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Abstract: Rhotrices (heart-oriented) are often multiplied either by heart-based or row-column
multiplication method. The element-wise multiplication method for higher even-dimensional
rhotrices has recently been introduced in [9]. However, this type of multiplication method, though
simple, is less robust. Hence, we present a multiplication method called “Robust Multiplication
Method” (RMM) for higher even-dimensional rhotrices (hl-rhotrices), and a number of
rediscovered properties of hl-rhotrices. Analysis and examples of RMM for some hl-rhotrices
are presented for demonstration purposes.
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1 Introduction

In recent years, rhotrices have found applications in several aspects of real-life problems [7].
Rhotrices, as paradigms of matrices, are concerned with representing arrays of numbers in
mathematical rhomboid form, introduced by Ajibade in 2003 [1], as an extension of ideas on
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matrix—tertions and matrix—noitrets proposed by Atanassov and Shannon in 1998 [4], and as
represented in [2, 3].

A rhotrix has rows and columns. The row of a rhotrix is an array of entries running from the
top-left to the right bottom while its column is an array of entries running from the top-right to the
left bottom of the rhotrix whenever it is rotated anticlockwise through angle 45 degrees, see [19].

Thus, a rhotrix R of dimension 3 is a rhomboidal array defined in [1] as:

a
< b ¢ d > :
e
The vertical axis is the set of values {a, ¢, e} and the horizontal axis is the set of values {b, ¢, d}

of the rhotrix R above. The entry ‘c’ at the center of R is called the heart of R denoted as h(R).
It is the intersection of the major vertical and the major horizontal axes, and the above rhotrix is

<b h(R) d>.

The vertex of the rhotrix R is an entry at any of the four corners of the rhotrix, that is, entries

mathematically written as:

a, b, e and d in the rhotrix R above. Two rhotrices can be added up only if they have the same
dimension.

The addition and multiplication of two rhotrices as presented in [1] are given below. Given
two rhotrices R and S,

a f a+ f
R+S:<b h(R) d>+<g h(S) j>=<b—|—g h(R) + h(S) d+j>.
e k e+ k

Multiplication (o) operation of two rhotrices R and S is defined as:

a f ah(S) + fh(R)
RoS = <b h(R) d>0<g h(S) j> = <bh(5) +gh(R)  h(R)L(S)  dh(S) +jh(R)>-
e k eh(S) + kh(R)

In the concluding section of [1], the author was challenged by further development regarding how
a rhotrix can be converted to a matrix and vice versa for its mathematical enrichment. In quest
to solving this challenge, Sani [17] in 2004 proposed the first alternative rhotrix multiplication
method called the row-column multiplication method. This procedure has given room for more
literatures in rhotrix algebra [15]. Thus, the row-column multiplication method presented in
[17,18] is defined as:

a f af +dg
RoS:<b h(R) d>o<g h(S) j>:<bf+eg h(R)h(S) aj+dk;>.
e k bj + ek
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In many aspects, rhotrices of odd dimensions (heart-oriented) are well-known in literature but
even-dimensional rhotrices (heartless or hl-rhotrices) are still a novelty. Isere in 2017 classified
heart-oriented rhotrices as classical rhotrices and even-dimensional rhotrices (hl-rhotrices) as
non-classical rhotrices [7]. For detailed studies on classical rhotrices, see [5, 6, 10-16].

In this work, we introduce the robust multiplication method for higher even-dimensional
rhotrices and derive their identity and inverse operations. Section 2 discusses the preliminary
background, while Section 3 presents the robust multiplication method for high hl-rhotrices
and their properties. In Section 4, some numerical examples are presented for the purpose of
illustration. Finally, we give the concluding remarks in Section 5.

Remark 1.1. By high hl-rhotrices we mean even-dimensional rhotrices of high order, higher than
dimension 2. So, we may sometime use higher even-dimensional rhotrices or high hl-rhotrices
interchangeably. Even-dimensional rhotrices and hl-rhotrices may also be used interchangeably.

2 Preliminaries

An introduction to even-dimensional rhotrices was first presented in [8] where the author showed
that it was still mathematically tractable to extract the heart of a rhotrix and still obtain an
algebraic rhotrix. Moreover, doing so enables one to obtain even-dimensional rhotrices (see
[8,9,20]). Interestingly, the objects called Quaternions by A- and V-tertions in [2, 3] are even-
dimensional rhotrices provided their sides are geometrically equal.

Definition 2.1 ([8]). Even-dimensional rhotrix is a rhotrix with even cardinality and a special

type of rhotrix where the heart has been extracted. An example is presented below.

where a,b,d and e € R.

Definition 2.2. The minors of a higher even-dimensional rhotrix are the matrices and rhotrices
of dimension two that can be gotten from the higher rhotrix.

Definition 2.3 ([21]). Robust multiplication method (RMM) for higher even-dimensional rhotrices,
is a rhotrix multiplication method that splits the high hl-rhotrix into its minors of rhotrices
and matrices of dimension two, and multiplies the corresponding minors using the row-column
multiplication operation for matrices and rhotrices, and then inserts the product entries into the
high hl-rhotrix.

For example, below are minors of Ry.
a1 C11
Q21 A12
a31 13 ) C21 C12 , and )
a3z a23
a33 C22
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as obtained from

a33

Definition 2.4. The index p of an hl-rhotrix A is the number of minor rhotrices of dimension 2
(Ry) that can be obtained from A. This index is always a whole number; cf. [6].

