Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2025, Volume 31, Number 2, 340–360 DOI: 10.7546/nntdm.2025.31.2.340-360

On robust multiplication method for higher even-dimensional rhotrices

A. O. Isere^{1°} and **T. O. Utoyo**^{2°}

¹ Department of Mathematics, Ambrose Alli University Ekpoma 310001, Nigeria e-mails: isereao@aauekpoma.edu.ng,isere.abed@gmail.com

² Department of Mathematics, Federal University of Petroleum Resources Effurun, Nigeria e-mail: utoyotrust@gmail.com

Received: 17 October 2024 Accepted: 2 June 2025 Revised: 9 May 2025 Online First: 9 June 2025

Abstract: Rhotrices (heart-oriented) are often multiplied either by heart-based or row-column multiplication method. The element-wise multiplication method for higher even-dimensional rhotrices has recently been introduced in [9]. However, this type of multiplication method, though simple, is less robust. Hence, we present a multiplication method called "Robust Multiplication Method" (RMM) for higher even-dimensional rhotrices (hl-rhotrices), and a number of rediscovered properties of hl-rhotrices. Analysis and examples of RMM for some hl-rhotrices are presented for demonstration purposes.

Keywords: Rhotrices, High hl-rhotrices, Minors, Robust multiplication method. **2020 Mathematics Subject Classification:** 15B99, 08-02.

1 Introduction

In recent years, rhotrices have found applications in several aspects of real-life problems [7]. Rhotrices, as paradigms of matrices, are concerned with representing arrays of numbers in mathematical rhomboid form, introduced by Ajibade in 2003 [1], as an extension of ideas on

Copyright © 2025 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

matrix-tertions and matrix-noitrets proposed by Atanassov and Shannon in 1998 [4], and as represented in [2,3].

A rhotrix has rows and columns. The row of a rhotrix is an array of entries running from the top-left to the right bottom while its column is an array of entries running from the top-right to the left bottom of the rhotrix whenever it is rotated anticlockwise through angle 45 degrees, see [19].

Thus, a rhotrix R of dimension 3 is a rhomboidal array defined in [1] as:

$$\left\langle \begin{array}{cc} a \\ b & c & d \\ & e \end{array} \right\rangle.$$

The vertical axis is the set of values $\{a, c, e\}$ and the horizontal axis is the set of values $\{b, c, d\}$ of the rhotrix R above. The entry 'c' at the center of R is called the heart of R denoted as h(R). It is the intersection of the major vertical and the major horizontal axes, and the above rhotrix is mathematically written as:

$$\left\langle \begin{array}{cc} a \\ b & h(R) \\ e \end{array} \right\rangle.$$

The vertex of the rhotrix R is an entry at any of the four corners of the rhotrix, that is, entries a, b, e and d in the rhotrix R above. Two rhotrices can be added up only if they have the same dimension.

The addition and multiplication of two rhotrices as presented in [1] are given below. Given two rhotrices R and S,

$$R+S = \left\langle \begin{array}{cc} a \\ b & h(R) \\ e \end{array} \right\rangle + \left\langle \begin{array}{cc} f \\ g & h(S) \\ k \end{array} \right\rangle = \left\langle \begin{array}{cc} a+f \\ b+g & h(R)+h(S) \\ e+k \end{array} \right\rangle + \left\langle \begin{array}{cc} a \\ b+g \\ e+k \end{array} \right\rangle.$$

Multiplication (\circ) operation of two rhotrices R and S is defined as:

$$R \circ S = \left\langle \begin{array}{cc} a \\ b & h(R) \\ e \end{array} \right\rangle \circ \left\langle \begin{array}{cc} f \\ g & h(S) \\ k \end{array} \right\rangle = \left\langle \begin{array}{cc} bh(S) + gh(R) \\ bh(S) + gh(R) \\ eh(S) + kh(R) \end{array} \right\rangle dh(S) + jh(R) \left\rangle.$$

In the concluding section of [1], the author was challenged by further development regarding how a rhotrix can be converted to a matrix and vice versa for its mathematical enrichment. In quest to solving this challenge, Sani [17] in 2004 proposed the first alternative rhotrix multiplication method called the row-column multiplication method. This procedure has given room for more literatures in rhotrix algebra [15]. Thus, the row-column multiplication method presented in [17, 18] is defined as:

$$R \circ S = \left\langle \begin{array}{cc} a \\ b & h(R) \\ e \end{array} \right\rangle \circ \left\langle \begin{array}{cc} f \\ g & h(S) \\ k \end{array} \right\rangle = \left\langle \begin{array}{cc} af + dg \\ bf + eg & h(R)h(S) \\ bj + ek \end{array} \right\rangle \cdot \left\langle \begin{array}{cc} af + dg \\ bf + eg & h(R)h(S) \\ bj + ek \end{array} \right\rangle$$

In many aspects, rhotrices of odd dimensions (heart-oriented) are well-known in literature but even-dimensional rhotrices (heartless or hl-rhotrices) are still a novelty. Isere in 2017 classified heart-oriented rhotrices as classical rhotrices and even-dimensional rhotrices (hl-rhotrices) as non-classical rhotrices [7]. For detailed studies on classical rhotrices, see [5, 6, 10–16].

In this work, we introduce the robust multiplication method for higher even-dimensional rhotrices and derive their identity and inverse operations. Section 2 discusses the preliminary background, while Section 3 presents the robust multiplication method for high hl-rhotrices and their properties. In Section 4, some numerical examples are presented for the purpose of illustration. Finally, we give the concluding remarks in Section 5.

Remark 1.1. By high hl-rhotrices we mean even-dimensional rhotrices of high order, higher than dimension 2. So, we may sometime use higher even-dimensional rhotrices or high hl-rhotrices interchangeably. Even-dimensional rhotrices and hl-rhotrices may also be used interchangeably.

2 Preliminaries

An introduction to even-dimensional rhotrices was first presented in [8] where the author showed that it was still mathematically tractable to extract the heart of a rhotrix and still obtain an algebraic rhotrix. Moreover, doing so enables one to obtain even-dimensional rhotrices (see [8,9,20]). Interestingly, the objects called Quaternions by A- and V-tertions in [2,3] are even-dimensional rhotrices provided their sides are geometrically equal.

Definition 2.1 ([8]). *Even-dimensional rhotrix is a rhotrix with even cardinality and a special type of rhotrix where the heart has been extracted. An example is presented below.*

$$A = \left\langle \begin{array}{cc} & a \\ b & & d \\ & e \end{array} \right\rangle,$$

where a, b, d and $e \in \Re$.

Definition 2.2. *The minors of a higher even-dimensional rhotrix are the matrices and rhotrices of dimension two that can be gotten from the higher rhotrix.*

Definition 2.3 ([21]). Robust multiplication method (RMM) for higher even-dimensional rhotrices, is a rhotrix multiplication method that splits the high hl-rhotrix into its minors of rhotrices and matrices of dimension two, and multiplies the corresponding minors using the row-column multiplication operation for matrices and rhotrices, and then inserts the product entries into the high hl-rhotrix.

For example, below are minors of R_4 .

$$\left\langle \begin{array}{cc} a_{11} \\ a_{31} \\ a_{33} \end{array} \right\rangle, \left\langle \begin{array}{cc} c_{11} \\ c_{21} \\ c_{22} \end{array} \right\rangle, \text{ and } \left[\begin{array}{cc} a_{21} \\ a_{32} \\ a_{23} \end{array} \right],$$

as obtained from

$$R_4 = \left(\begin{array}{cccc} & a_{11} & & \\ & a_{21} & c_{11} & a_{12} \\ & a_{31} & c_{21} & & c_{12} & a_{13} \\ & & a_{32} & c_{22} & a_{23} \\ & & & & a_{33} \end{array} \right).$$

Definition 2.4. The index ρ of an hl-rhotrix A is the number of minor rhotrices of dimension 2 (R_2) that can be obtained from A. This index is always a whole number; cf. [6].

