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1 Introduction

Let p(n), 1(n) and o(n) denote the classical arithmetic functions, representing Euler’s totient,
Dedekind’s function, and the sum of divisors functions, respectively. Let ¢*(n), c*(n) denote the
unitary analogues of the functions ¢ and o. It is well-known that p(1) = ¥(1) = o(1) = ¢*(1) =
0*(1) = 1 and that these functions are multiplicative, and for prime powers n = p® (p prime,
a > 1 integer) one has

at+l __
p(p") =p"- (1 - %) b(p*) = p*- (1 + %) e (1)

p—1
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and
e (") =p" =1, o (p*) =p"+1
(see [5] and [3]).

2)

In part II of this series [4], by refining earlier results by S. Dimitrov [1], the following

inequalities have been proved (in what follows, n > 2):

Theorem 1.
©*(n) +*(n) + 0*(n) > ©*(n) + 2¢*(n) > 3n* + 2n + 3.

Theorem 2.
p(n)ib(n) + p(n)o(n) + o(n)ib(n) > ¥*(n) + 2p(n)(n) > 3n* + 20 — 1,
Theorem 3.
(¢ ()" + (¢(n))

Theorem 4.

+ (0*(71))2 > (¢*(n))2 + 2(0*(n))2 > 3n® + 2n + 3,

P (n)h(n) + ¢* (n)o* (n) + (n)a*(n) > 20" (n)o*(n) + (*(n))* > 30> + 2n — 1.

In the paper [2], S. Dimitrov proved the following inequalities:
Theorem 5. (Theorem 1 of [2]).
©*(n) + 3 (n) +o*(n) > 3n* +3n* +9n + 1.
Theorem 6. (Theorem 2 of [2]).
©*(n) +v*(n) + o*(n) > 3n* + 40> + 18n® + 4n + 3.
Theorem 7. (Theorem 5 of [2]).

P’ (n) (¥ (n) +a(n)) +4°(n) (p(n) + a(n)) +a°(n)(p(n) +(n))
> 6nt 4+ 8n 4+ 12n2 + 8n — 2.

3)

“4)

®)

(6)

(7

®)

(€))

In what follows, we will generalize all the above inequalities, and among others, these

generalizations will provide also refinements of inequalities (7)—(9).

Inspired by the auxiliary results proved in this process, certain new arithmetic functions will

be considered, too.

2 Main results

Let k > 2, n > 2 be integers. Then one has

Theorem 8.
©"(n) +¢*(n) + o"(n) > ¢"(n) + 2¢*(n) > (n — 1)* +2(n + 1)".
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Theorem 9.

P ()t (n) + " (n)a*(n) + o* (n)y* (n) > 4> (n) + 20" (n)y* (n)
> 2(n* — 1)F + (n + 1)%.

(11)

Theorem 10.
(¢ ()" + (0" ()" + ()" = (") +2(0" ()" = (n =D + 20+ DF. (12)
Theorem 11.
(¢ ) 0 () + (¢ () (0" ()" + ¥ ) (0" ()" = ()" + 200" ()"
> (n+ 1)+ 2(n" - 1).
Theorem 12.
P (n) (¥ (n) + a(n)) + ¥ (n) (p(n) + o(n)) + " (n) (p(n) + P(n))
> 2 (n) (¢ <> + 9" (n)p(n) + 9 (n)) (14)
>2(n+1)[(n — 1) + 2n(n + 1)k_1].
Theorem 13.
(" ()" (¥(n) + o*(n)) + (¥())" - (¢"(n) + o*(n))
+ (7 ()" (¢ () + () as)

£
+
N
£
|
=
+
[\
=
3
+
N

We need the following auxiliary results:

Lemmal. Letx; >i(i=1,2,..., k), > 1. Then

ﬁ(l’i_1>k+2ﬁ(ﬂfi+1)k2 (ﬁxi—1> +2<ﬁ$i+1>- (16)

=1 =1
Proof. We will use induction upon r. For r = 1, there is equality. Assume that (16) holds true
for r, we will prove it for r 4+ 1. We have

T

[ — D (@i — DF + 2] [ + DF - (@0 + 1)°

i=1 =1

() et T2 55 (1) 52) T 0

+ Zl (’;) A ((-1)]‘ 11(1:1 —1)F + 11(@ + 1)’f)



Asz; > 1land z,1; > 1, we get

and thus above is, by induction

" r k r k
=1 % ;

