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Abstract: Rhotrices (heart-oriented) are often multiplied either by heart-based or row-column
multiplication method. The element-wise multiplication method for higher even-dimensional
rhotrices has recently been introduced in [9]. However, this type of multiplication method, though
simple, is less robust. Hence, we present a multiplication method called “Robust Multiplication
Method” (RMM) for higher even-dimensional rhotrices (hl-rhotrices), and a number of
rediscovered properties of hl-rhotrices. Analysis and examples of RMM for some hl-rhotrices
are presented for demonstration purposes.
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1 Introduction

In recent years, rhotrices have found applications in several aspects of real-life problems [7].
Rhotrices, as paradigms of matrices, are concerned with representing arrays of numbers in
mathematical rhomboid form, introduced by Ajibade in 2003 [1], as an extension of ideas on
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matrix–tertions and matrix–noitrets proposed by Atanassov and Shannon in 1998 [4], and as
represented in [2, 3].

A rhotrix has rows and columns. The row of a rhotrix is an array of entries running from the
top-left to the right bottom while its column is an array of entries running from the top-right to the
left bottom of the rhotrix whenever it is rotated anticlockwise through angle 45 degrees, see [19].

Thus, a rhotrix R of dimension 3 is a rhomboidal array defined in [1] as:

〈 a

b c d

e

〉
.

The vertical axis is the set of values {a, c, e} and the horizontal axis is the set of values {b, c, d}
of the rhotrix R above. The entry ‘c’ at the center of R is called the heart of R denoted as h(R).
It is the intersection of the major vertical and the major horizontal axes, and the above rhotrix is
mathematically written as: 〈 a

b h(R) d

e

〉
.

The vertex of the rhotrix R is an entry at any of the four corners of the rhotrix, that is, entries
a, b, e and d in the rhotrix R above. Two rhotrices can be added up only if they have the same
dimension.

The addition and multiplication of two rhotrices as presented in [1] are given below. Given
two rhotrices R and S,

R + S =

〈 a

b h(R) d

e

〉
+

〈 f

g h(S) j

k

〉
=

〈 a+ f

b+ g h(R) + h(S) d+ j

e+ k

〉
.

Multiplication (◦) operation of two rhotrices R and S is defined as:

R◦S =

〈 a

b h(R) d

e

〉
◦

〈 f

g h(S) j

k

〉
=

〈 ah(S) + fh(R)

bh(S) + gh(R) h(R)h(S) dh(S) + jh(R)

eh(S) + kh(R)

〉
.

In the concluding section of [1], the author was challenged by further development regarding how
a rhotrix can be converted to a matrix and vice versa for its mathematical enrichment. In quest
to solving this challenge, Sani [17] in 2004 proposed the first alternative rhotrix multiplication
method called the row-column multiplication method. This procedure has given room for more
literatures in rhotrix algebra [15]. Thus, the row-column multiplication method presented in
[17, 18] is defined as:

R ◦ S =

〈 a

b h(R) d

e

〉
◦

〈 f

g h(S) j

k

〉
=

〈 af + dg

bf + eg h(R)h(S) aj + dk

bj + ek

〉
.
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In many aspects, rhotrices of odd dimensions (heart-oriented) are well-known in literature but
even-dimensional rhotrices (heartless or hl-rhotrices) are still a novelty. Isere in 2017 classified
heart-oriented rhotrices as classical rhotrices and even-dimensional rhotrices (hl-rhotrices) as
non-classical rhotrices [7]. For detailed studies on classical rhotrices, see [5, 6, 10–16].

In this work, we introduce the robust multiplication method for higher even-dimensional
rhotrices and derive their identity and inverse operations. Section 2 discusses the preliminary
background, while Section 3 presents the robust multiplication method for high hl-rhotrices
and their properties. In Section 4, some numerical examples are presented for the purpose of
illustration. Finally, we give the concluding remarks in Section 5.

Remark 1.1. By high hl-rhotrices we mean even-dimensional rhotrices of high order, higher than
dimension 2. So, we may sometime use higher even-dimensional rhotrices or high hl-rhotrices
interchangeably. Even-dimensional rhotrices and hl-rhotrices may also be used interchangeably.