2.1 Multiplication of hl-rhotrices

The element-wise multiplication of higher hl-rhotrices is presented in [9]. This has been the only multiplication method for high hl-rhotrices in literature up till now. Each entry is obtained by multiplying the corresponding elements.

Consider the set of any two 4-dimensional rhotrices,

$$R_4 = \left(\begin{array}{cccc} & a_{11} & & \\ & a_{21} & c_{11} & a_{12} \\ & a_{31} & c_{21} & & c_{12} & a_{13} \\ & & a_{32} & c_{22} & a_{23} \\ & & & & a_{33} \end{array} \right) \text{ and } S_4 = \left(\begin{array}{cccc} & b_{11} & & \\ & b_{21} & d_{11} & b_{12} \\ & b_{31} & d_{21} & & d_{12} & b_{13} \\ & & b_{32} & d_{22} & b_{23} \\ & & & & b_{33} \end{array} \right).$$

By the element-wise multiplication method, we have

$$R_{4} \circ S_{4} = \left(\begin{array}{ccccc} a_{11} & & & & \\ a_{21} & c_{11} & a_{12} & & \\ a_{31} & c_{21} & & c_{12} & a_{13} \\ & & a_{32} & c_{22} & a_{23} & \\ & & & a_{33} & \end{array}\right) \circ \left(\begin{array}{ccccc} b_{11} & & & \\ b_{21} & d_{11} & b_{12} & \\ b_{31} & d_{21} & & d_{12} & b_{13} \\ & & b_{32} & d_{22} & b_{23} & \\ & & & b_{33} & \end{array}\right)$$
$$= \left(\begin{array}{cccccc} a_{11}b_{11} & & & \\ a_{21}b_{21} & c_{11}d_{11} & a_{12}b_{12} & \\ a_{31}b_{31} & c_{21}d_{21} & & c_{12}d_{12} & a_{13}b_{13} \\ & & & & a_{32}b_{32} & c_{22}d_{22} & a_{23}b_{23} & \\ & & & & & a_{33}b_{33} & \end{array}\right).$$

The multiplication above is very simple and beautiful but less robust. Hence, we present a more robust multiplication method for high hl-rhotrices in Section 3.

2.2 Identity and inverse elements of hl-rhotrices

For a 2-dimensional hl-rhotrix (R_2) , the identity and inverse elements, as presented in [8], are given below:

(i) Consider an hl-rhotrix R of n-dimensional, if I is also an hl-rhotrix of n-dimensional such that: $R \circ I = R = I \circ R$. Then I is an identity element.

$$I = \left\langle \begin{array}{cc} 1 \\ 0 \\ 1 \end{array} \right\rangle.$$

(ii) The concept of identity element makes the inverse of a rhotrix meaningful.
If for an hl-rhotrix R we can find another hl-rhotrix S such that R ∘ S = S ∘ R = I, then S will be the inverse of R. Consider R₂ for example, let

$$R = \left\langle \begin{array}{cc} a \\ b \\ e \end{array} \right\rangle.$$
$$S = \frac{1}{ae - bd} \left\langle \begin{array}{cc} -d \\ -d \\ a \end{array} \right\rangle.$$

This implies that

Then,

$$R^{-1} = \frac{1}{ae - bd} \left\langle \begin{array}{cc} e \\ -d \\ a \end{array} \right\rangle.$$

Remark 2.1. For an hl-rhotrix R_2 to be invertible or non-singular, $ae \neq bd$ must hold.

3 Main results

In this section, we develop an alternative multiplication method for higher even-dimensional rhotrices (hl-rhotrices), called the Robust Multiplication Method (RMM). For the purpose of illustration, we start with 4-dimensional rhotrices up to 12-dimensional rhotrices, and these are presented below.

3.1 Multiplication of high hl-rhotrices

(i) The multiplication of 4-dimensional rhotrices (R_4) is defined as:

$$R_{4} \times S_{4} = \begin{pmatrix} a_{11} & & & \\ a_{21} & c_{11} & a_{12} & & \\ a_{31} & c_{21} & & c_{12} & a_{13} \\ & a_{32} & c_{22} & a_{23} & & \\ & & a_{33} & & & \\ & & & & & \\ & & & & & \\ & &$$

Solution: First, we obtain the minors of R_4 and S_4 as:

$$\begin{pmatrix} a_{11} \\ a_{31} \\ a_{33} \end{pmatrix}, \begin{pmatrix} b_{11} \\ b_{31} \\ b_{33} \end{pmatrix}, \begin{pmatrix} c_{11} \\ c_{21} \\ c_{22} \end{pmatrix}, \begin{pmatrix} d_{11} \\ d_{21} \\ d_{22} \end{pmatrix}, \begin{bmatrix} a_{21} \\ a_{12} \\ a_{32} \\ a_{23} \end{bmatrix}, \begin{bmatrix} b_{21} \\ b_{12} \\ b_{32} \\ b_{23} \end{bmatrix}.$$

Then, the row-column multiplications of the systems are:

$$\left\langle \begin{array}{ccc} a_{11} & a_{13} \\ a_{31} & a_{13} \\ c_{21} & a_{13} \\ c_{22} \end{array} \right\rangle \circ \left\langle \begin{array}{ccc} b_{11} & b_{13} \\ b_{33} \end{array} \right\rangle = \left\langle \begin{array}{ccc} a_{31}b_{11} + a_{33}b_{31} \\ a_{33}b_{33} + a_{31}b_{13} \end{array} \right\rangle = \left\langle \begin{array}{ccc} a_{31}b_{11} + a_{33}b_{31} \\ a_{33}b_{33} + a_{31}b_{13} \end{array} \right\rangle = \left\langle \begin{array}{ccc} c_{11} & c_{12}d_{21} \\ c_{22} & c_{22} \end{array} \right\rangle \circ \left\langle \begin{array}{ccc} d_{21} & d_{12} \\ d_{22} \end{array} \right\rangle = \left\langle \begin{array}{ccc} c_{21}d_{11} + c_{22}d_{21} \\ c_{22}d_{22} + c_{21}d_{12} \end{array} \right\rangle = \left\langle \begin{array}{ccc} c_{21}d_{11} + c_{22}d_{21} \\ c_{22}d_{22} + c_{21}d_{12} \end{array} \right\rangle = \left[\begin{array}{ccc} a_{21}b_{21} + a_{12}b_{32} & a_{12}b_{23} + a_{21}b_{12} \\ a_{32}b_{21} + a_{23}b_{32} & a_{23}b_{23} + a_{32}b_{12} \end{array} \right].$$

with the following equations:

 $a_{11}b_{11} + a_{13}b_{31} = \alpha_{11}; \quad a_{31}b_{11} + a_{33}b_{31} = \alpha_{31}; \quad a_{33}b_{33} + a_{31}b_{13} = \alpha_{33}; \quad a_{13}b_{33} + a_{11}b_{13} = \alpha_{13};$ $c_{11}d_{11}+c_{12}d_{21}=\beta_{11};\quad c_{21}d_{11}+c_{22}d_{21}=\beta_{21};\quad c_{22}d_{22}+c_{21}d_{12}=\beta_{22};\quad c_{12}d_{22}+c_{11}d_{12}=\beta_{12};$ $a_{21}b_{21} + a_{12}b_{32} = \alpha_{21}; \quad a_{32}b_{21} + a_{23}b_{32} = \alpha_{32}; \quad a_{23}b_{23} + a_{32}b_{12} = \alpha_{23}; \quad a_{12}b_{23} + a_{21}b_{12} = \alpha_{12}.$

Then, the RMM of R_4 is:

$$R_4 \times S_4 = \begin{pmatrix} a_{11}b_{11} + a_{13}b_{31} \\ a_{21}b_{12} + a_{12}b_{32} & c_{11}d_{11} + c_{12}d_{21} & a_{12}b_{23} + a_{21}b_{12} \\ a_{31}b_{11} + a_{33}b_{31} & c_{21}d_{11} + c_{22}d_{21} & c_{12}d_{22} + c_{11}d_{12} & a_{13}b_{33} + a_{11}b_{13} \\ a_{32}b_{21} + a_{23}b_{32} & c_{22}d_{22} + c_{21}d_{12} & a_{23}b_{23} + a_{32}b_{12} \\ & a_{33}b_{33} + a_{31}b_{13} \end{pmatrix}$$

.

