence of rational triangle solutions. This is a geometric
analog of Gauss’s Lemma [6]. The idea of the construction is now to “search” for such acute
primitive triangles by continuously increasing x (starting from the position x = OJ), for all
possible acute triangles with all positive integer values of c at all positive rational values of cos θ.
We enable this search algebraically by equating the Fermat description of the length of side b

with the corresponding Pythagorean description (the law of cosines) at constant c and α, which
for n ≥ 3 is

Ξn = un(c, α, x) =
(
b(x)2

)n − (cn − xn)2

= (c2 + x2 − 2αx)n − (cn − xn)2,
(20)

= nc2(n−1)x(x− 2α) + xn(x− 2α)n

+
n−1∑
k=2

(
n

k

)
c2(n−k)xk(x− 2α)k + 2cnxn − x2n

(21)

Thus

un(c, α, x) = xsn(c, α, x)

= x[nc2(n−1)(x− 2α) + xn−1(x− 2α)n

+
n−1∑
k=2

(
n

k

)
c2(n−k)xk−1(x− 2α)k + 2cnx(n−1) − x(2n−1)]

(22)

where b is a function of x, and hence is denoted by b(x). Clearly, Ξn = xSn is a polynomial,
which we will call Fermat–Pythagoras polynomial. Note that by similar arguments for the
transposed triangle (a, b, c)T = (b, a, c), one may also derive such polynomials by equating the
Fermat and Pythagorean formulae for side a. Henceforth, for simplicity, our analysis will only
consider side a, but we note that the same analysis applies to side b also over the transposed
triangle. We will point out any differences in the treatment for both sides explicitly, as and when
they arise. Also, Ξ1 = 0 and Ξ2 = 0 are degenerate cases as can be seen by inspection in (20).
Further,

sn(c, α, x) = nc2(n−1)(x− 2α) + xn−1(x− 2α)n

+
n−1∑
k=2

(
n

k

)
c2(n−k)xk−1(x− 2α)k + 2cnxn−1 − x2n−1,

(23)

which upon some simplification becomes

−sn(c, α, x) = 2nαx2(n−1) − 2n(n− 1)α2x2n−3 + · · ·+ 2nαnxn−1 − 2cnxn−1

−
n−1∑
k=2

(
n

k

)
c2(n−k)xk−1(x− 2α)k − nc2(n−1)x+ 2nc2(n−1)α.

(24)

with the sn(c, α, x) being collectively represented by Sn.
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Theorem 2.3. Every Fermat–Pythagoras polynomial Ξn has one trivial root, x = 0, and Sn has
2(n − 1) roots, denoted by ρn = {ρRn , ρCn} comprising 2 real roots in ρRn and 2(n − 2) complex
roots ρCn , respectively, the latter being n − 2 pairs of complex conjugates. Let ρRn = {r1, r2}
and ρCn = {ρc+n , ρc−n }, so that ρc+n = {c+1 , c+2 , . . . , c+n−2}, and ρc−n = {c−1 , c−2 , . . . , c−n−2}. Then
r1r2 = c+1 c

−
1 = c+2 c

−
2 = · · · = c+n−2c

−
n−2 = c2, and the roots may also be grouped into pairs of

real (respectively, complex but not conjugate) elements, the product of each pair being c2.

Proof. We begin by examining the zeros of un(c, α, x). Firstly, setting un(c, α, x) = 0 in (20)
leads to [cn − xn] = ±

√
[c2 + x2 − 2xα]n = ±bn, the principal roots of which are always real

since for all x ∈ R, c2 + x2 − 2xα = (x − α)2 + c2 − α2 > 0 because c > α. Here b can
be regarded as the third side of a triangle with sides c, x and b, and Fermat index n; the side b

can also be seen to result from the cosine law applied to this triangle. Therefore, un(c, α, x) = 0

represents two forms of the Fermat equation: cn = xn + bn (a triangle with c as the hypotenuse),
and cn + bn = xn (a triangle with x as the hypotenuse).