2 Preliminaries

An introduction to even-dimensional rhotrices was first presented in [8] where the author showed
that it was still mathematically tractable to extract the heart of a rhotrix and still obtain an
algebraic rhotrix. Moreover, doing so enables one to obtain even-dimensional rhotrices (see
[8, 9, 20]). Interestingly, the objects called Quaternions by A- and V-tertions in [2, 3] are even-
dimensional rhotrices provided their sides are geometrically equal.

Definition 2.1 ( [8]). Even-dimensional rhotrix is a rhotrix with even cardinality and a special
type of rhotrix where the heart has been extracted. An example is presented below.

A =

〈
a

b d

e

〉
,

where a, b, d and e ∈ ℜ.

Definition 2.2. The minors of a higher even-dimensional rhotrix are the matrices and rhotrices
of dimension two that can be gotten from the higher rhotrix.

Definition 2.3 ([21]). Robust multiplication method (RMM) for higher even-dimensional rhotrices,
is a rhotrix multiplication method that splits the high hl-rhotrix into its minors of rhotrices
and matrices of dimension two, and multiplies the corresponding minors using the row-column
multiplication operation for matrices and rhotrices, and then inserts the product entries into the
high hl-rhotrix.

For example, below are minors of R4.

〈 a11
a31 a13

a33

〉
,

〈 c11
c21 c12

c22

〉
, and

[
a21 a12
a32 a23

]
,
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as obtained from

R4 =

〈
a11

a21 c11 a12
a31 c21 c12 a13

a32 c22 a23
a33

〉
.

Definition 2.4. The index ρ of an hl-rhotrix A is the number of minor rhotrices of dimension 2

(R2) that can be obtained from A. This index is always a whole number; cf. [6].

2.1 Multiplication of hl-rhotrices

The element-wise multiplication of higher hl-rhotrices is presented in [9]. This has been the only
multiplication method for high hl-rhotrices in literature up till now. Each entry is obtained by
multiplying the corresponding elements.

Consider the set of any two 4-dimensional rhotrices,

R4 =

〈
a11

a21 c11 a12
a31 c21 c12 a13

a32 c22 a23
a33

〉
and S4 =

〈
b11

b21 d11 b12
b31 d21 d12 b13

b32 d22 b23
b33

〉
.

By the element-wise multiplication method, we have

R4 ◦ S4 =

〈
a11

a21 c11 a12
a31 c21 c12 a13

a32 c22 a23
a33

〉
◦

〈
b11

b21 d11 b12
b31 d21 d12 b13

b32 d22 b23
b33

〉

=

〈
a11b11

a21b21 c11d11 a12b12
a31b31 c21d21 c12d12 a13b13

a32b32 c22d22 a23b23
a33b33

〉
.

The multiplication above is very simple and beautiful but less robust. Hence, we present a more
robust multiplication method for high hl-rhotrices in Section 3.

2.2 Identity and inverse elements of hl-rhotrices

For a 2-dimensional hl-rhotrix (R2), the identity and inverse elements, as presented in [8], are
given below:

343



(i) Consider an hl-rhotrix R of n-dimensional, if I is also an hl-rhotrix of n-dimensional such
that: R ◦ I = R = I ◦R. Then I is an identity element.

I =

〈
1

0 0

1

〉
.

(ii) The concept of identity element makes the inverse of a rhotrix meaningful.
If for an hl-rhotrix R we can find another hl-rhotrix S such that R ◦ S = S ◦ R = I , then
S will be the inverse of R. Consider R2 for example, let

R =

〈
a

b d

e

〉
.

Then,

S =
1

ae− bd

〈
e

−d −b

a

〉
.

This implies that

R−1 =
1

ae− bd

〈
e

−d −b

a

〉
.

Remark 2.1. For an hl-rhotrix R2 to be invertible or non-singular, ae ̸= bd must hold.

3 Main results

In this section, we develop an alternative multiplication method for higher even-dimensional
rhotrices (hl-rhotrices), called the Robust Multiplication Method (RMM). For the purpose of
illustration, we start with 4-dimensional rhotrices up to 12-dimensional rhotrices, and these are
presented below.