(ii) Similarly, the multiplication of 6-dimensional Rhotrices (R_6) is defined as:

where

$\alpha_{11} = a_{11}b_{11} + a_{14}b_{41};$	$\alpha_{12} = a_{12}b_{34} + a_{21}b_{12};$	$\alpha_{13} = a_{13}b_{24} + a_{31}b_{13};$	$\alpha_{14} = a_{14}b_{44} + a_{11}b_{14};$
$\beta_{11} = c_{11}d_{11} + c_{13}d_{31};$	$\beta_{12} = c_{12}d_{23} + c_{21}d_{12};$	$\beta_{13} = c_{13}d_{33} + c_{11}d_{13};$	$\alpha_{21} = a_{21}b_{21} + a_{12}b_{43};$
$\alpha_{22} = a_{22}b_{22} + a_{23}b_{32};$	$\alpha_{23} = a_{23}b_{33} + a_{22}b_{23};$	$\alpha_{24} = a_{24}b_{24} + a_{42}b_{13};$	$\beta_{21} = c_{21}d_{21} + c_{12}d_{32};$
$\beta_{23} = c_{23}d_{23} + c_{32}d_{12};$	$\alpha_{31} = a_{31}b_{31} + a_{13}b_{42};$	$\alpha_{32} = a_{32}b_{22} + a_{33}b_{32};$	$\alpha_{33} = a_{33}b_{33} + a_{32}b_{23};$
$\alpha_{34} = a_{34}b_{34} + a_{43}b_{12};$	$\beta_{31} = c_{31}d_{11} + c_{33}d_{31};$	$\beta_{32} = c_{32}d_{21} + c_{23}d_{32};$	$\beta_{33} = c_{33}d_{33} + c_{31}d_{31};$
$\alpha_{41} = a_{41}b_{11} + a_{44}b_{41};$	$\alpha_{42} = a_{42}b_{31} + a_{24}b_{42};$	$\alpha_{43} = a_{43}b_{21} + a_{34}b_{43};$	$\alpha_{44} = a_{44}b_{44} + a_{41}b_{14}.$

(iii) Then, the multiplication of 8-dimensional rhotrices (R_8) is also defined as:

$$R_8 \times S_8 =$$

1				a_{11}										b_{11}				
			a_{21}	c_{11}	a_{12}								b_{21}	d_{11}	b_{12}			
		a_{31}	c_{21}	a_{22}	c_{12}	a_{13}						b_{31}	d_{21}	b_{22}	d_{12}	b_{13}		
	a_{41}	c_{31}	a_{32}	c_{22}	a_{23}	c_{13}	a_{14}				b_{41}	d_{31}	b_{32}	d_{22}	b_{23}	d_{13}	b_{14}	
a_{51}	c_{41}	a_{42}	c_{32}		c_{23}	a_{24}	c_{14}	a_{15}	$ \times $	b_{51}	d_{41}	b_{42}	d_{32}		d_{23}	b_{24}	d_{14}	b_{15} .
	a_{52}	c_{42}	a_{43}	c_{33}	a_{34}	c_{24}	a_{25}				b_{52}	d_{42}	b_{43}	d_{33}	b_{34}	d_{24}	b_{25}	
		a_{53}	c_{43}	a_{44}	c_{34}	a_{35}						b_{53}	d_{43}	b_{44}	d_{34}	b_{35}		
			a_{54}	c_{44}	a_{45}								b_{54}	d_{44}	b_{45}			
				a_{55}										b_{55}				

Then, the RMM of R_8 is:

where

$\alpha_{11} = a_{11}b_{11} + a_{15}b_{51};$	$\alpha_{12} = a_{12}b_{45} + a_{21}b_{12};$	$\alpha_{13} = a_{13}b_{35} + a_{31}b_{13};$	$\alpha_{14} = a_{14}b_{25} + a_{41}b_{14};$
$\alpha_{15} = a_{15}b_{55} + a_{11}b_{15};$	$\beta_{11} = c_{11}d_{11} + c_{14}d_{41};$	$\beta_{12} = c_{12}d_{34} + c_{21}d_{12};$	$\beta_{13} = c_{13}d_{24} + c_{31}d_{13};$
$\beta_{14} = c_{14}d_{44} + c_{11}d_{14};$	$\alpha_{21} = a_{21}b_{21} + a_{12}b_{54};$	$\alpha_{22} = a_{22}b_{22} + a_{24}b_{42};$	$\alpha_{23} = a_{23}b_{34} + a_{32}b_{23};$
$\alpha_{24} = a_{24}b_{44} + a_{22}b_{24};$	$\alpha_{25} = a_{25}b_{25} + a_{52}b_{14};$	$\beta_{21} = c_{21}d_{21} + c_{12}d_{43};$	$\beta_{22} = c_{22}d_{22} + c_{23}d_{32};$
$\beta_{23} = c_{23}d_{33} + c_{22}d_{23};$	$\beta_{24} = c_{24}d_{24} + c_{42}d_{13};$	$\alpha_{31} = a_{31}b_{31} + a_{13}b_{53};$	$\alpha_{32} = a_{32}b_{32} + a_{23}b_{43};$
$\alpha_{34} = a_{34}b_{34} + a_{43}b_{23};$	$\alpha_{35} = a_{35}b_{35} + a_{53}b_{13};$	$\beta_{31} = c_{31}d_{31} + c_{13}d_{42};$	$\beta_{32} = c_{32}d_{22} + c_{33}d_{32};$
$\beta_{33} = c_{33}d_{33} + c_{32}d_{23};$	$\beta_{34} = c_{34}d_{34} + c_{43}d_{12};$	$\alpha_{41} = a_{41}b_{41} + a_{14}b_{52};$	$\alpha_{42} = a_{42}b_{22} + a_{44}b_{42};$
$\alpha_{43} = a_{43}b_{32} + a_{34}b_{43};$	$\alpha_{44} = a_{44}b_{44} + a_{42}b_{24};$	$\alpha_{45} = a_{45}b_{45} + a_{54}b_{12};$	$\beta_{41} = c_{41}d_{11} + c_{44}d_{41};$
$\beta_{42} = c_{42}d_{31} + c_{24}d_{42};$	$\beta_{43} = c_{43}d_{21} + c_{34}d_{43};$	$\beta_{44} = c_{44}d_{44} + c_{41}d_{14};$	$\alpha_{51} = a_{51}b_{11} + a_{55}b_{51};$
$\alpha_{52} = a_{52}b_{41} + a_{25}b_{52};$	$\alpha_{53} = a_{53}b_{31} + a_{35}b_{53};$	$\alpha_{54} = a_{54}b_{21} + a_{45}b_{54};$	$\alpha_{55} = a_{55}b_{55} + a_{51}b_{15}.$

(iv) Multiplication of 10-dimensional rhotrices (R_{10}) is also defined as:

Then, the RMM of R_{10} is:

where

$\alpha_{11} = a_{11}b_{11} + a_{16}b_{61},$	$\alpha_{12} = a_{21}b_{12} + a_{12}b_{56},$	$\alpha_{13} = a_{31}b_{13} + a_{13}b_{46},$	$\alpha_{14} = a_{41}b_{14} + a_{14}b_{36},$
$\alpha_{15} = a_{51}b_{15} + a_{15}b_{26},$	$\alpha_{16} = a_{11}b_{16} + a_{16}b_{66},$	$\beta_{11} = c_{11}d_{11} + c_{15}d_{51},$	$\beta_{12} = c_{21}d_{12} + c_{12}d_{45},$
$\beta_{13} = c_{31}d_{13} + c_{13}d_{35},$	$\beta_{14} = c_{41}d_{14} + c_{14}d_{25},$	$\beta_{15} = c_{11}d_{15} + c_{15}d_{55},$	$\alpha_{17} = a_{21}b_{21} + a_{12}b_{65},$
$\alpha_{18} = a_{22}b_{22} + a_{25}b_{52},$	$\alpha_{21} = a_{23}b_{45} + a_{32}b_{23},$	$\alpha_{22} = a_{42}b_{24} + a_{24}b_{35},$	$\alpha_{23} = a_{22}b_{25} + a_{25}b_{55},$
$\alpha_{25} = a_{62}b_{15} + a_{26}b_{26},$	$\beta_{21} = c_{21}d_{21} + c_{12}d_{54},$	$\beta_{22} = c_{22}d_{22} + c_{24}d_{42},$	$\beta_{23} = c_{32}d_{23} + c_{23}d_{34},$