Along with this observation, we see that the monotonicity and bijective nature of ϕ in relation
to x described in Theorem 2.1 (x being one of the smaller sides) and Corollary 2.1.1 (x being
the largest side), imply that there are exactly two real solutions for x. Note the term −2xα in
un(c, α, x): this term in the cosine law is sign dependent, and our assumption that 0 ≤ α < 1,
along with (x, b, c) being acute geometrically (n > 2) implies that x > 0 is the only possibility
for the non-trivial real solution. Secondly, since un(c, α, x) = xsn(c, α, x) in (22), the term x is
either a trivial zero, or factors out of un(c, α, x). The value x = 0 corresponds to one of a = 0 or
b = 0 in (2). Also note that for n = 1 in (22), s1[c, α, x] = 2x(c− α), and hence there is just the
trivial solution x = 0 (corresponding to the degenerate triangle). Hence we will assume n ≥ 2,
and there are two non-trivial real solutions to un(c, α, x) = 0, both of which are necessarily
triangles with Fermat index n. As x increases from α, the first such (identifiable) triangle will be
called primal triangle and the second triangle, the dual triangle.

Refer to Figure 2; let x = α + h. We divide the real line x into three domains or cases:
(a) h < 0,
(b) 0 ≤ h ≤ min(c− α, α); and
(c) min(c− α, α) < h < ∞.

Consider case (a): for all values of h < 0, the triangle formed by line segments x and c is
obtuse, for example Q2OL in the figure. From Lemma 1.2, the Fermat index of such triangles
is not a whole number: 1 < ϕ < 2, and for n ≥ 2 ∈ Z, sn(c, α, x) ̸= 0; both the cases
cn − xn = ±bn are not satisfied. Moreover, the Fermat index of any possible obtuse triangle can
never equal n (except n = 1, which is the degenerate case). Therefore, in case (a), sn(c, α, x)
cannot have a real root.

In case (b), the triangle is right or acute: all triangles including and beyond JOL, such as
Q1OL, with x increasing up to the point N such that JN = min(c − α, α). Here ϕ is a strictly
increasing and bijective function of h as shown in (16), and 2 ≤ ϕ < ∞, with ϕ → ∞ as
h → min(c− α, α).

Therefore, there is exactly one value of h (corresponding to α+h∗=x∗) at which ϕx∗(c, α)=n,
and sn(c, α, x

∗)=sn(c, α, α+h∗)=0. This is the first non-trivial real solution for un(c, α, x) = 0
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Figure 2. Geometric interpretation of (20): x is the variable side of the triangle on the x−axis,
c is fixed, and b is determined simultaneously by the cosine rule and the Fermat equation.

with c as hypotenuse, which is the primal triangle (which corresponds to the Type I triangle in [9]).
In this case, the corresponding Fermat equation is (x∗)n + bn = cn. Multiplying this equation
throughout by the factor (c/x∗)n, we get cn + (bc/x∗)n = (c2/x∗)n. Since the hypotenuse of the
triangle is already fixed as c, for increasing values of x, we expect a second solution, at x = c2/x∗

(which can be verified by substituting x∗ with c2/x∗ in un(c, α, x
∗) = 0 in (20)). Since in the

second form of the equation x must be the largest side of the triangle, Corollary 2.1.1 shows that
there is again exactly one real solution. Given that there are only two possible real solutions, and
given that the first zero of sn(c, α, x) = 0 at x = x∗, the second must occur at x = c2/x∗, which
is the dual triangle (such as Q3OL in Figure 2, corresponding to the Type II triangle in [9]). Since
x∗ < c, c2/x∗ > c which means c is no longer the largest side, but the smallest side, with the
triangle now being (c, cb/x∗, c2/x∗).