3.1 Multiplication of high hl-rhotrices

(i) The multiplication of 4-dimensional rhotrices (R4) is defined as:

R4 × S4 =

〈
a11

a21 c11 a12
a31 c21 c12 a13

a32 c22 a23
a33

〉
×

〈
b11

b21 d11 b12
b31 d21 d12 b13

b32 d22 b23
b33

〉

=

〈
α11

α21 β11 α12

α31 β21 β12 α13

α32 β22 α23

α33

〉
,
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Solution: First, we obtain the minors of R4 and S4 as:

〈 a11
a31 a13

a33

〉
,

〈 b11
b31 b13

b33

〉
,

〈 c11
c21 c12

c22

〉
,

〈 d11
d21 d12

d22

〉
,

[
a21 a12
a32 a23

]
,

[
b21 b12
b32 b23

]
.

Then, the row-column multiplications of the systems are:

〈 a11

a31 a13

a33

〉
◦

〈 b11

b31 b13

b33

〉
=

〈 a11b11 + a13b31

a31b11 + a33b31 a13b33 + a11b13

a33b33 + a31b13

〉
;

〈 c11

c21 c12

c22

〉
◦

〈 d11

d21 d12

d22

〉
=

〈 c11d11 + c12d21

c21d11 + c22d21 c12d22 + c11d12

c22d22 + c21d12

〉
;

[
a21 a12

a32 a23

]
◦

[
b21 b12

b32 b23

]
=

[
a21b21 + a12b32 a12b23 + a21b12

a32b21 + a23b32 a23b23 + a32b12

]
.

with the following equations:

a11b11 + a13b31 = α11; a31b11 + a33b31 = α31; a33b33 + a31b13 = α33; a13b33 + a11b13 = α13;

c11d11 + c12d21 = β11; c21d11 + c22d21 = β21; c22d22 + c21d12 = β22; c12d22 + c11d12 = β12;

a21b21 + a12b32 = α21; a32b21 + a23b32 = α32; a23b23 + a32b12 = α23; a12b23 + a21b12 = α12.

Then, the RMM of R4 is:

R4 × S4 =

〈
a11b11 + a13b31

a21b12 + a12b32 c11d11 + c12d21 a12b23 + a21b12

a31b11 + a33b31 c21d11 + c22d21 c12d22 + c11d12 a13b33 + a11b13

a32b21 + a23b32 c22d22 + c21d12 a23b23 + a32b12

a33b33 + a31b13

〉
(ii) Similarly, the multiplication of 6-dimensional Rhotrices (R6) is defined as:

R6 × S6 =

〈
a11

a21 c11 a12

a31 c21 a22 c12 a13

a41 c31 a32 a23 c13 a14

a42 c32 a33 c23 a24

a43 c33 a34

a44

〉
×

〈
b11

b21 d11 b12

b31 d21 b22 d12 b13

b41 d31 b32 b23 d13 b14

b42 d32 b33 d23 b24

b43 d33 b34

b44

〉

=

〈
α11

α21 β11 α12

α31 β21 α22 β12 α13

α41 β31 α32 α23 β13 α14

α42 β32 α33 β23 α24

α43 β33 α34

α44

〉
,
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where

α11 = a11b11 + a14b41; α12 = a12b34 + a21b12; α13 = a13b24 + a31b13; α14 = a14b44 + a11b14;

β11 = c11d11 + c13d31; β12 = c12d23 + c21d12; β13 = c13d33 + c11d13; α21 = a21b21 + a12b43;

α22 = a22b22 + a23b32; α23 = a23b33 + a22b23; α24 = a24b24 + a42b13; β21 = c21d21 + c12d32;

β23 = c23d23 + c32d12; α31 = a31b31 + a13b42; α32 = a32b22 + a33b32; α33 = a33b33 + a32b23;

α34 = a34b34 + a43b12; β31 = c31d11 + c33d31; β32 = c32d21 + c23d32; β33 = c33d33 + c31d31;

α41 = a41b11 + a44b41; α42 = a42b31 + a24b42; α43 = a43b21 + a34b43; α44 = a44b44 + a41b14.

(iii) Then, the multiplication of 8-dimensional rhotrices (R8) is also defined as:

R8 × S8 =〈
a11

a21 c11 a12

a31 c21 a22 c12 a13

a41 c31 a32 c22 a23 c13 a14

a51 c41 a42 c32 c23 a24 c14 a15

a52 c42 a43 c33 a34 c24 a25

a53 c43 a44 c34 a35

a54 c44 a45

a55

〉
×

〈
b11

b21 d11 b12

b31 d21 b22 d12 b13

b41 d31 b32 d22 b23 d13 b14

b51 d41 b42 d32 d23 b24 d14 b15

b52 d42 b43 d33 b34 d24 b25

b53 d43 b44 d34 b35

b54 d44 b45

b55

〉
.