$\beta_{24} = c_{22}d_{24} + c_{24}d_{44},$	$\beta_{25} = c_{52}d_{14} + c_{25}d_{25},$	$\alpha_{31} = a_{31}b_{31} + a_{13}b_{64},$	$\alpha_{32} = a_{32}b_{32} + a_{23}b_{54},$
$\alpha_{33} = a_{33}b_{33} + a_{34}b_{43},$	$\alpha_{34} = a_{33}b_{34} + a_{34}b_{44},$	$\alpha_{35} = a_{53}b_{24} + a_{35}b_{35},$	$\alpha_{36} = a_{63}b_{14} + a_{36}b_{36},$
$\beta_{31} = c_{31}d_{31} + c_{13}d_{53},$	$\beta_{32} = c_{32}d_{32} + c_{23}d_{43},$	$\beta_{34} = c_{43}d_{23} + c_{34}d_{34},$	$\beta_{35} = c_{53}d_{13} + c_{35}d_{35},$
$\alpha_{41} = a_{41}b_{41} + a_{14}b_{63},$	$\alpha_{42} = a_{42}b_{42} + a_{24}b_{53},$	$\alpha_{43} = a_{43}b_{33} + a_{44}b_{43},$	$\alpha_{44} = a_{43}b_{34} + a_{44}b_{44},$
$\alpha_{45} = a_{45}b_{45} + a_{54}b_{23},$	$\alpha_{46} = a_{64}b_{13} + a_{46}b_{46},$	$\beta_{41} = c_{41}d_{41} + c_{14}d_{52},$	$\beta_{42} = c_{42}d_{22} + c_{44}d_{42},$
$\beta_{43} = c_{43}d_{32} + c_{34}d_{43},$	$\beta_{44} = c_{42}d_{24} + c_{44}d_{44},$	$\beta_{45} = c_{54}d_{12} + c_{45}d_{45},$	$\alpha_{51} = a_{51}b_{51} + a_{15}b_{62},$
$\alpha_{52} = a_{52}b_{22} + a_{55}b_{52},$	$\alpha_{53} = a_{53}b_{42} + a_{35}b_{53},$	$\alpha_{54} = a_{54}b_{32} + a_{45}b_{54},$	$\alpha_{55} = a_{52}b_{25} + a_{55}b_{55},$
$\alpha_{56} = a_{65}b_{12} + a_{56}b_{56},$	$\beta_{51} = c_{51}d_{11} + c_{55}d_{51},$	$\beta_{52} = c_{52}d_{41} + c_{25}d_{52},$	$\beta_{53} = c_{53}d_{31} + c_{35}d_{53},$
$\beta_{54} = c_{54}d_{21} + c_{45}d_{54},$	$\beta_{55} = c_{51}d_{15} + c_{55}d_{55},$	$\alpha_{61} = a_{61}b_{11} + a_{66}b_{61},$	$\alpha_{62} = a_{62}b_{51} + a_{26}b_{62},$
$\alpha_{63} = a_{63}b_{41} + a_{36}b_{63},$	$\alpha_{64} = a_{64}b_{31} + a_{46}b_{64},$	$\alpha_{65} = a_{65}b_{21} + a_{56}b_{65},$	$\alpha_{66} = a_{61}b_{16} + a_{66}b_{66}.$

(v) Finally, the multiplication of 12-dimensional rhotrices (R_{12}) is similarly defined as:

$R_{12} \times S_{12} =$	<i>a</i> ₇₁	a ₆₁ c ₆₁ a ₇₂	a_{51} c_{51} a_{62} c_{62} a_{73}	$egin{array}{c} a_{41} \\ c_{41} \\ a_{52} \\ c_{52} \\ a_{63} \\ c_{63} \\ a_{74} \end{array}$	a_{31} c_{31} a_{42} c_{42} a_{53} c_{53} a_{64} c_{64} a_{75}	a_{21} c_{21} a_{32} c_{32} a_{43} c_{43} a_{54} c_{54} a_{65} c_{65} a_{76}	$\begin{array}{c} a_{11} \\ c_{11} \\ a_{22} \\ c_{22} \\ a_{33} \\ c_{33} \\ c_{33} \\ c_{44} \\ a_{55} \\ c_{55} \\ a_{66} \\ c_{66} \\ a_{77} \end{array}$	a_{12} c_{12} a_{23} c_{23} a_{34} c_{34} a_{45} c_{45} a_{56} c_{56} a_{67}	a_{13} c_{13} a_{24} c_{24} a_{35} c_{35} a_{46} c_{46} a_{57}	a_{14} c_{14} a_{25} c_{25} a_{36} c_{36} a_{47}	a_{15} c_{15} a_{26} c_{26} a_{37}	a_{16} c_{16} a_{27}	<i>a</i> ₁₇	
×	b ₇₁	$b_{61} \\ d_{61} \\ b_{72}$	$b_{51} \\ d_{51} \\ b_{62} \\ d_{62} \\ b_{73}$	$egin{array}{c} b_{41} \ d_{41} \ b_{52} \ d_{52} \ b_{63} \ d_{63} \ b_{74} \end{array}$	$b_{31} \\ d_{31} \\ b_{42} \\ d_{42} \\ b_{53} \\ d_{53} \\ b_{64} \\ d_{64} \\ b_{75}$	$b_{21} \\ d_{21} \\ b_{32} \\ d_{32} \\ b_{43} \\ d_{43} \\ b_{54} \\ d_{54} \\ d_{54} \\ b_{65} \\ d_{65} \\ b_{76}$	$\begin{array}{c} b_{11} \\ d_{11} \\ b_{22} \\ d_{22} \\ b_{33} \\ d_{33} \\ d_{44} \\ b_{55} \\ d_{55} \\ b_{66} \\ d_{66} \\ b_{77} \end{array}$	$b_{12} \\ d_{12} \\ b_{23} \\ d_{23} \\ b_{34} \\ d_{34} \\ b_{45} \\ d_{45} \\ b_{56} \\ d_{56} \\ b_{67}$	$b_{13} \\ d_{13} \\ b_{24} \\ d_{24} \\ b_{35} \\ d_{35} \\ b_{46} \\ d_{46} \\ b_{57}$	$b_{14} \\ d_{14} \\ b_{25} \\ d_{25} \\ b_{36} \\ d_{36} \\ b_{47}$	$b_{15} \\ d_{15} \\ b_{26} \\ d_{26} \\ b_{37}$	$b_{16} \\ d_{16} \\ b_{27}$	b ₁₇	