2.1 Multiplication of hl-rhotrices

The element-wise multiplication of higher hl-rhotrices is presented in [9]. This has been the only
multiplication method for high hl-rhotrices in literature up till now. Each entry is obtained by

multiplying the corresponding elements.

Consider the set of any two 4-dimensional rhotrices,

aiq bll
G21 C11 QA12 bor dir big
Ry, = azy C21 Ci2 Q13 and Sy = ba1 do dip b3
a3z Co2 Q23 bzp dap b3
33 b3

By the element-wise multiplication method, we have

a1 b1
21 Ci1 012 byr dir bio
RyoSy = as1 €21 Ci2 ai3 © b3 do dip b3
32 Co2 Q23 bz dao b3
as3 b3
ai1biy

agbar  cndin arabia
= azibz1  Co1da ciodiz  ai3bi3
a3zb3y  Coadas  a23bo3
az3bss

The multiplication above is very simple and beautiful but less robust. Hence, we present a more
robust multiplication method for high hl-rhotrices in Section 3.

2.2 Identity and inverse elements of hl-rhotrices

For a 2-dimensional hl-rhotrix (Rs), the identity and inverse elements, as presented in [8], are

given below:

343



(i) Consider an hl-rhotrix R of n-dimensional, if [ is also an hl-rhotrix of n-dimensional such
that: Ro [l = R = [ o R. Then [ is an identity element.

(i) The concept of identity element makes the inverse of a rhotrix meaningful.
If for an hl-rhotrix R we can find another hl-rhotrix .S such that Ro .S = S o R = I, then
S will be the inverse of R. Consider R, for example, let

a
R=( b d
e
Then,
= ! d ) b
ae —bd\ B
a
This implies that
e
1
-1
= —d —b
ae — bd
a

Remark 2.1. For an hl-rhotrix Ry to be invertible or non-singular, ae # bd must hold.

3 Main results

In this section, we develop an alternative multiplication method for higher even-dimensional
rhotrices (hl-rhotrices), called the Robust Multiplication Method (RMM). For the purpose of
illustration, we start with 4-dimensional rhotrices up to 12-dimensional rhotrices, and these are
presented below.

3.1 Multiplication of high hl-rhotrices

(1) The multiplication of 4-dimensional rhotrices ([2,) is defined as:

aiq bll
21 C11 Q12 bar di1 bio
Ry xSy = as; €21 Ci2 Q13 X bs1 do dia b3
a3z Co2 Q23 bza daa  ba3
ass b33
a1
as B o
= azr Por Pz a3 )
Qzy oz Q3
33
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Solution: First, we obtain the minors of R, and S, as:

ai b1 C11 dy;
Q21 Q12 ba1 bio
asi as ), 531 b13 » \ C21 C12 ), da dy2 ) ,
a3z 23 bza b3
a33 b33 C22 dao

Then, the row-column multiplications of the systems are:

an b1 a11b11 + a13bs;
<a31 a3 > ° <b31 bi3 > = <a31bl1 + aszbsy a13b3s + a11b13 > ;

ass b33 a33bss + azibi3

c11 d11 c11d11 + craday
<C21 c12 > ° <d21 d12 > = <C21d11 + ca2do; c12dag + c11d12 > ;

22 da2 coadag + c21d12

[ ao1 a12] . [1721 b12] _ [ambm + ai2bza  ai2baz + az1bi2 ]

azz as3 b3z ba3 azabo1 + az3bza  az3b23 + aszebio

with the following equations:

a11b11 + aizbsy = a11;  as1bir + aszb3r = asr;  aszzbsz +asibiz = asz;  aizbsz + ainbiz = aas;
ci1di1 + ciador = B11;  ca1dir + caador = Ba1;  co2daz + ca1diz = Bag;  ciadag + ci1diz = Bia;
az1bo1 + a12b3a = 215 aszabor + azbza = azo;  asgbaz + azabiz = gy aisboz + azibiz = ais.

Then, the RMM of R, is:

a11b11 + a13bsy
as1b12 + ai2bsa  cr1dit + ciadar  a12b23 + as1bi2
Ry x Sy =\ az1bi1 + azzbs1  co1dir + caaday c12dog + c11d12  aizbsz + aribiz
azabo1 + azzbsa  coados + ca1dia  as3baz + azabio
a33bss + az1by3

(i1) Similarly, the multiplication of 6-dimensional Rhotrices (R) is defined as:

ar b1
asr C11 a2 ba1 di1 b2
asy C21 a2 Ci2  a13 bs1 do1 boo dio D13
Rg x Se =\ as1 c31 a3 as3 c13 aiq | X\ by d31 D32 bas diz big
ag2 €32 a3z C23 A24 biz d32 b3z dog Doy
aq3 €33 a3q byz d3z D34
Q44 b44
a11

azr Bi1 o1
azr fo1 a P2 a3
=\ an Ban s a3 P13 014 |,
qo P32 a3z Pa3 oy
43 P33 Q34
(44
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where

a1
Bi1
22

Ba3

34

Q41

a11b11 + a14ba;
ci1di + ci3dsi;
a2boo + az3bs;
co3da3 + c32d12;
azabss + aszbi2;
a41b11 + aa4ba;

Q12
Bi2

Q23 =

Q3] =
Ba1 =

Q42 =

= a12b34 + a21b12;

c12das + c21d12;
az3b33 + az2bos;
a31b31 + a13bao;
c31dyy + c33d31;
a42b31 + az4bao;

a3 = a13b24 + az1bi3;
f13 = c13d33 + c11d13;
Qo4 = ag4bay + aa2b13;
Q32 = agzabaa + azzbso;
P32 = c32da1 + c23d39;
a3 = ay43b21 + a34bys;

Qs
Qs
P21
as3

B33

Q44

a14baq + a11b14;
a21b21 + a12b43;
co1do1 + c12d32;
a33bs3 + azabos;
c33d33 + c31d31;
a44b44 + a41014.