Summarizing, un(c, α, x) has exactly one trivial zero. The corresponding Ξn has two nontrivial
real zeros of the form x∗ and c2/x∗, the product of the roots being c2. Note from (24) that
sn(c, α, x) is a polynomial of degree 2(n − 1). Therefore, from the Fundamental Theorem
of Algebra [8], Ξn must additionally have 2(n − 2) complex roots, which, from the Complex
Conjugate Root Theorem [11], comprise n− 2 complex conjugate pairs. As shown earlier, there
are only 2 real triangles that will geometrically satisfy Ξn for a given c and α (and, equivalently,
only two equations of the form (2)), but the unknown in each of these equations also being an n-th
root of a positive number, must have n roots or solutions, of which we therefore expect n−1 (if n
is odd), or n−2 (if n is even), complex solutions for each triangle. These complex solutions form
complex triangles (with sides a, b ∈ C and (by definition) c ∈ R>0). Clearly therefore, for each
complex root x∗ ∈ C, there must also exist a root of the form c2/x∗ ∈ C, which must also satisfy
(2) as a corresponding complex triangle, and the product of these two roots is c2. Theorem 1.1
shows that (x, b, c) is constrained to be a triangle, imposing a dependence between x and b, which
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results in negative roots being absent for even n. Hence, each of the primal and dual triangles
will consist of only one real root (triangle) and n − 1 (n odd), or n − 2 (n even), complex roots
(triangles). The 2(n− 2) complex conjugate roots of Ξn can also be paired into (non-conjugate)
roots whose product is c2. Therefore, each complex root of the primal triangle (which we will
call primal root) must have a corresponding complex root of the dual triangle, that we will call
dual root. Each pair of primal and dual roots will be referred to as complementary roots.

In the rest of the paper, we will denote odd prime numbers by the symbol m.

Corollary 2.3.1. Every Fermat–Pythagoras polynomial Ξm, has exactly one pair of complex
roots, that are both conjugate and complementary.

Proof. With an odd prime number m, Ξm will have 2(m − 1) roots, with one real root each
corresponding to the primal and dual triangles respectively. Of the remaining 2(m−2) roots, it is
necessary that both the primal and dual triangles possess an equal number of roots, since a given
root in the primal triangle, say x∗, will necessarily correspond to a complementary root c2/x∗, in
the dual triangle. Hence the primal and dual triangles have m − 2 complex roots each. Since m

is an odd number, m − 2 is also odd, but this poses a problem, as the Complex Conjugate Root
Theorem [11] requires that each complex root must also be associated with a complex conjugate
root. Moreover, as described in the proof of Theorem 2.3, for odd m, (2) must have one real root
and m−1 complex roots. Then the only possibility is that there exists exactly one pair of complex
roots that satisfy both the primal and dual triangles. However, the roots of the dual triangle are
complementary to those of the primal triangle. Therefore, this pair of roots must be such that they
are both conjugate and complementary. Now, let one root be of the form ac + ibc. Then, it must
follow that,

(ac + ibc)(ac − ibc) = c2, =⇒ a2c + b2c = c2 (25)

Therefore, there exists one pair of complex triangles that are common to both sets of primal and
dual triangles, possible because one complex side (x) has the modulus c, while the other side
(b) is of modulus 0. We will call roots of the form (25) conjoint roots of Ξm. Note that the
components of the conjoint roots form a right triangle with c2 as the hypotenuse. We will call
such a triangle conjoint right triangle. Hence, every Fermat–Pythagoras polynomial with an odd
prime Fermat index is associated with exactly one pair of conjoint roots, which we will denote
by (c1, c2), associated with one pair of conjoint complex degenerate triangles and a conjoint right
triangle (ac, bc, c).

Lemma 2.1. At constant c and cos θ, Ξ3 has exactly two positive non-zero real roots ρR3 = (r1, r2)

and two conjoint roots (c1, c2), with r1r2 = c1c2 = c2.