Then, the RMM of R8 is:

R8 × S8 =

〈
α11

α21 β11 α12

α31 β21 α22 β12 α13

α41 β31 α32 β22 α23 β13 α14

α51 β41 α42 β32 β23 α24 β14 α15

α52 β42 α43 β33 α34 β24 α25

α53 β43 α44 β34 α35

α54 β44 α45

α55

〉
where

α11 = a11b11 + a15b51; α12 = a12b45 + a21b12; α13 = a13b35 + a31b13; α14 = a14b25 + a41b14;

α15 = a15b55 + a11b15; β11 = c11d11 + c14d41; β12 = c12d34 + c21d12; β13 = c13d24 + c31d13;

β14 = c14d44 + c11d14; α21 = a21b21 + a12b54; α22 = a22b22 + a24b42; α23 = a23b34 + a32b23;

α24 = a24b44 + a22b24; α25 = a25b25 + a52b14; β21 = c21d21 + c12d43; β22 = c22d22 + c23d32;

β23 = c23d33 + c22d23; β24 = c24d24 + c42d13; α31 = a31b31 + a13b53; α32 = a32b32 + a23b43;

α34 = a34b34 + a43b23; α35 = a35b35 + a53b13; β31 = c31d31 + c13d42; β32 = c32d22 + c33d32;

β33 = c33d33 + c32d23; β34 = c34d34 + c43d12; α41 = a41b41 + a14b52; α42 = a42b22 + a44b42;

α43 = a43b32 + a34b43; α44 = a44b44 + a42b24; α45 = a45b45 + a54b12; β41 = c41d11 + c44d41;

β42 = c42d31 + c24d42; β43 = c43d21 + c34d43; β44 = c44d44 + c41d14; α51 = a51b11 + a55b51;

α52 = a52b41 + a25b52; α53 = a53b31 + a35b53; α54 = a54b21 + a45b54; α55 = a55b55 + a51b15.
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(iv) Multiplication of 10-dimensional rhotrices (R10) is also defined as:

R10 × S10 =

〈
a11

a21 c11 a12

a31 c21 a22 c12 a13

a41 c31 a32 c22 a23 c13 a14

a51 c41 a42 c32 a33 c23 a24 c14 a15

a61 c51 a52 c42 a43 a34 c24 a25 c15 a16

a62 c52 a53 c43 a44 c34 a35 c25 a26

a63 c53 a54 c44 a45 c35 a36

a64 c54 a55 c45 a46

a65 c55 a56

a66

〉

×

〈
b11

b21 d11 b12

b31 d21 b22 d12 b13

b41 d31 b32 d22 b23 d13 b14

b51 d41 b42 d32 b33 d23 b24 d14 b15

b61 d51 b52 d42 b43 b34 d24 b25 d15 b16

b62 d52 b53 d43 b44 d34 b35 d25 b26

b63 d53 b54 d44 b45 d35 b36

b64 d54 b55 d45 b46

b65 d55 b56

b66

〉
Then, the RMM of R10 is:

R10 × S10 =

〈
α11

α21 β11 α12

α31 β21 α22 β12 α13

α41 β31 α32 β22 α23 β13 α14

α51 β41 α42 β32 α33 β23 α24 β14 α15

α61 β51 α52 β42 α43 α34 β24 α25 d15 α16

α62 β52 α53 β43 α44 β34 α35 d25 α26

α63 β53 α54 β44 α45 β35 α36

α64 β54 α55 β45 α46

α65 β55 α56

α66

〉
where

α11 = a11b11 + a16b61, α12 = a21b12 + a12b56, α13 = a31b13 + a13b46, α14 = a41b14 + a14b36,

α15 = a51b15 + a15b26, α16 = a11b16 + a16b66, β11 = c11d11 + c15d51, β12 = c21d12 + c12d45,

β13 = c31d13 + c13d35, β14 = c41d14 + c14d25, β15 = c11d15 + c15d55, α17 = a21b21 + a12b65,

α18 = a22b22 + a25b52, α21 = a23b45 + a32b23, α22 = a42b24 + a24b35, α23 = a22b25 + a25b55,