(iii)) Then, the multiplication of 8-dimensional rhotrices ([Rg) is also defined as:

RS X Sg =
ar
az ci1 A ba1
asy C21 Q2 C12  G13 b31 d21
asq1 €31 Q32 C2 G23 €13 A14 by d31 D32
asy €41 Q42 C32 c23 a4 c14 ais [ X\ bs1 dg1 bao d32
asy C42 (43 €33 G34 C24 Q25 bsa  diz a3
as3 €43 Q44 C34 G35 b5z da3
as54  C44 Q45 bsa
ass
Then, the RMM of Ry is:
aig
a1 P 012
asz; fo1 a2 P2 o3
aq1 P31 a3z Poo a3 P13 ouy
Ry x Sg =\ as1 Bu as B3 B2z 24 Pua
asz B2 ouz Bz azs Paa o
as3 Ba3 o4a P ass
asq Pag Qus
ass
where
a11 = aribir + aisbsi; a2 = a12bss + azibi2; 13 = a13bss + azibis;
a1s5 = aisbss +a1ibis; P11 = ci1din + c1adar;  Bi2 = ciadzg + co1dio;
B1a = cradag + c11d14; o1 = ag1boy + a12bss; 22 = asobos + as4by;
Qo4 = a24b4q + ag2bas; Qo5 = agsbos + asabia;  B21 = cardoy + c12dy3;
Bog = ca3d33 + coada3; P24 = caadas + caodr3; @31 = az1bz1 + aizbss;
(34 = azqb3q + aszbas;  ass = assbss + aszbiz;  B31 = c31ds1 + c13das;
B33 = c33d33 + c32da3; B34 = c34d3s + cy3d12; Qa1 = aq1b41 + a14b52;
043 = a43b32 + a34bs3; gy = agabyy + ag2bos; s = agsbys + assbia;
Baz = ca2d31 + coadso;  Bagz = ca3da1 + c34ds3;  Baa = caadys + ca1diy;
Q52 = aseba1 + agsbs2; a3 = assbsy + assbs3; sy = asabor + agsbsy;
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ds3
bas
dg
bss

a15

Q14

Q23

Pz =

32

P32 =

Q42
Ba1
a51
Q55

b12

di2 i3

bas diz big
dog boy dig bis
bss dog  bos
d3s b3

bas

= a14b2s + a41b14;

P13 =

c13d24 + c31d13;
az3b3q + azabas;
c22d22 + c23d32;
a32b32 + a23bss;
c32dag + c33d32;
a42b22 + a44b42;
ca1di1 + caada;
as1b11 + assbs1;
as5bss5 + as1015.



(iv) Multiplication of 10-dimensional rhotrices (R1g) is also defined as:

ail
Q21 €11 ai2
azyr €21 G22 C12 413
aq1 €31 G322 C2 A23 C13 Q14
as1 €41 Q42 C32 A33 €23 0G24 Ci4 415
Rip x S10 = ag1r €51 G52 C42 Q43 az4 C24 Q25 C15 QAl6
g2 Cs52 (53 C43 Q44 €34 A35 C25 Q426
ag3 Cs53 G54 C44 Q45 C35  A36
g4 Cs4 A55 C45 Q46
ags Cs55 As56
a66

b11
bo1 di1 b2
bs1 do1 b2 diz bis
bar d31 b3z doo Doz diz big
bs1 da1 bio d3z b3z daz bag dis bis
X be1 ds1 bsy diz  baz bsa d2a bos dis big
be2 ds2 bsz daz bas dsa by das b
bes ds3 bsa daa bss d3s bss
bea dsa bss das  bag
bes dss5  bse
bes

Then, the RMM of R is:

a1l
a1 P11 012
az1r fo1 a2 P2 a3
aq1 B31 azz B sy P13 aug
as1 Bar oz P2 asz Bog aes Bua aas
Rigx Si0=1\| as P51 as2 Pa2 au3 azy PBoa ags dis i
a2 B2 as3 Baz s P34 ass das  aog
aps Bs53 as4 Baa cus P35 ase
aps P54 ass Pas oue
ags  Bs5 Qs
Q66