Remark 2.1. For n = 2, Ξ2 = (x − α)(c2 − xα), and a quadratic equation of the form
(α+h)2−α(α+h) = 0 is produced in result, which has two real roots h = −α corresponding to
a degenerate triangle with zero area, the primal root being at h = 0 (x = α), corresponding to a
right triangle. As expected, the dual root occurs when x = α+h = c2/α, or, c2 = α(α+h), which
implies that α + h forms a right triangle with sides c and b, which can be seen by applying the
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cosine law, b2 = c2 + c4/α2 − 2c(c2/α)(α/c), which results in c2 + b2 = (c2/α)2. Geometrically,
the solution x = α + h = c2/α simply corresponds to scaling the original right triangle with
sides (α, b, c), by the factor c/α, to get a right triangle (c, bc/α, c2/α).

We state some relevant results with proofs where needed and derive further properties related
to the geometric construction and Fermat’s equation. We will use the symbol y ⊥ z to indicate
integer y is coprime to integer z.

Lemma 2.2. The sides of a primitive integer triangle with an integer Fermat index are pairwise
coprime.

This is because for (2) with all variables as positive integers, a, b, and c must be pairwise
coprime [5]. Lemma 2.2 shows that no factor of c can be a factor in an integer root of (2), and
hence of Ξm, if such an integer root exists. A well-known and basic result for (2) is the basis for
the following (see [5])

Lemma 2.3. In a primitive integer triangle (a, b, c) with integer Fermat index n, exactly two of
the sides a, b and c are odd, and the remaining side is even.

We restate (11) and add further results important to our analysis:

Lemma 2.4. In an integer triangle (a, b, c) if α = p/q ∈ Q>0, then q | a. Furthermore, q is odd,
and q ≡ 1 mod (m).

Proof. In triangle (a, b, c), cos θ =
a2 + c2 − b2

2ac
=

p

qc
. Hence a2 + c2 − b2

2a
=

p

q
, and p and q are

coprime by definition. Since a, b and c are assumed integers, from the parity condition described
by Lemma 2.3, two of the sides are odd while one is even, hence a2 + c2 − b2 is even. Thus,
q must be a factor of a. Now let a = ζq. Then (2) can be written for Fermat index m as
ζmqm = (c− b)(

∑m
k=1 c

m−kbk−1) = (c− b)κ. Following the method in [5] (p. 64, for example),
we see that (c − b) ⊥ κ. Moreover, (c + b) ⊥ κ. Since a2 + c2 − b2 = ζ2q2 + (c − b)(c + b)

and p =
ζ2q2 + (c− b)(c+ b)

2ζq
, ζ | (c − b)(c + b) =⇒ ζm = (c − b), and q ∤ (c − b)(c + b) =⇒

qm = κ =⇒ q | κ, hence q ⊥ ζ . We also know from Lemma 2.3 that at least one or both of
c and b are odd, which means that κ contains the sum of an odd number (1 or m respectively) of
odd terms, and is therefore odd. Hence qm is odd, and q is odd. Let us assume that m divides
c or b (it cannot divide both, from Lemma 2.2), say b. From Fermat’s Little Theorem [5], if
m ∤ c, then cm−1 ≡ 1 mod (m). Clearly κ ≡ 1 mod (m). Now let m ∤ cb. Then (cm − bm)

mod (m) ≡ (c(cm−1)−b(bm−1)) mod (m) ≡ (c−b) mod (m) ≡ (c−b)κ mod (m). Hence
κ = qm ≡ 1 mod (m) =⇒ q ≡ 1 mod (m).