Then, the RMM of R_{12} is:

where

$\alpha_{11} = a_{11}b_{11} + a_{17}b_{71},$	$\alpha_{12} = a_{21}b_{12} + a_{12}b_{67},$	$\alpha_{13} = a_{31}b_{13} + a_{13}b_{57},$	$\alpha_{14} = a_{41}b_{14} + a_{14}b_{47},$
$\alpha_{15} = a_{51}b_{15} + a_{15}b_{37},$	$\alpha_{16} = a_{61}b_{16} + a_{16}d_{27},$	$\alpha_{17} = a_{11}b_{17} + a_{17}b_{77},$	$\beta_{11} = c_{11}d_{11} + c_{16}d_{61},$
$\beta_{12} = c_{21}d_{12} + c_{12}d_{56},$	$\beta_{13} = c_{31}d_{13} + c_{13}d_{46},$	$\beta_{14} = c_{41}d_{14} + c_{14}d_{36},$	$\beta_{15} = c_{51}d_{15} + c_{15}d_{26},$
$\beta_{16} = c_{11}d_{16} + c_{16}d_{66},$	$\alpha_{21} = a_{21}b_{21} + a_{12}b_{76},$	$\alpha_{22} = a_{22}b_{22} + a_{26}b_{62},$	$\alpha_{23} = a_{32}b_{23} + a_{23}b_{56},$
$\alpha_{24} = a_{42}b_{24} + a_{24}b_{46},$	$\alpha_{25} = a_{52}b_{25} + a_{25}b_{36},$	$\alpha_{26} = a_{22}d_{16} + a_{26}d_{66},$	$\alpha_{27} = a_{72}b_{16} + a_{27}b_{27},$
$\beta_{21} = c_{21}d_{21} + c_{12}d_{65},$	$\beta_{22} = c_{22}d_{22} + c_{25}d_{52},$	$\beta_{23} = c_{32}d_{23} + c_{23}d_{45},$	$\beta_{24} = c_{42}d_{24} + c_{24}d_{35},$
$\beta_{25} = c_{22}d_{25} + c_{25}d_{55},$	$\beta_{26} = c_{62}d_{15} + c_{26}d_{26},$	$\alpha_{31} = a_{31}b_{31} + a_{13}b_{75},$	$\alpha_{32} = a_{32}b_{32} + a_{23}b_{65},$
$\alpha_{33} = a_{33}b_{33} + c_{35}b_{53},$	$\alpha_{34} = a_{43}b_{34} + a_{34}b_{45},$	$\alpha_{35} = a_{33}b_{35} + a_{35}b_{55},$	$\alpha_{36} = a_{63}b_{25} + a_{36}b_{36},$
$\alpha_{37} = a_{73}b_{15} + a_{37}b_{37},$	$\beta_{31} = c_{31}d_{31} + c_{13}d_{64},$	$\beta_{32} = c_{32}d_{32} + c_{23}d_{54},$	$\beta_{33} = c_{33}d_{33} + c_{34}d_{43},$
$\beta_{34} = c_{33}d_{34} + c_{34}d_{44},$	$\beta_{35} = c_{53}d_{24} + c_{35}d_{35},$	$\beta_{36} = c_{63}d_{14} + c_{36}d_{36},$	$\alpha_{41} = a_{41}b_{41} + a_{14}b_{74},$
$\alpha_{42} = a_{42}b_{42} + a_{24}b_{64},$	$\alpha_{43} = a_{43}b_{43} + a_{34}b_{54},$	$\alpha_{45} = a_{54}b_{34} + a_{45}b_{45},$	$\alpha_{46} = a_{64}b_{24} + a_{46}b_{46},$
$\alpha_{47} = a_{74}b_{14} + a_{47}b_{47},$	$\beta_{41} = c_{41}d_{41} + c_{14}d_{63},$	$\beta_{42} = c_{42}d_{42} + c_{24}d_{53},$	$\beta_{43} = c_{43}d_{33} + c_{44}d_{43},$
$\beta_{44} = c_{43}d_{34} + c_{44}d_{44},$	$\beta_{45} = c_{54}d_{23} + c_{45}d_{45},$	$\beta_{46} = c_{64}d_{13} + c_{46}d_{46},$	$\alpha_{51} = a_{51}b_{51} + a_{15}b_{73},$
$\alpha_{52} = a_{52}b_{52} + a_{25}b_{63},$	$\alpha_{53} = a_{53}b_{33} + a_{55}b_{53},$	$\alpha_{54} = a_{54}b_{43} + a_{45}b_{54},$	$\alpha_{55} = a_{53}b_{35} + a_{55}b_{55},$
$\alpha_{56} = a_{65}b_{23} + a_{56}b_{56},$	$\alpha_{57} = a_{75}b_{13} + a_{57}b_{57},$	$\beta_{51} = c_{51}d_{51} + c_{15}d_{62},$	$\beta_{52} = c_{52}d_{22} + c_{55}d_{52},$
$\beta_{53} = c_{53}d_{42} + c_{35}d_{53},$	$\beta_{54} = c_{54}d_{32} + c_{45}d_{54},$	$\beta_{55} = c_{55}d_{55} + c_{52}d_{25},$	$\beta_{56} = c_{65}d_{12} + c_{56}d_{56},$
$\alpha_{61} = a_{61}b_{11} + a_{66}b_{61},$	$\alpha_{62} = a_{62}b_{22} + a_{66}b_{62},$	$\alpha_{63} = a_{63}b_{52} + a_{36}b_{63},$	$\alpha_{64} = c_{64}d_{31} + c_{46}d_{64},$
$\alpha_{65} = a_{65}b_{32} + a_{56}b_{65},$	$\alpha_{66} = a_{62}b_{26} + a_{66}b_{66},$	$\alpha_{67} = a_{76}b_{12} + a_{67}b_{67},$	$\beta_{61} = c_{61}d_{11} + c_{66}d_{61},$
$\beta_{62} = c_{62}d_{51} + c_{26}d_{62},$	$\beta_{63} = c_{63}d_{41} + c_{36}d_{63},$	$\beta_{64} = c_{64}d_{31} + c_{46}d_{64},$	$\beta_{65} = c_{65}d_{21} + c_{56}d_{65},$
$\beta_{66} = c_{61}d_{16} + c_{66}d_{66},$	$\alpha_{71} = a_{71}b_{11} + a_{77}b_{71},$	$\alpha_{72} = a_{72}b_{61} + a_{27}b_{72},$	$\alpha_{73} = a_{73}b_{51} + a_{37}b_{73},$
$\alpha_{74} = a_{74}b_{41} + a_{47}b_{74},$	$\alpha_{75} = a_{75}b_{31} + a_{57}b_{75},$	$\alpha_{76} = a_{76}b_{21} + a_{67}b_{76},$	$\alpha_{77} = a_{71}b_{17} + a_{77}b_{77}.$

Remark 3.1. The multiplication of all high hl-rhotrices by RMM follows the same pattern as illustrated above. First, split them into their minors of R_2 and M_2 , and multiply them accordingly, using the row-column method. Second, return their corresponding products into the product rhotrix. For example, each of the R_6 has three minors of R_2 and three minors of M_2 which are multiplied by the row-column method, and are returned to the product rhotrix, and so on.

Theorem 3.1. Let R_n be an hl-rhotrix of dimension n for all $n \in 2\mathbb{N}$. Then,

(a) there exist $\rho = \frac{n}{2}$ number of minor rhotrices of dimension 2 (R₂) in R_n.

(b) there exists

$$m = \sum_{i=0}^{j} i,$$

$$j = \frac{n-2}{2}$$
, number of 2-dimensional matrices (M_2) in R_n

Proof. (a) We prove using the principle of mathematical induction. From Definition 2.4, ρ is the index corresponding to the number of R_2 (minors) that can be obtained from $R_n, \forall n \in 2\mathbb{N}$. Then:

$$\rho = \frac{n}{2} \Rightarrow 2\rho = n, \; \forall \; n \in 2\mathbb{N}.$$

Now, suppose $\rho = 1$, then n = 2 which is in $2\mathbb{N}$. This gives a rhotrix of dimension 2. So, it is true for $\rho = 1$.

When $\rho = 2$, then $n = 4 \in 2\mathbb{N}$. Then we have two minors of R_2 in R_4 . It is true for $\rho = 2$. Similarly, when $\rho = 3$, then $n = 6 \in 2\mathbb{N}$. Then we have three minors of R_2 in R_6 .

Suppose $\rho = k$, then $n = 2k \in 2\mathbb{N}$. Then we have k minors of R_2 in R_{2k} . It is true also for $\rho = k$.

Let $\rho = k + 1$, then $n = 2(k + 1) \in 2\mathbb{N}$. Then we have k + 1 minors of R_2 in $R_{2(k+1)}$. It is also true for $\rho = k + 1$.

Thus, $\rho = \frac{n}{2}$ holds for all values of $n \in 2\mathbb{N}$.