where

a1 = a11b11 + aigbe1, @12 = ag1b12 + a12bs6, 13 = az1biz + a13bs, @14 = ag1b14 + a14b3e,
a1s5 = as1bis + aisbes, 16 = a11bie + aiebes, B11 = c11dir + ci5ds1, B2 = ca1di2 + cradys,
P13 = c31d13 + c13d35,  B1a = ca1dis + cradas, Bi5 = ciridis + ci5dss, @17 = ag1ba1 + ai2bes,
Q18 = a2b22 + agsbse, o1 = aggbys + azabez, oo = agobay + aabss, o3 = azsbos + assbss,
ag5 = ag2bis + agebas, P21 = co1dor + c12dss, B2z = coados + coadyz, B3 = c32d23 + ca3d3y,
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Boa = caaday + coadas, B2s = csadia + casdas, @31 = az1b31 + aizbes, 32 = azabzz + azzbsy,
a33 = a33bzz + azabsz, 34 = azzbszy + azsbas, 35 = aszbay + azsbzs, a3 = aezbis + azebse,
P31 = c31d31 + c13ds3, B32 = c3adsz + co3da3, B34 = cazdaz + c3adzs, [P35 = cs53d13 + c35d35,
aq1 = aq1by1 + aiabes, u2 = agobso + a24bs3,  uz = a43b33 + a44bs3, Q44 = as3b3q + as4bay,
Q45 = agsbys + asabaz,  oue = aeabiz + asebas, Bar = cardar + crads2,  Baz = caadaz + caady,
Baz = c43d32 + c34d43, Bas = caodog + caaday, Bas = csadiz + casdss,  as1 = asibsi + aisbes,
Q52 = as2b22 + assbs2, Q53 = aszbaz + assbsz, sy = asabsa + assbsa, ass = as2bos + assbss,
ase = apsb12 + asebse,  Bs1 = cs1d11 + cs55d51,  Bs2 = cs2da1 + cosdsa, P53 = c53d3 + c35ds3,
Bsa = cs54do1 + ca5dss,  Bs5 = cs1dis + cs5dss, 1 = ag1bi1 + agebe1, 2 = ag2bs1 + azebes,
a3 = ag3ba1 + asebes, s = agabs1 + asebes, s = agsba1 + asebes, 66 = as1bis + asebes-

(v) Finally, the multiplication of 12-dimensional rhotrices (R;2) is similarly defined as:

ay
as; €11 a2
agy C21 Q2 Cl2 (13
a1 €31 a3z C2 a3 C13 A14
as1 €41 Q42 C32 (33 C23 Q24 Cl4 Q15
gl C51 Q52 C42 (43 €33 Q34 C24 Q25 C15 (16
Riox S1a =1\ an co1 as2 52 as3 a3 €34 G35 C25 G2 Ci6 A17
ary  C2 A3 C53 Q54 C44 Q45 C35 A36 C26 Q27
ag3  Ce3 A4 Cs4 Q55 C45 Q46 C36 437
ary Cesa Ag5 C55 A56 C46 Q47
ars Ces A6 C56  A5T
are Ce6 a67
arz

b21 dll b12
b31 d21 b22 d12 b13
b41 d31 b32 d22 b23 d13 b14
b51 d41 b42 d32 b33 d23 b24 d14 b15
b61 d51 b52 d42 b43 d33 b34 d24 b25 d15 b16
X b71 d61 b62 d52 b53 d43 d34 b35 d25 b26 d16 b17
b72 d62 b63 d53 b54 d44 b45 d35 b36 d26 b27

bra des bes dss bse dag  bay
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Then, the RMM of R is:

Rip X Sip = ar
where

a1 = a11bi1 + ai7br,
a15 = as1bys + ai5b37,
P12 = ca1d12 + c12ds6,
P16 = c11d16 + c16d66,
a4 = aq2bay + az4bye,
P21 = c21d21 + c12d65,
Bas = caadas + co5ds5s5,
a33 = azzbsz + c35bs53,
agr = arsbys + asrbsr,
B34 = c33d34 + c34d44,
2 = a42b42 + a24bey,
ayr = argbiy + agrbyr,
Bag = c43d34 + ca4dyy,
Q52 = as2bs2 + assbes,
ase = agsbas + asebse,
P53 = c53daa + c35d53,
ag1 = ag1b11 + aesber,
aps = agsbzz + asebes,
Be2 = ce2ds1 + c26de2,
Bee = ce1d16 + ce6de6,
ary = arabgy + agrbry,

a1
Be1

a2

12
16
B13
21
Q25

B22
B26
34
B31
B35
Q43
Ba1
Bas
53
a7
P54
a62
66
Be3
a1
s

@31

ag1 B

ast Ba oy
P51 as2 Bao
agz P52 Q53
Be2 63 Bs3
a7 B3 Q64
a7y Bes

ars

= a1b12 + a12be7,

ag1b16 + aiedar,
c31d13 + c13d46,
az1b21 + ai2brs,
as2bas + az5b36,
c2ada2 + co5ds2,
ce2d15 + c26dos,
a43b3s + azabys,
c31d31 + c13dg4,
cs3day + c35d35,
a43b43 + azabsy,
ca1da1 + c14de3,
Cs54d23 + C45dy5,
as3bss + as5bs3,
arsb13 + asrbsy,
c54d32 + ca5ds4,
ag2b22 + agebez,
ag2b2s + asebes,
c3d41 + c36de3,
ar1bi1 + arrbry,
arsbs1 + as7brs,

21
Ba1
32
P32
Q43
Ba3
54
B54
g5

Bes

Q76

a13
aqr
B4
Q22
Q26
P23
as1
ass
P32
B36
Q45
Bz
Bi6
54
Bs1
Bs5
63
Qg7
Bea
ara
are

a1l

pr1 12

az P2 a3

Paz 23 P13 a1

ass P23 a2 Pia

B33 a34 PBas azs
B3 ass Bas

Baa s B35 ase

ass Pas ous P36

Bs5 as6  Bag  Qar

e P56 Qs7

Bes Q67

a7y

= a31b13 + a13bs7,

a11b17 + ai7brr,

= cq1d14 + c14d3s,

a2b22 + azebea,
azodi6 + a26dss,

= c32d23 + 2345,

a31b31 + ai3brs,
assbss + azsbss,

= c32d32 + 2354,

ce3d14 + c36d36,
a54b34 + as5by5,
ca2da2 + c24ds53,
ce4d13 + ca6dse,
a54b43 + a45bs4,
cs1ds1 + c15dg2,