Equating LJ in Fig. 1 as c2−α2 = b2−(x−α)2 leads to a useful identity: x(2α−x) = c2−b2.
With α =

p

q
, x = ζq and ζm = c − b, we have 2pζ = ζ2q2 + ζmq(c + b). From the arguments

leading up to (11),

q ⊥ pc. (26)

Condition (26) is by definition since cos θ =
p

qc
is in its simplest form, and due to Lemmas 2.2

and 2.4.
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3 Proof of Theorem 2.2

For n = 3, (24) becomes

− s3(c, x, α) = 6αx4 − 12α2x3 + 8α3x2 − 2c3x2

−
2∑

k=2

(
3

2

)
c2(3−k)xk−1(x− 2α)k − 3c4x+ 6c4α,

− s3(c, x, α) = 6αx4 − (12α2 + 3c2)x3

+ (8α3 − 2c3 + 12c2α)x2 − (12c2α2 + 3c4)x+ 6c4α, (27)

which we will refer to also as s3. From Theorem 2.3, s3 has two real roots ρR3 = (r1, r2) =

(x∗, c2/x∗). It also has two complex roots, which from Theorem 2.3 and Corollary 2.3.1 must be
both conjugate and complementary, and therefore conjoint. We denote them by ρC3 = (c1, c2) =

(η + iµ, η − iµ). Therefore, η2 + µ2 = c2.
For a fourth degree polynomial, the product of the roots is expressed as

− s3(c, x, α) = (x− r1)(x− r2)(x− c1)(x− c2) = x4 − (r1 + r2 + c1 + c2)x
3

+ (r1r2 + r1c1 + r2c1 + r1c2 + r2c2 + c1c2)x
2

− (r1r2c1 + r1r2c2 + r1c1c2 + r2c1c2)x+ r1r2c1c2. (28)

Comparing (27) termwise with (28), we get for the first two bracketed quantities,

x∗ + c2/x∗ + 2η =
12α2 + 3c2

6α
(29)

2η(x∗ + c2/x∗) =
8α3 − 2c3 + 12c2α

6α
− 2c2. (30)

The remaining two bracketed quantities yield equations that are equivalent to (29), so they are
redundant. Now, we denote

z1 = x∗ + c2/x∗ (31)

z2 = 2η. (32)

Upon substituting (31) in (27), we get the following quadratic equation:

z2 − 4α2 + c2

2α
z +

4α3 − c3

3α
= 0. (33)

Solving (33) leads to

z = (z1, z2) =
4α2 + c2 ±

√
D

4α
,

D = (4α2 + c2)2 − 16α(4α3 − c3)

3

=
48α4 + 3c4 + 24α2c2 − 64α4 + 16αc3

3

=
3c4 + 16αc3 + 24α2c2 − 16α4

3
. (34)
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The real roots of s3(c, α, x) = ρR = (r1, r2) are the lengths of the sides of the triangles that
represent (3). If

√
D is irrational, then (r1, r2) are irrational. To find out if

√
D is irrational, we

first expand (34) for α =
p

q
, setting qc = l.

D =
1

q2

√
3l4 + 16pl3 + 24p2l2 − 16p4

3

=
1

q2

√
(3l − 2p)(l + 2p)3

3
. (35)

Lemma 3.1. If p ⊥ c and c is odd, then (3l − 2p) ⊥ (l + 2p).

Proof. From (26) and the assumption p ⊥ c, we have l ⊥ p. Now assume that 3l− 2p and l+ 2p

have a common prime integer divisor ζp. For some positive integers k1 and k2, let

3l − 2p = k1ζp,

l + 2p = k2ζp

∴ 4l = (k1 + k2)ζp.

If ζp | l, then ζp ∤ p because l ⊥ p, resulting in ζp ∤ (3l − 2p), (l + 2p). Therefore, ζp ∤ l. Then
ζp = 4. But both 3l − 2p and l + 2p are odd by the assumption that c is odd, since Lemma 2.4
shows that l = qc is odd.

Lemma 3.2. D =
1

q2

√
(3l − 2p)(l + 2p)3

3
is irrational.