α25 = a62b15 + a26b26, β21 = c21d21 + c12d54, β22 = c22d22 + c24d42, β23 = c32d23 + c23d34,
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β24 = c22d24 + c24d44, β25 = c52d14 + c25d25, α31 = a31b31 + a13b64, α32 = a32b32 + a23b54,

α33 = a33b33 + a34b43, α34 = a33b34 + a34b44, α35 = a53b24 + a35b35, α36 = a63b14 + a36b36,

β31 = c31d31 + c13d53, β32 = c32d32 + c23d43, β34 = c43d23 + c34d34, β35 = c53d13 + c35d35,

α41 = a41b41 + a14b63, α42 = a42b42 + a24b53, α43 = a43b33 + a44b43, α44 = a43b34 + a44b44,

α45 = a45b45 + a54b23, α46 = a64b13 + a46b46, β41 = c41d41 + c14d52, β42 = c42d22 + c44d42,

β43 = c43d32 + c34d43, β44 = c42d24 + c44d44, β45 = c54d12 + c45d45, α51 = a51b51 + a15b62,

α52 = a52b22 + a55b52, α53 = a53b42 + a35b53, α54 = a54b32 + a45b54, α55 = a52b25 + a55b55,

α56 = a65b12 + a56b56, β51 = c51d11 + c55d51, β52 = c52d41 + c25d52, β53 = c53d31 + c35d53,

β54 = c54d21 + c45d54, β55 = c51d15 + c55d55, α61 = a61b11 + a66b61, α62 = a62b51 + a26b62,

α63 = a63b41 + a36b63, α64 = a64b31 + a46b64, α65 = a65b21 + a56b65, α66 = a61b16 + a66b66.

(v) Finally, the multiplication of 12-dimensional rhotrices (R12) is similarly defined as:

R12 × S12 =

〈
a11

a21 c11 a12

a31 c21 a22 c12 a13

a41 c31 a32 c22 a23 c13 a14

a51 c41 a42 c32 a33 c23 a24 c14 a15

a61 c51 a52 c42 a43 c33 a34 c24 a25 c15 a16

a71 c61 a62 c52 a53 c43 c34 a35 c25 a26 c16 a17

a72 c62 a63 c53 a54 c44 a45 c35 a36 c26 a27

a73 c63 a64 c54 a55 c45 a46 c36 a37

a74 c64 a65 c55 a56 c46 a47

a75 c65 a66 c56 a57

a76 c66 a67

a77

〉

×

〈
b11

b21 d11 b12
b31 d21 b22 d12 b13

b41 d31 b32 d22 b23 d13 b14
b51 d41 b42 d32 b33 d23 b24 d14 b15

b61 d51 b52 d42 b43 d33 b34 d24 b25 d15 b16
b71 d61 b62 d52 b53 d43 d34 b35 d25 b26 d16 b17

b72 d62 b63 d53 b54 d44 b45 d35 b36 d26 b27
b73 d63 b64 d54 b55 d45 b46 d36 b37

b74 d64 b65 d55 b56 d46 b47
b75 d65 b66 d56 b57

b76 d66 b67
b77

〉
348



Then, the RMM of R12 is:

R12 × S12 =

〈
α11

α21 β11 α12

α31 β21 α22 β12 α13

α41 β31 α32 β22 α23 β13 α14

α51 β41 α42 β32 α33 β23 α24 β14 α15

α61 β51 α52 β42 α43 β33 α34 β24 α25 β15 α16

α71 β61 α62 β52 α53 β43 β34 α35 β25 α26 β16 α17

α72 β62 α63 β53 α54 β44 α45 β35 α36 β26 α27

α73 β63 α64 β54 α55 β45 α46 β36 α37

α74 β64 α65 β55 α56 β46 α47

α75 β65 α66 β56 α57

α76 β66 α67

α77

〉
,

where

α11 = a11b11 + a17b71, α12 = a21b12 + a12b67, α13 = a31b13 + a13b57, α14 = a41b14 + a14b47,

α15 = a51b15 + a15b37, α16 = a61b16 + a16d27, α17 = a11b17 + a17b77, β11 = c11d11 + c16d61,

β12 = c21d12 + c12d56, β13 = c31d13 + c13d46, β14 = c41d14 + c14d36, β15 = c51d15 + c15d26,

β16 = c11d16 + c16d66, α21 = a21b21 + a12b76, α22 = a22b22 + a26b62, α23 = a32b23 + a23b56,