= c55d55 + c52d2s,

ag3bs2 + aszebes,
arebi2 + aerber,

= cpad31 + caedea,

ar2be1 + ag7bra,

= azeba1 + ae7bre,

ass
B1s
Q26

P26

a7

14

Bi1
P15
23
Qa7
B24
32
36
B33
Q41
Q46
Ba3

a51

55
B52
Bs6
O64
Be1
Bes

ar3

arr

16
B16

Q27

Qg7 ;

= a41b14 + a14bar7,

ci1di1 + ciedei,
cs1d1s + c15dg,
azaboz + az3bse,
ar2bie + azrbar,
caadas + c24d3s,
asabzz + az3bss,
agzbas + asebse,
c33d33 + c34dy3,
a41bg1 + a14b74,
agabos + ascbas,
c43d33 + C44dy43,
as1b51 + ai5b73,
as3bss + as5bs5,
cs52d22 + c55d52,
ce5d12 + C56d56,
ceads1 + caedey,
ce1d11 + ce6de1
cesdo1 + cs56des,
arzbs1 + azrbrs,
ar1bir + arrbrr.

Remark 3.1. The multiplication of all high hl-rhotrices by RMM follows the same pattern as
illustrated above. First, split them into their minors of Ry and Mo, and multiply them accordingly,

using the row-column method. Second, return their corresponding products into the product

rhotrix. For example, each of the Rg has three minors of Rs and three minors of M, which are

multiplied by the row-column method, and are returned to the product rhotrix, and so on.
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Theorem 3.1. Let R, be an hi-rhotrix of dimension n for all n € 2N. Then,

(a) there exist p = g number of minor rhotrices of dimension 2 (Ry) in R,,.

(b) there exists

. -2 . . . .
Jj= nT, number of 2-dimensional matrices (Ms) in R,,.

Proof. (a) We prove using the principle of mathematical induction. From Definition 2.4, p is the
index corresponding to the number of R, (minors) that can be obtained from R,,,V n € 2N.
Then:

p:g:>2p:n,Vn€2N.

Now, suppose p = 1, then n = 2 which is in 2N. This gives a rhotrix of dimension 2. So, it
is true for p = 1.

When p = 2, thenn = 4 € 2N. Then we have two minors of R, in R,. Itis true for p = 2.
Similarly, when p = 3, thenn = 6 &€ 2N. Then we have three minors of R, in Rg.
Suppose p = k, then n = 2k € 2N. Then we have k minors of Ry in Ry. It is true also
for p = k.

Letp =k +1,thenn = 2(k + 1) € 2N. Then we have k + 1 minors of Ry in Ry(;41). It
is also true for p = k + 1.

Thus, p = g holds for all values of n € 2N.

(b) Consider

7 . .on—2
m:Zz, ] = 5
=0

Ifj=0,thenm =0 = n=2 € 2N (from j = nT_Q). Rightfully, there is no minor of
Ms in Rs.

Suppose 7 = 1,thenm =1 = n =4 € 2N. That is, there is only one M, in Ry.
When j = 2,thenm =3 = n =6 € 2N, meaning there are three M, in Rg.

Now, suppose that j = k, thenm =0+ 1+ --- + k=" i = n=2(k+1) €2N.
That is, there are Zf:o ¢ number of M5 in Ry 1).

Finally, suppose that j = K+ 1,thenm =0+ 14+ ---+2k+1 = Z,’fiolz = n =
2(k +2) € 2N. That is, there are Zf:ol i number of My in Ry;19).

Thus, m = ZLO 1,] = n ; 2 is true for all values of j and n € 2N. O

Remark 3.2. The proof of Theorem 3.1 above can be visualized from the illustrated examples in
Subsection 3.1 ()—(v), for all values of n € 2N.

Corollary 3.1. Let R, be an hl-rhotrix of dimension n. Then, the index p of an hl-rhotrix R,, is
given as

n—2
5
Proof. The proof follows from Theorem 3.1. [

p=Jj+1 7=
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Remark 3.3. Corollary 3.1 above shows the relationship between j and p, and that there is a
one-to-one correspondence between the two functions.

Generally, the properties of these hl-rhotrices are summarized in Table 1 below:

Table 1. Rediscovered properties of hl-rhotrices

R, | Ry M,
2 1 0
4 2 1
6 3 3
8 4 6
10 5) 10
n ] g:oi> j="13

3.2 Identity of hl-rhotrices under RMM operation

Consider an hl-rhotrix R,, of dimension n, if I is also an hl-rhotrix of dimension n such that:
R,ol, =R, = 1,0 R,. Then, I is an identity element. The procedure is as follows:
(i) We look for by1, ba1, di1, bi2, b31, dai1, dia, bi3, b3a, dag, bas, b3z, such that:

aiq bll
G21 C11 Q12 bor dir bio
RyoSy = as; C21 Ci2 Q13 © ba1 do dip b3
a3z Co2 (23 bso daa  bos
as3 b3
ai

21 C11 Q12
= az1 Co21 C12 Qi3
azz Co2 Q23

ass
Using the multiplication result for R4 o I, we obtain:

a11b11 + aizbs1 = a11;  a13bzz + a11biz = a13;  as1bi1r + azzb3r = az1;  aszbzz + azibiz = ass;
ci1di1 + ciador = c11;  ca1di1 + ca2do1 = c21;  c22dao + ca1d12 = C22;  c12da2 + cr1di2 = c12;
ao1b12 + a12b32 = a21; a12baz + az1biz = a2, asabar + azzbza = azn;  as3baz + azabiz = ass;

and obtain the multiplication of the system as:
bi1 = b3z = 1 and b31 = b13 = 0;
bo1 = bz = 1 and b3z = b2 = 0;
di1 = dos = 1and dyy = dio = 0.
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Note that R4 o [, = Ry = I, o R4. Thus, the identity rhotrix in this case is