Proof. D =
1

q2

√
(3l − 2p)(l + 2p)3

3
=

l + 2p

q2

√
(3l − 2p)(l + 2p)

3
. If the assumptions p ⊥ c and c

is odd are true, then from Lemma 3.1, (3l − 2p) ⊥ (l + 2p) as they do not share a common
divisor. Therefore, 3 can divide only one of these expressions. For D to be irrational, one or both
of (3l − 2p) and (l + 2p) should be square-free (after the division by 3). Assume (l + 2p) is
square-free. If 3 | (3l − 2p), then D is still irrational due to our assumption. Then 3 must divide
(l + 2p) completely, and this can only happen if l + 2p = 3. Now D can be rational if 3l − 2p is
a perfect square. Therefore, the only possibility for D to be rational given these assumptions is:

l + 2p = 3

3l − 2p = k2. (36)

Summing up, 4l = 3 + k2. From (36), k is odd, since l and p are odd, but k should be such that
3+ k2 is divisible by 4. The smallest number for which this is possible is k = 1, for which l = 1.
The next number is k = 3, for which l = 3, but this means p = 0 which is not possible, and
p ≤ 0 for any k ≥ 3. Therefore, k = 1, and l = qc = 1. This means 2p = 3 − 1 = 2, and
p = 1. However, we know from Section 2 that cos θ = α =

p

qc
= 1 =⇒ θ = 0, which is only

admissible as a degenerate triangle. Therefore, D is irrational given these assumptions.
Now we examine the situation when our assumptions do not hold: that is, c is even, p is not

coprime to c, and both (3l− 2p), (l+2p) are not square-free. Then we gather all common factors
of l and p into the integer term ζc so that (3l−2p)(l+2p) = ζ2c (3t−ρ)(t+ρ), where (3t−ρ) and
(t+ρ) are odd, with positive integers t ⊥ ρ. Note here that 3(3t−ρ)(t+ρ) = (3t+ρ)2−4ρ2 = k2,
for integer k, must form a primitive Pythagorean triple with primitives (ζ, ζρ), where ρ | p = ζζρ
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is even, t is odd and l = qc = 4ιt, with ι some positive integer. In addition, we multiply and
divide D by

√
3 such that D =

(l + 2p)ζc
3q2

√
3(3t− ρ)(t+ ρ). From arguments following Lemma

3.1, (3t − ρ) ⊥ (t + ρ). Let any one of (3t − ρ) and (t + ρ) be 3f 2 and g2, respectively, with
g, f odd integers, g ⊥ f . Thus we have 4t = 3f 2 + g2. Also (3t − ρ)(t + ρ) = 3k2, with k

odd, which leads to t(3t + 2ρ) = 3k2 + ρ2. From [5] (p. 49), we see that all numbers of the
form 3i2 + j2, with odd integers i ⊥ j, are divisible by 4, and retain this form after division.
Moreover, all odd factors of numbers of this form retain the form. Therefore, we can represent
t = 3d2 + e2, and since this divides 3k2 + ρ2, 3t + ρ = t + 2(t + ρ) = 3i2 + j2. Thus, either
(3d2 + e2) + 2(g2) = 3i2 + j2, or (3d2 + e2) + 2(3f 2) = 3i2 + j2, depending on our choice of
assigning 3f 2 and g2 to (3t − ρ) and (t + ρ). In either case, if t were even and ρ odd, 3d2 + e2

and 3i2 + j2 are divisible by 4, whereas 2(g2) and 2(3f 2) are only divisible by 2 and not 4, and
the equation cannot have solutions in integers. With t odd and ρ even, q and t are both of the
form u2 + 3v2, with u, v integers. Applying Euler’s device to (3) (see [5], p.40), with integers
z, w > 1, z ⊥ w, and c =

4ιt

q
, we have 2z(z2 + 3w2) ≡ (4ι(u2 + 3v2))3. This shows that a

smaller integer of the form u2 + 3v2 may be factored from c. This factor can now be multiplied
with q, to get a smaller 4l′ ≡ (u′2 + 3v′2), 8p′ = 8ζ ′ζ ′ρ = 9v′2 − u′2, from which can be obtained
ζ ′ | 3v′ ± u′, and a = ζ ′q. Hence a Fermat–Pythagoras polynomial with a rational D (and hence
rational roots), representing a smaller integer triangle for n = 3, can be derived from the present
triangle. As this cannot continue infinitely, u and v, hence l and p, cannot combine to yield a
rational D. Lastly, t = u2 + 3v2 and ρ = 9v2 − u2 yields an integer D, but t and ρ have the same
parity, which contradicts our assumptions. Thus D is irrational.