=1

Then, we have

T+ .
=1 \J i=1 i=1
T T
k j k—j, k j
2%, 4, H z; + (1), H Ty
=1 =1

i=1 i=1
We have used that the coefficients of the polynomial in variables zi,...,x,,; are positive
numbers, 7, > 1 and trivially 25" > 2. Thus the proof of (16) is completed. O

The proof of the following lemma is similar:

Lemma 2. Letx; > 1,r > 1. Then

s s s

[T — 0F + [ — 0 [ [+ 0"+ T + 1)

=1 ) i:kl ) =1 ) szll (17)
() ()
=1 =1 =1

Lemma 3. Let x; > 1,7 > 1. Then

f[ +2H:v —1) zH:mH +2<f[:vf—1>- (18)
i=1 i=1 i=1

Lemmad. Letx; > 1,r>1(i=1,2,...,r). Then

<

T

. k
e 2k—|-2H:E —1)* (sz—i-l) +2<Hx§—1> , (19)
i=1

i=1
Proof. Inequality (18) is proved in [4] for £k = 1 and k£ = 2. Thus, we will assume in what follows
that £ > 3. Let thus assume (18) is true for » and we will prove it for » + 1. One has:
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r+1 r+1

[+ 0F+2]JaF - 1)

i=1 =1

r—+1 r+1
=@+ D @ + D+ 2] [ =" — Dk, — 1)
=1

i=1

- (Z (f) ) [T+ 1 +20t, Tk =0 —2[ [t~ 1)

LT - : :
S I CERTE (R R Ol Y N (ERRVES | (B

The final sum contains two expressions, the first being the product of z¥,, with the sum in
parentheses, the second being the remaining two terms. We now prove that the second expression
is non-negative, then we prove that the first expression is sufficient to derive the desired bound.

Notice that
k-1

k .
Z(]) I£+121+k1’7«+1>2

j=

(weuse k > 2 and x,,1 > 1), therefore

(5 (8) ) Tl oTht -2 2T Tt

=0 i=1
k ‘ k=1 k r
:2H<I3+1+Z<') xf) —2H(xf+1) >0
. — J -
=1 7=1 =1

and thus the second expression is non-negative. Moreover, using the induction hypothesis we can
now write the first expression as

T T r k r
e (H(a:i + 1"+ 2k - 1)) > k- [(H i+ 1) +2 (H o 1)]
= =1 i=1 i=1
r4+1 k r+1 (20)
= (H%"’xr—l—l) +2H1‘f—2xf+1
=1 i=1

T
We now put a = H 7, b = x,,1, and write (20) to (az + x)* + 2a*z* — 22%. To complete the
i—1
proof, it is now sufficient to show that

(az + z)* + 2aF2% — 227 > (az + 1)F + 2(aF2* — 1),

which is equivalent to

e ony)
(@a+1)F—2>(at+>) — = 1)



By letting
1\* 2
f(x)—(aJr;) e

it is immediate that

for x > 1. Thus f is decreasing, giving f(1) > f(a) for x > 1 and (21) follows. The proof of
Lemma 4 is similar. [

Proof of Theorems 8-13
The middle inequalities are consequences of the well-known inequalities o(n) > (n) and
(n) > o*(n), so we have to prove the last inequalities.

Applying Lemma 1 to z; = p;", where n = p{* - - - p* = prime factorization of n, first remark
that Theorem 10 follows immediately. Also Theorem 11 follows by Lemma 3.

To prove Theorem 8, by application of Lemma 1, we proceed as in [4], by remarking that if

n= H p;* is the prime factorization of n, then
=1

thus it is sufficient to apply Lemma 1 for x; = p;.

To complete the proof, remark that # < z%’ so dividing both sides of (10) by nf =

p’f‘“- .- pFar | the inequalities follows by Lemma 1 for z; = p;.

The proof of Theorem 9 follows by Lemma (4). Applying Lemma 4 to x; = p;, and to finish
the proof of Theorem 9, we have to show that

1 2k 1 k 1 2k 1 k
() 2t ) 2 (1) 21 ) @)
pl...pT pl...pT pl ...pr'f p’L ...piT

Let f(ai) = 14 (af'x3? - -x‘“)% +2(1 — 22% .. -x2‘“)k, where z; = -~ (i = 1,...,7). Then

T T

an easy computation gives
fllay) =2kt - (1 + ) Inay - [(1+0)F —2t(1 — )",

where t = 2§ - 2% . Now g(t) = (1 +t)* = 2t(1 —t)F 1 > 0as2t <1+, 0< 1 —t <1+t
Thus, we get f'(a1) < 0, implying f(a;) < f(1), as Inz; < 0. Thus, for the function
F(al, as, . .. ’ar> — (1 + x(111 .. _Igyw)% + 2(1 o x%m . xQ.ar)k