1
1

ey

Il

(e}
O O
—_— o O

(@)

1
1

(1) Following the same analysis as above, gives the identity of R as

1 0
11 00
Ie=\ 0 0 O 0 0O
00111
01 1
1
(i11) Similarly, the identity rhotrix of Rg is
1
1 10
11100
1111000
Is=Y) 0 0 0 O 00 0O
0001111
00111
01 1
1
(iv) Then, identity rhotrix of R is
1
1 10
11100
1 111000
111110000
ILiy=1 00 0 0 O 00 0O0O0
000O0OT1TT1T1T171
0001111
00111
01 1
1
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(v) The same analysis gives the identity rhotrix of R;9 as

G U U G A G

112 - O

o O =
S OO ==
O O O OO = =
O O O O DO = ==
O O O O O O = ===
— = === O O O O O O
=== O O O O O
= == O O O O
_— =0 O O
= o O
()

—_ = = = e =

Remark 3.4. RMM brings out the rich symmetric properties inherent in even-dimensional rhotrices.
In another paper, the symmetry in even-dimensional rhotrices and application in organic chemistry
is being investigated. For example, the structures of Buthane, Cyclobutane and Cyclooctane
correspond to the structures of Ry, R4 and Rg, respectively.

3.3 Inverse of hl-rhotrices under RMM

The concept of a unique identity hl-rhotrix under RMM guarantees the existence of an inverse
hl-rhotrix. If for an hl-rhotrix R,,, we can find another hl-rhotrix .S,,, under the multiplication
operation, such that R, 0 .S, = S,, o R,, = I,,, then S,, is the inverse of R,,. For a particular n, we
consider the following:

(i) Let S4 be the inverse of 4. That is, given

b11 11
bor diy bio 21 Ci1 012
Sy = b3 do diz b3 and Ry = azy Cai1 Ci2 ai3 |,
bsp dao o3 32 Co2 Q23
b33 ass

we must have R4 0 Sy = Sy 0 Ry = 1. Thus,

an b11 1
G221 Ci1 Q12 bor dir bio 1 10
asr €21 Ci2 dai3 © b3 dy diz b3 = 00 00
azy Co Q93 bza doa b3 0 1
ass b33 1
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Therefore, the inverse R} * is

as3
A
ags  C2  —aip
B C B
—asi —C21 —C12 —ai3
A C C A ’
—as» cu1 421
B C B
a1l
A

where A = ai11as33 — az1a13, B = 32019 — A21093 and C' = C11C22 — C21C12 for a systern in
Ry.

(ii) Similarly, the inverse R is

a44
A
a34 €33 412
B C B
a24 €23 as3  —C€2 413
E F D F E
—@41  =C31 =032 —G23 —=C13 =014
A C D D C A ’
—a42  —C32 azz €21 asy
E F D F E
—a43  C11 a21
B C B
aii
A

where

A = anaas — ag1a1a; B = as1a3s — agzarz; C = cricsz — c31c13; D = aea33 — a32a23;

E = azra24 — as2a13; F = co1c03 — c32012.
for systems in Rg.

(iii) The inverse Rg " is

ass
A
a45 C44 Q12
B C B
ass €34 a44  —C12  —A13
D E F E D
a5 C24 as4 €33 —a23 —C€13 —a14
G H I J I H G
—asi —C41 —a42 —C32 —C23 —a24 —Ci14 —ais
A C F J J F C A ’
—as2 —C42 —a43 c22 asz €31 aq1
G H I J I H G
—as3 €43 422 €21 asi
D E F E D
—as4  C11 a1
C B
aii
A

where

A =aiiass — asia15; B = ag1a45 — assa1z; C = cr1caa — carcia; D = azgrazs — as3a13;
E = co1034 — cazci2; F = aooagy — aspaos; G = agra25 — aspa1s; H = c31004 — c42013;
I = azoazy — aygza23; J = cooc33 — c32C23.

for systems in Rg.
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(iv) The inverse R1_01 is

a66.

A

as56 €55

B C

a46 45 ass.

D E F

a36 €35 a45 Ca4

G H I J

a26 €25 ass €34 a44

K F M N o
—ae1 —Cs1 —as2 —C42 —a43
C L J O

—ae2 —C52 —as3 —C43  a33

K L M N O

—a63  —C53 Q54 C22

G H E J

—ae4 —Cs54 Q22

D E F

—ae5  Cl1

B C

a1l

A

where
A = a11a66 — ag1016;
E = co1045 — c54012;
I = azzay5 — asqa23;
M = agoa35 — as3asq;

for the system in Rj.