From (34) and Lemma 3.2, x∗ + c2/x∗ is irrational when c is an integer, and hence the roots
of (3) cannot be rational numbers. Thus Fermat’s Last Theorem for n = 3 is proved by the plane
trigonometric approach.

A computed example is shown in the supplementary results in the Appendix. Figure 3 displays
the computation of the roots. Table 1 shows the values of the roots and their conjugates in
accordance with Theorem 2.3. A comparison between explicit calculation of roots using (3)
and the analytical result (34) is shown in Figure 4.

4 Conclusions

We have generalized the definition of Fermat–Pythagoras polynomials for any positive integer
n > 2 and explored the properties of their roots. This led to the plane trigonometric proof of
the case n = 3 of Fermat’s Last Theorem, in which we explicitly derived the form of the roots
and showed that they are irrational. We believe the approach might offer further geometric and
algebraic insight into the problem for other indices.
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Appendix
Computed example. Roots of u7(15, 7, x).

A plot of u7(15, 7, x) is shown in Figure 3(a), and can be expanded as [13]:

u7(15, 7, x) = xs7(15, 7, x)

= −x(98x12 − 5691x11 + 228340x10 − 7038185x9 + 172149054x8 − 3442681627x7

+ 56343906554x6 − 774603366075x5 + 8715045858750x4 − 80169326015625x3

+ 585210445312500x2 − 3281717373046875x+ 12715141113281250).
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(a) Plot of u7(15, 7, x). (b) Roots of u7(15, 7, x) in the complex plane.

Figure 3. Polynomial un(c, α, x)= [c2 + x(x−2α)]n−[cn−xn]2 evaluated for c=15, α=7 and
n = 7 [13]. This is equivalent to [q2c2 + x(x − 2α)]n − [qncn − xn]2 with c = 5, α = p/q,

p = 7, q = 3, and n = 7.

Root
Values

Root
Values

Product
Values

Real Complex Real Complex Real Complex
r1 12.443068 0 r2 18.08236 0 r1r2 225 0

c +
1 −2.8136572 −21.56939602 c −

1 −1.33798 10.25691 c +
1 c −

1 225 8.88178E−14

c +
2 −2.8136572 21.56939602 c −

2 −1.33798 −10.2569 c +
2 c −

2 225 −8.88178E−14

c +
3 −0.7776268 −14.97982966 c −

3 −0.77763 14.97983 c +
3 c −

3 225 0

c +
4 9.3281065 −11.69961771 c −

4 9.37416 11.75738 c +
4 c −

4 225 7.24754E−13

c +
5 9.3281065 11.69961771 c −

5 9.37416 −11.7574 c +
5 c −

5 225 −7.24754E−13

Table 1. Values of roots of u7(15, 7, x) and their pairwise product (limited by finite (64-bit)
precision arithmetic) [13]. The conjoint root is c3.

Verification of (36) by explicit computation (up to the limits of finite (64-bit) precision arithmetic):

Figure 4. Comparison of roots r1+r2 = r1+c2/r1 of polynomial −s3(c, α, x) evaluated for c = 9,
b = 5, α = (c2−b2+a2)/(2a)) ≈ 7.53893649461491469335, r1 = a ≈ 8.4530281037201606792

computed by (35), and explicitly using r1 = (c3 − b3)1/3, r2 = c2/r1.

428


	Introduction
	Framework for the proof of Theorem ??
	Construction
	Fermat–Pythagoras polynomials

	Proof of Theorem ??
	Conclusions

