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Abstract: In a recent paper [7], the authors introduced new arithmetic functions ¢, o™ related
to the classical functions ¢, and o, respectively. In this note, we study the behavior of

Y (@r—9)n), and Y (oF —0)(n),

n<lx n<lx
w(n)=2 w(n)=2

for any real number x > 6.
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1 Introduction

An arithmetic function or a number-theoretic function ( [1], chap. 2) is a function defined on the
positive integers. There are many well-known arithmetic functions like p(n), p(n), o(n), A(n)
etc. In recent times, many authors [2—4, 6] have worked enormously on arithmetic functions.
In [7] the authors introduced six new arithmetic functions o™, 0=, 9", 9 ~, 6", o~. In this note,
we prove the following theorems considering the functions (¢* — ¢)(n) and (ot — o)(n).
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Theorem 1.1. For any real number x > 6 we have

S @ - <ot i3S IGIED
w?ng)iQ k0P<33 p

where w(n) is the number of distinct prime divisors of n.

Theorem 1.2. For any real number x > 6 we have

S (o V<ot ZZ ST+ DERITT+1)
n<lx k 0 p<z pk ! ’
w(n)=2

where w(n) is the number of distinct prime divisors of n.

Note that, we define (¢ — ¢)(n) = ¢ (n) — ¢(n) and (o — o) (n) = o (n) — o(n).
Throughout this paper we consider p, g to be prime numbers.

2 Important definitions
Definition 2.1. For any prime number p, we define the p-adic valuation of an integer n to be

max{k € Zso : p* | n}, ifn #0,
Vp(n) = )
00, ifn =0,
where Z>o = Z U {0}.

Definition 2.2. [7, p. 852] For Euler’s totient function o, we define ¢ by
ptn) = JJle@™™)+1),
pln
for a positive integer n > 1 and p*(1) = 1.
Definition 2.3. [7, p. 852] For sum of positive divisors function o, we define o™ by

) = [ +1),

pln

o

for a positive integer n > 1 and 0™ (1) = 1.

3 Proof of Theorem 1.1
Since *(n) = [, (¢(p™) + 1), we have

Z @Jr (n) = Z H vp(n

n<z n<z p|n

Since we are considering all those positive integers greater than 1 having exactly two distinct
prime divisors, we have
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Yooty = D []ew ™) (1)

n<zx n<zr  pln
w(n)=2 w(n)=2
1
= L+on)+en) ) ——0
; ( %w(w(")))
w(n)=2
1
< ek ) et ) o)) oo
= = p(prr)
n<z n<x pln
w(n)=2 w(n)=2

Since for any prime number p and for any positive integer n such that p | n we have
p(p*™) > (p) = (p — 1), ie., s < 17, it follows that

e(por™))
1 1
x‘i‘Z:SO(”)"‘Z:@(n)Zl:W < ﬂf—i—z:%@(n)"‘;(ﬂ(”) | p—1
n<z n<wx n n<z n<z pln
w(n)=2 w(n)=2 b w(n)=2 w(n)=2
1
- - d).
Y sO(n)Jer_l p(pd)
nS:L' pS:L' dSE
w(n)=2 P

Since for any positive integer n > 1 we have ¢(n) < n, we can write

T+ Y ¢ +Z Z < T+ Y ¢ +Z Z pd

n<x p<:L" d<w n<lx p<z d<x
w(n)=2 pd= n w(n)=2 pd— n
d=p~q®,a>0,8>1 d=p~q®,a>0, 821
p
= z+ E o(n) + E ) E d.
n<x p<w p a<?
w(n)=2 P

Note that,
S o< Y
d<z <z
P P
pd=n

d=p*¢®,a>0,8>1

therefore we have

v+ Y () +Z%Zd§x+z +Z Zd

n<z p<lzx p= d<Zz n<lz p<ac d<z
w(n)=2 pd—I;z w(n)=2
d=p“q¢®,a>0,8>1
1051+ 1)
A ORD D . 5
n<lz p<x
w(n)=2
+1)
= @t ) el Z S LD o
7(1§)a: k 0 p<z
w(n)=2
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From (1) and (2) we conclude that

1
DTSR ) P L thath
w?nS)ZQ k0P<ﬂU

This completes the proof.

4 Proof of Theorem 1.2

Since ot (n) = [, (c(p*™) + 1), we have

Yot = Y e

n<x n<z pln

pln\7

Since we are considering all those positive integers greater than 1 having exactly two distinct

prime divisors, we have

> o = % [T

n<z n<zr  pln
w(n)=2 w(n)=2
1
w(n)=2

3)

1
< T+ Z o(n) + Z a(n)zw.

n<x n<x p|n
w(n)=2 w(n)=2

Since for any prime number p and for any positive integer n such that p | n we have

a(p™) > o(p) = (p+1),ie., W < L +1’ it follows that

1
x+ Z o(n) + Z a(n)zw < x4+ Z Z

n<z n<lz p|n n<lz n<x

w(n)=2 w(n)=2 w(n)=2 w(n)=2

= :)3+Z +Z

n<x p<a:
w(n)=2

Since for any positive integer n > 1 we have

Zt<Zn< Z n = n?

tln 1<t<n
t>0 t>0
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we get

T+ Z 0(n)+2% Z o(pd). < x+ Z a(n)—l—zzﬁ Z pd®.

n<u pe P e n<w p<e i<z
w(n):Q pd:n w(n):Q pd:n
d=p*q®,a>0,8>1 d= p agB a>0,8>1
— 2
AL CED I I I
n<lz p<x d<z
w(n)=2 pd= n

d=p*q®,a>0,5>1

Note that,

therefore we have

x+Za(n)+Z% Z d? < x+20(n)+z%2d2

- Iy
:E—I—Za(n)—l- P 5

B JENE+DEE1+1)
=t Yo+ Y =

n<z k 0 p<z
w(n)
“)
From (3) and (4) we conclude that
ST+ )(2(%1 +1)
INGEUITEEEE) 3 DEICEEa e
n<lx k 0 p<z
w(n)=2
This completes the proof. [

5 Conclusion

In this note, we only consider all positive integers having exactly two distinct prime divisors. We
can of course consider positive integers having three or more prime divisors but observe that if
M =[]} z;, then

Mern=teM(icX v & fves $ o),

1< <r Liy 1<i,io<r 1<i1,i0,0enyip_1 <1
11 <19 11 <tg<-+<lp_1

’llle

®)
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w(n)>3

that is, if we consider a positive integer n = [[,2] pfpi(") (p; are prime numbers), then we

can consider M = Hf:(’f) f(pf”i(n)) = f(n), ie., x; = f(p;j“(”)), r = w(n) > 3 where*f is a
multiplicative arithmetic function like ¢, o, etc. Then, from (5) we can write:

w(

S

(fp ™) +1)

1

fr(n)

i

1+M(1+Z%+ > Loy > ;). (6)

. :L’ 'CL' aj 'r .. .:L’.
1Sip<r M 1<y i< T 1<y igyeonyip—1 < 7T et
11 <12 11<12<<1lp—1

Clearly, if r = w(n) > 3 we have to consider all such i; where j runs up to at least 2 but the
above Equation (6) shows that the calculation will be then more complicated for ) _. f*(n).
Although the authors [7] have introduced 1" in connection with Dedekind’s function [5], the

present work does not yield a parallel result. This naturally leads to the question: can a similar
result be established for ¢t ?
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