B = az1a56 — agsa12;
F = asass — aszazs;
J = coocyy — C42C24;

N = c32¢34 — c43¢23;

(v) Finally, the inverse Ry, is

a7y

A

a6T  C66

B C

asT  cs6 a6

D E F

aa7 a6 a6 Css

G H T J

asr  c36 Q46  C45 G55

K L M N 9]

azr  c26 a3 €35 Q45  Cad

P R S T U
—ari —C61 —ae2 —C52 —as3 —C43
A c F J O U

—ar2 —C62 —ae3 —C53 —as4 €33

P Q R S T U

—ars —C63 —ae4 —Cs4 ass

K L M N 0

—ar4  —Ce4  —A65  C22

G H T J

—ars  —Ces a2

D E F

—are  Cc11

B C

aiil

A

where

A = anarr — anarr;
E = co1056 — co5C12;
I = azzas6 — agsa23;
M = agoa46 — apaa24;
Q) = c51C26 — C62C15;
U = c33¢44 — C43C34.

for the system in R;s.

B = az1a67 — areai2;
F = assaes — ap2a26;
J = caa¢55 — Cr2C25;

N = c39¢45 — C54023;
R = asza3s — agzazs;
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—ai2
B
—Ci12 —ais
E D
—a23 —C13 —ai4
] H G
—C23 —az4 —Ci14 —ais
N M L K
—as34 —C24 —a2s —Ci5 —aie
0 J F c A )
cs2 a4z ca asy
N M L K
as a1 a4
1 H G
c1 a1
E D
a1
B

C = ci1655 — cs1€15;

G = ag1a36 — a63014;

K = as1a26 — ag2a15;

O = a33a44 — a43034.

D = azia46 — a64013;
H = c31¢35 — c53¢13;

L = cq1c95 — c52C14;

—ai2

B

—C12 —ai3

E D

—az3 —Ci13 —ai4

T H G

—C23 —az4 —Ci4 —ais

N S L K
—asq —C24 —azs —Ci5 —aie
T S R Q P
—C34 —ass —C25 —a2e —Ci6 —air
U 9] J F C A ’
@ass  ca2 as2 G5l @6l
T S R Q P
ez @42 cu1 a5t

N M L K

azxr a1 a4l

T H G

c21  as

E D

azi

C = c11¢66 — C61C16;

G = aq1047 — a74014;
K = as1a37 — arzays;
O = agszass — as3ass;

S = cq9c35 — C24C53;

D = az1as7 — arsa1s;
H = c31c46 — co4c13;
L = cq1036 — co3C14;

P = agra27 — araie;

T = ay3a45 — A54034;



4 Numerical examples

Example 1. Consider some numerical examples of R, and Rg, under RMM operation, and their

inverses.
) 3
3 4 5 -5 5 2
(i) Let Ay, = 7 8 -9 10 | and B, = 8 7 9 10
1 6 8 6 —4 -5
3 4

The multiplication of the minors of 5 and M, in R, are

9 3
7 10 Yol 8 10 )=
3 1
2% 34108 74
= TXx3+3x%x8 —2x10+10 x 4 = 45 20 ),
7Tx10+3 x 4 82
1 5
8 -9 Yo 7 9 )=
6 4
4xX5+-9x7 —43
—( 8x5+4+6x7 Ax9+-9x—4 y={( 82 72 ),
8% 9+ 6x —4 48
and
35 [-5 2] [3x-5+5x6 3x2+5x-5] [15 —19
1 8/°]6 —5| |[1x—5+8x6 1x2+8x—5| |43 —38]
Thus,
74
15 —43 —19
AjoB,=| 45 82 7220
43 48 —38
82

(ii) To solve for AZI, we follow the inverse operation of R, as presented in 3.3 (i), and obtain:

8 1 _5
19 16 19

-1 T L -3 5

Af = % 12 32 38
-1 1 3
19 19
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Example 2. Some text here?

(i) Let
2 1
o 1 3 2 1
4 -1 -1 4 =2 3 -1 1 4 =2
Ag = 1 2 -1 2 1 1 |and Bg= 1 1 1 2 -1 -1
2 —4 1 1 -2 0O 0 1
2 0 -1 1 0 -1
3 1
Then,
3 -3
16 17 1 —4 —-10
Ag o Bg = 4 2 0 -2 -1 -1
2 8 -2 —-16 -2
3 -2 3
2

(ii) To solve for Ay ! we follow the inverse operation of I%g in Subsection 3.3 (ii), and obtain,

3
5
1 1
g 0 3
1 1 4 1
§ 15 1 —1 6
A=\ -t 1 1 -2 1 -1
104 4 _1 1
6 15 15 3
1 1
3 2 0
2
5
(iii) To obtain the identity element, we have Ag o A5' = Iy
3
5
2 1 0 1
0 1 3 6 2
101 _4 1
4 -1 -1 4 =2 6 15 5 6
Ag=\| 1 2 -1 2 1 1 |o| -2 1 1 -2 1 -1
_ 1 4 1 1
2 4 1 1 2 SR R T
2 0 -1 1 1
5 2 0
3 2
5
1
1 1 0
1 11 00
= 0 0 0 0 0 0
00 11
0 1
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Example 3. Simple equation under RMM operation.