(b) Consider

$$m = \sum_{i=0}^{j} i, \quad j = \frac{n-2}{2}.$$

If j = 0, then $m = 0 \implies n = 2 \in 2\mathbb{N}$ (from $j = \frac{n-2}{2}$). Rightfully, there is no minor of M_2 in R_2 .

Suppose j = 1, then $m = 1 \implies n = 4 \in 2\mathbb{N}$. That is, there is only one M_2 in R_4 .

When j = 2, then $m = 3 \implies n = 6 \in 2\mathbb{N}$, meaning there are three M_2 in R_6 .

Now, suppose that j = k, then $m = 0 + 1 + \dots + k = \sum_{i=0}^{k} i \Rightarrow n = 2(k+1) \in 2\mathbb{N}$. That is, there are $\sum_{i=0}^{k} i$ number of M_2 in $R_{2(k+1)}$.

Finally, suppose that j = k + 1, then $m = 0 + 1 + \dots + 2k + 1 = \sum_{i=0}^{k+1} i \Rightarrow n = 2(k+2) \in 2\mathbb{N}$. That is, there are $\sum_{i=0}^{k+1} i$ number of M_2 in $R_{2(k+2)}$.

Thus,
$$m = \sum_{i=0}^{j} i, j = \frac{n-2}{2}$$
 is true for all values of j and $n \in 2\mathbb{N}$.

Remark 3.2. The proof of Theorem 3.1 above can be visualized from the illustrated examples in Subsection 3.1 (i)–(v), for all values of $n \in 2\mathbb{N}$.

Corollary 3.1. Let R_n be an hl-rhotrix of dimension n. Then, the index ρ of an hl-rhotrix R_n is given as

$$\rho = j + 1, \ j = \frac{n-2}{2}.$$

Proof. The proof follows from Theorem 3.1.

Remark 3.3. Corollary 3.1 above shows the relationship between j and ρ , and that there is a one-to-one correspondence between the two functions.

Generally, the properties of these hl-rhotrices are summarized in Table 1 below:

R_n	R_2	M_2
2	1	0
4	2	1
6	3	3
8	4	6
10	5	10
:	:	
n	$\frac{n}{2}$	$\sum_{i=0}^{j} i, j = \frac{n-2}{2}$

Table 1. Rediscovered properties of hl-rhotrices

3.2 Identity of hl-rhotrices under RMM operation

Consider an hl-rhotrix R_n of dimension n, if I is also an hl-rhotrix of dimension n such that: $R_n \circ I_n = R_n = I_n \circ R_n$. Then, I is an identity element. The procedure is as follows: (i) We look for b_{11} , b_{21} , d_{11} , b_{12} , b_{31} , d_{21} , d_{12} , b_{13} , b_{32} , d_{22} , b_{23} , b_{33} , such that:

$$R_{4} \circ S_{4} = \left(\begin{array}{ccccc} a_{11} & & & \\ a_{21} & c_{11} & a_{12} & \\ a_{31} & c_{21} & & c_{12} & a_{13} \\ & a_{32} & c_{22} & a_{23} & \\ & & a_{33} & \end{array}\right) \circ \left(\begin{array}{ccccc} b_{11} & & & \\ b_{21} & d_{11} & b_{12} & \\ b_{31} & d_{21} & & d_{12} & b_{13} \\ & b_{32} & d_{22} & b_{23} & \\ & & b_{33} & \end{array}\right)$$
$$= \left(\begin{array}{ccccc} a_{11} & & & \\ a_{31} & c_{21} & & c_{12} & a_{13} \\ & a_{32} & c_{22} & a_{23} & \\ & & & a_{33} & \end{array}\right).$$

Using the multiplication result for $R_4 \circ I_4$, we obtain:

 $\begin{array}{ll} a_{11}b_{11}+a_{13}b_{31}=a_{11}; & a_{13}b_{33}+a_{11}b_{13}=a_{13}; & a_{31}b_{11}+a_{33}b_{31}=a_{31}; & a_{33}b_{33}+a_{31}b_{13}=a_{33}; \\ c_{11}d_{11}+c_{12}d_{21}=c_{11}; & c_{21}d_{11}+c_{22}d_{21}=c_{21}; & c_{22}d_{22}+c_{21}d_{12}=c_{22}; & c_{12}d_{22}+c_{11}d_{12}=c_{12}; \\ a_{21}b_{12}+a_{12}b_{32}=a_{21}; & a_{12}b_{23}+a_{21}b_{12}=a_{12}. & a_{32}b_{21}+a_{23}b_{32}=a_{32}; & a_{23}b_{23}+a_{32}b_{12}=a_{23}; \end{array}$

and obtain the multiplication of the system as:

 $b_{11} = b_{33} = 1$ and $b_{31} = b_{13} = 0$; $b_{21} = b_{23} = 1$ and $b_{32} = b_{12} = 0$; $d_{11} = d_{22} = 1$ and $d_{21} = d_{12} = 0$. Note that $R_4 \circ I_4 = R_4 = I_4 \circ R_4$. Thus, the identity rhotrix in this case is

$$I_4 = \left(\begin{array}{cccc} & 1 & & \\ & 1 & 1 & 0 & \\ & 0 & 0 & 0 & 0 \\ & 0 & 1 & 1 & \\ & & 1 & \end{array} \right).$$

(ii) Following the same analysis as above, gives the identity of R_6 as

(iii) Similarly, the identity rhotrix of R_8 is

(iv) Then, identity rhotrix of R_{10} is

(v) The same analysis gives the identity rhotrix of R_{12} as

Remark 3.4. *RMM* brings out the rich symmetric properties inherent in even-dimensional rhotrices. In another paper, the symmetry in even-dimensional rhotrices and application in organic chemistry is being investigated. For example, the structures of Buthane, Cyclobutane and Cyclooctane correspond to the structures of R_2 , R_4 and R_6 , respectively.

3.3 Inverse of hl-rhotrices under RMM

The concept of a unique identity hl-rhotrix under RMM guarantees the existence of an inverse hl-rhotrix. If for an hl-rhotrix R_n , we can find another hl-rhotrix S_n , under the multiplication operation, such that $R_n \circ S_n = S_n \circ R_n = I_n$, then S_n is the inverse of R_n . For a particular n, we consider the following:

(i) Let S_4 be the inverse of R_4 . That is, given

$$S_4 = \left(\begin{array}{cccc} b_{11} & & \\ b_{21} & d_{11} & b_{12} \\ b_{31} & d_{21} & & d_{12} & b_{13} \\ & & b_{32} & d_{22} & b_{23} \\ & & & & b_{33} \end{array} \right) \text{ and } R_4 = \left(\begin{array}{cccc} a_{11} & & \\ a_{21} & c_{11} & a_{12} \\ a_{31} & c_{21} & & c_{12} & a_{13} \\ & & a_{32} & c_{22} & a_{23} \\ & & & & a_{33} \end{array} \right),$$

we must have $R_4 \circ S_4 = S_4 \circ R_4 = I_4$. Thus,

Therefore, the inverse R_4^{-1} is

$$\left(\begin{array}{cccc} & \frac{a_{33}}{A} & & \\ & \frac{a_{23}}{B} & \frac{c_{22}}{C} & \frac{-a_{12}}{B} \\ & \frac{-a_{31}}{A} & \frac{-c_{21}}{C} & \frac{-c_{12}}{C} & \frac{-a_{13}}{A} \\ & \frac{-a_{32}}{B} & \frac{c_{11}}{C} & \frac{a_{21}}{B} \\ & & \frac{a_{11}}{A} \end{array}\right),$$

where $A = a_{11}a_{33} - a_{31}a_{13}$, $B = a_{32}a_{12} - a_{21}a_{23}$ and $C = c_{11}c_{22} - c_{21}c_{12}$ for a system in R_4 .