T

of r variables, one has F'(ay,as,...,a,) < F(1,aq9,...,a,).
Let now define f;(az) = F(1,as, ...,a,). An easy computation gives

filas) = 2kp(1 +p)F - Inay - [(1+p)F — 2p(1 — p)*1],
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where p = 2125 - 2% . As2p < 1 +p, 1 —p < 1+ p, we get (1 + p)¥ —2p(1 — p)*~1 > 0.
Aslnzy < 0, we get f{(a2) < 0, implying F'(1,as,...,a,) < F(1,1,...,a,). By repeating the
argument r times, we get F'(ay,...,a,) < f(1,1,...,1), so relation (22) follows.

For the second inequality of Theorem 12, remark that since ¢)(n) > n + 1, it will be sufficient
to prove that
Pt (n) + 9" (m)p(n) + 98 (n) = (n = 1F + 2n(n+ 1) (23)

Dividing both sides of (23) by n*, and by remarking again that ¢ (n)/n and v (n)/n depend only
on the prime factors py, . .., p, of n, it will be sufficient to prove the inequality for n = p; - - - p,..
This follows by Lemma 2, by selecting z; = p; (i = 1,2,...,r).

For the proof of Theorem 13, remark that we have to prove the second inequality of relation
(15). Since 0*(n) > n + 1, it will be sufficient to prove that

(¢" ()" + @ (n)(o"(n)" " + (¢"(n)* = (n = 1)F + 2n(n+ 1)* . (24)

This follows by Lemma 2 for z; = p* (i = 1,2,...,7), for n = pi*---p? being the prime
factorization of n.

3 Notes on new arithmetic functions and inequalities

First remark that as Lemmas 1, 2, 3, 4 are valid for any z; > 1, we can apply them in a variety of
other situations.

Let s > 0 be a real number, and apply Lemma 1 for z; = p;* (i = 1,2,...,r). Then
2;>2%% > 925> lass > 0.

Define now the following extensions of ¢*(n) and o*(n):

pi(n) = [ = 1), oi(n) = [ J5™ +1). (25)
i=1 i=1
Then by Lemma 1 we get:
Theorem 14.
(5 ()" +2(a2 ()" > (n* — 1)F 4+ 2(n° + 1)*. (26)

By applying Lemma 3 for the same z;, we get

Theorem 15.
(o7 ()" +20%(n) = (n° + 1) +2(n*F — 1) 27)

for any integer h > 1, and s > 0 a real number.

By Lemma 2, we get

(¢5(n)" + @i(n) (o7 (n))

k—1

+ (o ()" = (n* = 1) + 207 - (n* 4 1)F1, (28)
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Remark 1. We can remark that, when s is a positive integer, then pi(n) = ¢*(n°) and

o¥(n) = o*(n®), but this is not true if s is not a positive integer.

By example , when s = 1/2,

r

A =[] (Vi —1) = £

i=1 T/ (1)’
so from (26), after elementary transformations, we get
* 2 * 4 * 2
(‘P (n)) + 2(“1/2(”)) > (3n + 2\/ﬁ+3)(01/2(”)) : (29)
Let now v; = 18 (i = 1,2,...,n) in Lemma I, with p; (i = 1,2,...,n) being the prime factors

of n. Let us introduce the new arithmetic function:

@Z:n-H(QJr%), (30)
pln

which is an analogue of Dedekind’s arithmetical function. Let v(n) = p; - --p, be the “core”

function of n (see [5]). Then we get from Lemma 1:

m+2(@)k2<@—1)k+2<@+1)k. 31)

Let us now introduce the following extension of the core function y(n) :

L :ﬁ[(1+l>k—1]. (32)

(1) i1 Pi

Theorem 16.

For k = 1 we get yx(n) = p1---p, = v(n). Now, by Lemma 3, applied to z; = 1 + 1/p;
(1=1,2,...,r), we get:

() e (o) e ] e

Applying Lemma 2 for the same values of x;, we get

Theorem 17.

Theorem 18. N N
G (w;n))“ ! (@) - <@ - 1)k w2t [@ t 1} e

Applying Lemma 4 for the same values of x;, we get
Theorem 19.

(%) 2 () () ) >

Finally, applying Lemma 4 to z; = p;* (i = 1,...,7), s > 0, we get the inequalities

Theorem 20.
(o2(m) ™ + () ()" = (0" + 1 +2(n> = 1. (36)
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