Find X, if X, A, = B,, where

—2 3
3 4 5 -5 5 2
Ag=\ 7 8 -9 10 | and By=\ 8 7 9 10 |/,
1 6 8 6 —4 —5
4
X, = A;'B,.
Then,
3
8 6 =5
e -8 -9 —10
1 —153
-1 4 3
-2

3 3
' 8 6 -5 5 5 2
Xy=—\ -7 - 9 -
v= g\ T 8 9 —10 ol 8 7 9 10 ),
-1 4 3 6 —4 -5
—2 4
71
. 70 33 —41
X, = — _
1=\ 3712 78 10
~13 72 17
78

5 Conclusion

This research work developed and examined a new multiplication method called the robust
multiplication method (RMM) for higher even-dimensional rhotrices and presented a number
of its properties. It also examined the concepts of minor rhotrices and their application in
hl-rhotrices. The recent articles [2, 3] on tertions and other algebraic objects are an eye-opener
to more properties of even-dimensional rhotrices. All even-dimensional rhotrices have an even
cardinality. That is, |R,| = 3(n? 4+ 2n) for all n € 2N, for example, a rhotrix of dimension 2
has a cardinality of 4, and this corresponds to the cardinality of the quaternions A- and V-tertions
(AV-tertions). However, note that these objects are different from the popular structure of the
quaternion group (();) of cardinality 8. The foregoing naturally prompts questions like: Do all
even-dimensional AV-tertions correspond to even-dimensional rhotrices? Do all odd-dimensional
358



AV-tertions correspond to heart-based (odd-dimensional) rhotrices? 1f the answers to these two
questions are in the affirmative, then AV-tertions are a generalization of both even- and odd-
dimensional rhotrices. At any rate, the quaternion AV-tertions is a meeting point between rhotrices
and tertions. Therefore, this is a call for representations of high-dimensional AV-tertions. We
project that the Robust Multiplication Method presented in this paper portends a wider
application of rhotrices in agriculture, exploration, theoretical chemistry and physics due to
its beautiful symmetries, and would be an alternative multiplication method for higher even-
dimensional AV-tertions.

Acknowledgements

Our sincere appreciation goes to the anonymous reviewers whose comments and suggestions have
helped, significantly, to improve the original version.

References

[1] Ajibade, A. O. (2003). The concept of rhotrix in mathematical enrichment. International
Journal of Mathematical Education in Science and Technology, 34(2), 175-179.

[2] Atanassov, K. T. (2023). On tertions and other algebraic objects. Notes on Number Theory
and Discrete Mathematics, 29(4), 861-880.

[3] Atanassov, K. T. (2024). On tertions and dual numbers. Notes on Number Theory and
Discrete Mathematics, 30(2), 443-452.

[4] Atanassov, K. T., & Shannon, A. G. (1998). Matrix-tertions and matrix-noitrets: Exercise
for mathematical enrichment. International Journal Mathematical Education in Science and
Technology, 29(6), 898-903.

[5] Ezugwu, E. A., Sani, B., & Junaidu, S. B. (2011). The concept of heart-oriented rhotrix
multiplication. Global Journal of Science Frontier, 11(2), 35-46.

[6] Isere, A. O. (2016). Natural rhotrix. Cogent Mathematics, 3(1), Article ID 1246074.

[7] Isere, A. O. (2017). A note on classical and non-classical rhotrix. Journal of the Mathematical
Association of Nigeria (Abacus), 44(2), 119-124.

[8] Isere, A. O. (2018). Even dimensional rhotrix. Notes on Number Theory and Discrete
Mathematics, 24(2), 125-133.

[9] Isere, A. O. (2019). Representation of higher even-dimensional rhotrix. Notes on Number
Theory and Discrete Mathematics, 25(1), 206-219.

[10] Isere, A. O.(2020). Diagonal function of natural rhotrix. Cogent Mathematics & Statistics,
7(1), Article ID 1788298.

359



[11] Isere A. O., & Adeniran, J. O. (2018). The concept of rhotrix quasigroups and rhotrix loops.
Journal of the Nigerian Mathematical Society, 37(3), 139-153.

[12] Mohammed, A. (2007). Enrichment exercises through extension to rhotrices. International
Journal of Mathematical Education in Science and Technology, 38(1), 131-136.

[13] Mohammed, A. (2009). A remark on the classifications of rhotrices as abstract structures.
International Journal of Physical Sciences, 4(9), 496—499.

[14] Mohammed, A. (2011). Theoretical Development and Applications of Rhotrices. Ph. D.
Thesis, Ahmadu Bello University, Zaria, Nigeria.

[15] Mohammed, A., & Balarabe, M. (2014). First review of articles on rhotrix theory since its
inception. Advances in Linear Algebra and Matrix Theory, 4, 216-224.

[16] Mohammed, A., Ezugwu, E. A., & Sani, B. (2011). On generalization and algorithmatization
of heart-based method for multiplication of rhotrices. International Journal of Computer
Information Systems, 2, 46—49.

[17] Sani, B. (2004). An alternative method for multiplication of rhotrices. International Journal
of Mathematical Education in Science and Technology, 35(5), 777-781.

[18] Sani, B. (2007). The row-column multiplication of high dimensional rhotrices. International
Journal of Mathematical Education in Science and Technology, 38(5), 657—-662.

[19] Sani, B. (2008). Conversion of a rhotrix to a coupled matrix. International Journal of
Mathematical Education in Science and Technology, 39(2), 244-249.

[20] Utoyo, T. O. (2023). A robust multiplication method for higher even dimensional rhotrices.
M. Sc. Dissertation, Federal University of Petroleum Resources, Effurun, Nigeria.

[21] Utoyo, T. O., Isere, A. O., & Ugbene, J. 1. (2023). A new multiplication approach
with applications in differentiation and integration of even-dimensional hl- rhotrices. AAU
Journal of Physical and Applied Sciences, 3(1), 55-67.

360



	Introduction
	Preliminaries
	Multiplication of hl-rhotrices
	Identity and inverse elements of hl-rhotrices

	Main results
	Multiplication of high hl-rhotrices
	Identity of hl-rhotrices under RMM operation
	Inverse of hl-rhotrices under RMM

	Numerical examples
	Conclusion