(ii) Similarly, the inverse R_6^{-1} is

where

$$\begin{split} A &= a_{11}a_{44} - a_{41}a_{14}; \quad B = a_{21}a_{34} - a_{43}a_{12}; \quad C = c_{11}c_{33} - c_{31}c_{13}; \quad D = a_{22}a_{33} - a_{32}a_{23}; \\ E &= a_{31}a_{24} - a_{42}a_{13}; \quad F = c_{21}c_{23} - c_{32}c_{12}. \end{split}$$

for systems in R_6 .

(iii) The inverse R_8^{-1} is

where

$$\begin{split} A &= a_{11}a_{55} - a_{51}a_{15}; \quad B = a_{21}a_{45} - a_{54}a_{12}; \quad C = c_{11}c_{44} - c_{41}c_{14}; \quad D = a_{31}a_{35} - a_{53}a_{13}; \\ E &= c_{21}c_{34} - c_{43}c_{12}; \quad F = a_{22}a_{44} - a_{42}a_{24}; \quad G = a_{41}a_{25} - a_{52}a_{14}; \quad H = c_{31}c_{24} - c_{42}c_{13}; \\ I &= a_{32}a_{34} - a_{43}a_{23}; \quad J = c_{22}c_{33} - c_{32}c_{23}. \end{split}$$

for systems in R_8 .

(iv) The inverse R_{10}^{-1} is

$$\begin{split} A &= a_{11}a_{66} - a_{61}a_{16}; \quad B = a_{21}a_{56} - a_{65}a_{12}; \quad C = c_{11}c_{55} - c_{51}c_{15}; \quad D = a_{31}a_{46} - a_{64}a_{13}; \\ E &= c_{21}c_{45} - c_{54}c_{12}; \quad F = a_{22}a_{55} - a_{52}a_{25}; \quad G = a_{41}a_{36} - a_{63}a_{14}; \quad H = c_{31}c_{35} - c_{53}c_{13}; \\ I &= a_{32}a_{45} - a_{54}a_{23}; \quad J = c_{22}c_{44} - c_{42}c_{24}; \quad K = a_{51}a_{26} - a_{62}a_{15}; \quad L = c_{41}c_{25} - c_{52}c_{14}; \\ M &= a_{42}a_{35} - a_{53}a_{24}; \quad N = c_{32}c_{34} - c_{43}c_{23}; \quad O = a_{33}a_{44} - a_{43}a_{34}. \end{split}$$

for the system in R_{10} .

(v) Finally, the inverse R_{12}^{-1} is

where

$A = a_{11}a_{77} - a_{71}a_{17};$	$B = a_{21}a_{67} - a_{76}a_{12};$	$C = c_{11}c_{66} - c_{61}c_{16};$	$D = a_{31}a_{57} - a_{75}a_{13};$
$E = c_{21}c_{56} - c_{65}c_{12};$	$F = a_{22}a_{66} - a_{62}a_{26};$	$G = a_{41}a_{47} - a_{74}a_{14};$	$H = c_{31}c_{46} - c_{64}c_{13};$
$I = a_{32}a_{56} - a_{65}a_{23};$	$J = c_{22}c_{55} - c_{52}c_{25};$	$K = a_{51}a_{37} - a_{73}a_{15};$	$L = c_{41}c_{36} - c_{63}c_{14};$
$M = a_{42}a_{46} - a_{64}a_{24};$	$N = c_{32}c_{45} - c_{54}c_{23};$	$O = a_{33}a_{55} - a_{53}a_{35};$	$P = a_{61}a_{27} - a_{72}a_{16};$
$Q = c_{51}c_{26} - c_{62}c_{15};$	$R = a_{52}a_{36} - a_{63}a_{25};$	$S = c_{42}c_{35} - c_{24}c_{53};$	$T = a_{43}a_{45} - a_{54}a_{34};$
$U = c_{33}c_{44} - c_{43}c_{34}.$			

for the system in R_{12} .

4 Numerical examples

Example 1. Consider some numerical examples of R_4 and R_6 , under RMM operation, and their inverses.

(i) Let
$$A_4 = \begin{pmatrix} -2 & & \\ 3 & 4 & 5 & \\ 7 & 8 & -9 & 10 \\ & 1 & 6 & 8 \\ & & 3 & \end{pmatrix}$$
 and $B_4 = \begin{pmatrix} 3 & & \\ -5 & 5 & 2 & \\ 8 & 7 & 9 & 10 \\ & 6 & -4 & -5 \\ & & 4 & \end{pmatrix}$

The multiplication of the minors of R_2 and M_2 in R_4 are

$$\left\langle \begin{array}{c} -2 \\ 7 & 10 \\ 3 \end{array} \right\rangle \circ \left\langle \begin{array}{c} 3 \\ 8 & 10 \\ 4 \end{array} \right\rangle = \\ = \left\langle \begin{array}{c} -2 \times 3 + 10 \times 8 \\ 7 \times 3 + 3 \times 8 \\ 7 \times 10 + 3 \times 4 \end{array} \right\rangle - 2 \times 10 + 10 \times 4 \\ \Rightarrow = \left\langle \begin{array}{c} 74 \\ 45 \\ 82 \end{array} \right\rangle \right\rangle,$$

$$\left\langle \begin{array}{c} 4 \\ 8 \\ -9 \\ 6 \end{array} \right\rangle \circ \left\langle \begin{array}{c} 5 \\ 7 \\ -4 \end{array} \right\rangle = \\ \left\langle \begin{array}{c} 8 \\ 82 \end{array} \right\rangle \right\rangle,$$

$$\left\langle \begin{array}{c} 8 \\ 8 \\ 82 \end{array} \right\rangle = \\ = \left\langle \begin{array}{c} 8 \times 5 + 6 \times 7 \\ 8 \times 9 + 6 \times -4 \end{array} \right\rangle + \left\langle \begin{array}{c} -43 \\ 8 \times 9 + 6 \times -4 \end{array} \right\rangle = \left\langle \begin{array}{c} -43 \\ 82 \\ 48 \end{array} \right\rangle,$$

and

$$\begin{bmatrix} 3 & 5 \\ 1 & 8 \end{bmatrix} \circ \begin{bmatrix} -5 & 2 \\ 6 & -5 \end{bmatrix} = \begin{bmatrix} 3 \times -5 + 5 \times 6 & 3 \times 2 + 5 \times -5 \\ 1 \times -5 + 8 \times 6 & 1 \times 2 + 8 \times -5 \end{bmatrix} = \begin{bmatrix} 15 & -19 \\ 43 & -38 \end{bmatrix}.$$

Thus,

$$A_4 \circ B_4 = \left(\begin{array}{cccc} 74 \\ 15 & -43 & -19 \\ 45 & 82 \\ 43 & 48 & -38 \\ 82 \end{array}\right)$$

(ii) To solve for A_4^{-1} , we follow the inverse operation of R_4 as presented in 3.3 (i), and obtain:

$$A_4^{-1} = \begin{pmatrix} & -\frac{3}{76} & \\ & \frac{8}{19} & \frac{1}{16} & -\frac{5}{19} \\ & \frac{7}{76} & \frac{1}{12} & & -\frac{3}{32} & \frac{5}{38} \\ & -\frac{1}{19} & \frac{1}{24} & \frac{3}{19} \\ & & \frac{1}{38} & \end{pmatrix}.$$

Example 2. Some text here?

(**i**) Let

Then,

(ii) To solve for A_6^{-1} , we follow the inverse operation of R_6 in Subsection 3.3 (ii), and obtain,

$$A_{6}^{-1} = \begin{pmatrix} & & \frac{3}{5} & & \\ & & \frac{1}{6} & 0 & \frac{1}{2} & \\ & & \frac{1}{6} & \frac{1}{15} & 1 & -\frac{4}{15} & \frac{1}{6} & \\ & & -\frac{1}{5} & 1 & 1 & & -2 & \frac{1}{2} & -\frac{1}{5} & \\ & & -\frac{1}{6} & \frac{4}{15} & -1 & -\frac{1}{15} & \frac{1}{3} & \\ & & & \frac{1}{3} & -\frac{1}{2} & 0 & \\ & & & & \frac{2}{5} & & \\ \end{pmatrix}$$

(iii) To obtain the identity element, we have $A_6 \circ A_6^{-1} = I_6$

$$A_{6} = \begin{pmatrix} 2 & & & \\ 0 & 1 & 3 & & \\ 4 & -1 & -1 & 4 & -2 & \\ 1 & 2 & -1 & & 2 & 1 & 1 \\ 2 & -4 & 1 & 1 & 2 & \\ & 2 & 0 & -1 & & \\ & & 3 & & & \end{pmatrix} \circ \begin{pmatrix} 3 & & & \\ \frac{1}{6} & 0 & \frac{1}{2} & & \\ \frac{1}{6} & \frac{1}{15} & 1 & -\frac{4}{15} & \frac{1}{6} & \\ -\frac{1}{5} & 1 & 1 & & -2 & \frac{1}{2} & -\frac{1}{5} \\ -\frac{1}{6} & \frac{4}{15} & -1 & -\frac{1}{15} & \frac{1}{3} & \\ & \frac{1}{3} & -\frac{1}{2} & 0 & \\ & & & & \frac{2}{5} & \\ \end{pmatrix}$$

357

Example 3. Simple equation under RMM operation.

Find X_4 if $X_4A_4 = B_4$, where

$$A_{4} = \left(\begin{array}{cccc} -2 \\ 3 & 4 & 5 \\ 7 & 8 & -9 & 10 \\ 1 & 6 & 8 \\ & 3 \end{array}\right) \text{ and } B_{4} = \left(\begin{array}{cccc} 3 \\ -5 & 5 & 2 \\ 8 & 7 & 9 & 10 \\ 6 & -4 & -5 \\ & 4 \end{array}\right),$$

$$X_4 = A_4^{-1} B_4.$$

Then,

$$A_4^{-1} = \frac{1}{-153} \left(\begin{array}{cccc} & 3 & & \\ & 8 & 6 & -5 & \\ & -7 & -8 & -9 & -10 \\ & & -1 & 4 & 3 & \\ & & & -2 & \end{array} \right).$$

Therefore, A_4^{-1} multiplies B_4 gives

$$X_{4} = \frac{1}{-153} \begin{pmatrix} 3 & & & \\ 8 & 6 & -5 & & \\ -7 & -8 & -9 & -10 \\ & -1 & 4 & 3 & \\ & & -2 & \end{pmatrix} \circ \begin{pmatrix} 3 & & & \\ -5 & 5 & 2 & & \\ 8 & 7 & 9 & 10 \\ & 6 & -4 & -5 & \\ & & 4 & \end{pmatrix},$$
$$X_{4} = \frac{1}{153} \begin{pmatrix} 71 & & & \\ 70 & 33 & -41 & & \\ 37 & 12 & -78 & 10 \\ & -13 & 72 & 17 & \\ & & 78 & & \end{pmatrix}.$$

5 Conclusion

This research work developed and examined a new multiplication method called the robust multiplication method (RMM) for higher even-dimensional rhotrices and presented a number of its properties. It also examined the concepts of minor rhotrices and their application in hl-rhotrices. The recent articles [2, 3] on tertions and other algebraic objects are an eye-opener to more properties of even-dimensional rhotrices. All even-dimensional rhotrices have an even cardinality. That is, $|R_n| = \frac{1}{2}(n^2 + 2n)$ for all $n \in 2\mathbb{N}$, for example, a rhotrix of dimension 2 has a cardinality of 4, and this corresponds to the cardinality of the quaternions A- and V-tertions (AV-tertions). However, note that these objects are different from the popular structure of the quaternion group (Q_t) of cardinality 8. The foregoing naturally prompts questions like: *Do all even-dimensional AV-tertions correspond to even-dimensional rhotrices? Do all odd-dimensional*

AV-tertions correspond to heart-based (odd-dimensional) rhotrices? If the answers to these two questions are in the affirmative, then AV-tertions are a generalization of both even- and odd-dimensional rhotrices. At any rate, the quaternion AV-tertions is a meeting point between rhotrices and tertions. Therefore, this is a call for representations of high-dimensional AV-tertions. We project that the Robust Multiplication Method presented in this paper portends a wider application of rhotrices in agriculture, exploration, theoretical chemistry and physics due to its beautiful symmetries, and would be an alternative multiplication method for higher even-dimensional AV-tertions.

Acknowledgements

Our sincere appreciation goes to the anonymous reviewers whose comments and suggestions have helped, significantly, to improve the original version.

References

- [1] Ajibade, A. O. (2003). The concept of rhotrix in mathematical enrichment. *International Journal of Mathematical Education in Science and Technology*, 34(2), 175–179.
- [2] Atanassov, K. T. (2023). On tertions and other algebraic objects. *Notes on Number Theory and Discrete Mathematics*, 29(4), 861–880.
- [3] Atanassov, K. T. (2024). On tertions and dual numbers. *Notes on Number Theory and Discrete Mathematics*, 30(2), 443–452.
- [4] Atanassov, K. T., & Shannon, A. G. (1998). Matrix-tertions and matrix-noitrets: Exercise for mathematical enrichment. *International Journal Mathematical Education in Science and Technology*, 29(6), 898–903.
- [5] Ezugwu, E. A., Sani, B., & Junaidu, S. B. (2011). The concept of heart-oriented rhotrix multiplication. *Global Journal of Science Frontier*, 11(2), 35–46.
- [6] Isere, A. O. (2016). Natural rhotrix. Cogent Mathematics, 3(1), Article ID 1246074.
- [7] Isere, A. O. (2017). A note on classical and non-classical rhotrix. *Journal of the Mathematical Association of Nigeria (Abacus)*, 44(2), 119–124.
- [8] Isere, A. O. (2018). Even dimensional rhotrix. *Notes on Number Theory and Discrete Mathematics*, 24(2), 125–133.
- [9] Isere, A. O. (2019). Representation of higher even-dimensional rhotrix. *Notes on Number Theory and Discrete Mathematics*, 25(1), 206–219.
- [10] Isere, A. O.(2020). Diagonal function of natural rhotrix. *Cogent Mathematics & Statistics*, 7(1), Article ID 1788298.

- [11] Isere A. O., & Adeniran, J. O. (2018). The concept of rhotrix quasigroups and rhotrix loops. *Journal of the Nigerian Mathematical Society*, 37(3), 139–153.
- [12] Mohammed, A. (2007). Enrichment exercises through extension to rhotrices. *International Journal of Mathematical Education in Science and Technology*, 38(1), 131–136.
- [13] Mohammed, A. (2009). A remark on the classifications of rhotrices as abstract structures. *International Journal of Physical Sciences*, 4(9), 496–499.
- [14] Mohammed, A. (2011). *Theoretical Development and Applications of Rhotrices*. Ph. D. Thesis, Ahmadu Bello University, Zaria, Nigeria.
- [15] Mohammed, A., & Balarabe, M. (2014). First review of articles on rhotrix theory since its inception. Advances in Linear Algebra and Matrix Theory, 4, 216–224.
- [16] Mohammed, A., Ezugwu, E. A., & Sani, B. (2011). On generalization and algorithmatization of heart-based method for multiplication of rhotrices. *International Journal of Computer Information Systems*, 2, 46–49.
- [17] Sani, B. (2004). An alternative method for multiplication of rhotrices. *International Journal of Mathematical Education in Science and Technology*, 35(5), 777–781.
- [18] Sani, B. (2007). The row-column multiplication of high dimensional rhotrices. *International Journal of Mathematical Education in Science and Technology*, 38(5), 657–662.
- [19] Sani, B. (2008). Conversion of a rhotrix to a coupled matrix. International Journal of Mathematical Education in Science and Technology, 39(2), 244–249.
- [20] Utoyo, T. O. (2023). A robust multiplication method for higher even dimensional rhotrices.M. Sc. Dissertation, Federal University of Petroleum Resources, Effurun, Nigeria.
- [21] Utoyo, T. O., Isere, A. O., & Ugbene, J. I. (2023). A new multiplication approach with applications in differentiation and integration of even-dimensional hl- rhotrices. AAU Journal of Physical and Applied Sciences, 3(1), 55–67.