α24 = a42b24 + a24b46, α25 = a52b25 + a25b36, α26 = a22d16 + a26d66, α27 = a72b16 + a27b27,

β21 = c21d21 + c12d65, β22 = c22d22 + c25d52, β23 = c32d23 + c23d45, β24 = c42d24 + c24d35,

β25 = c22d25 + c25d55, β26 = c62d15 + c26d26, α31 = a31b31 + a13b75, α32 = a32b32 + a23b65,

α33 = a33b33 + c35b53, α34 = a43b34 + a34b45, α35 = a33b35 + a35b55, α36 = a63b25 + a36b36,

α37 = a73b15 + a37b37, β31 = c31d31 + c13d64, β32 = c32d32 + c23d54, β33 = c33d33 + c34d43,

β34 = c33d34 + c34d44, β35 = c53d24 + c35d35, β36 = c63d14 + c36d36, α41 = a41b41 + a14b74,

α42 = a42b42 + a24b64, α43 = a43b43 + a34b54, α45 = a54b34 + a45b45, α46 = a64b24 + a46b46,

α47 = a74b14 + a47b47, β41 = c41d41 + c14d63, β42 = c42d42 + c24d53, β43 = c43d33 + c44d43,

β44 = c43d34 + c44d44, β45 = c54d23 + c45d45, β46 = c64d13 + c46d46, α51 = a51b51 + a15b73,

α52 = a52b52 + a25b63, α53 = a53b33 + a55b53, α54 = a54b43 + a45b54, α55 = a53b35 + a55b55,

α56 = a65b23 + a56b56, α57 = a75b13 + a57b57, β51 = c51d51 + c15d62, β52 = c52d22 + c55d52,

β53 = c53d42 + c35d53, β54 = c54d32 + c45d54, β55 = c55d55 + c52d25, β56 = c65d12 + c56d56,

α61 = a61b11 + a66b61, α62 = a62b22 + a66b62, α63 = a63b52 + a36b63, α64 = c64d31 + c46d64,

α65 = a65b32 + a56b65, α66 = a62b26 + a66b66, α67 = a76b12 + a67b67, β61 = c61d11 + c66d61,

β62 = c62d51 + c26d62, β63 = c63d41 + c36d63, β64 = c64d31 + c46d64, β65 = c65d21 + c56d65,

β66 = c61d16 + c66d66, α71 = a71b11 + a77b71, α72 = a72b61 + a27b72, α73 = a73b51 + a37b73,

α74 = a74b41 + a47b74, α75 = a75b31 + a57b75, α76 = a76b21 + a67b76, α77 = a71b17 + a77b77.

Remark 3.1. The multiplication of all high hl-rhotrices by RMM follows the same pattern as
illustrated above. First, split them into their minors of R2 and M2, and multiply them accordingly,
using the row-column method. Second, return their corresponding products into the product
rhotrix. For example, each of the R6 has three minors of R2 and three minors of M2 which are
multiplied by the row-column method, and are returned to the product rhotrix, and so on.
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Theorem 3.1. Let Rn be an hl-rhotrix of dimension n for all n ∈ 2N. Then,

(a) there exist ρ =
n

2
number of minor rhotrices of dimension 2 (R2) in Rn.

(b) there exists

m =

j∑
i=0

i,

j =
n− 2

2
, number of 2-dimensional matrices (M2) in Rn.

Proof. (a) We prove using the principle of mathematical induction. From Definition 2.4, ρ is the
index corresponding to the number of R2 (minors) that can be obtained from Rn,∀ n ∈ 2N.
Then:

ρ =
n

2
⇒ 2ρ = n, ∀ n ∈ 2N.

Now, suppose ρ = 1, then n = 2 which is in 2N. This gives a rhotrix of dimension 2. So, it
is true for ρ = 1.
When ρ = 2, then n = 4 ∈ 2N. Then we have two minors of R2 in R4. It is true for ρ = 2.
Similarly, when ρ = 3, then n = 6 ∈ 2N. Then we have three minors of R2 in R6.
Suppose ρ = k, then n = 2k ∈ 2N. Then we have k minors of R2 in R2k. It is true also
for ρ = k.
Let ρ = k + 1, then n = 2(k + 1) ∈ 2N. Then we have k + 1 minors of R2 in R2(k+1). It
is also true for ρ = k + 1.
Thus, ρ =

n

2
holds for all values of n ∈ 2N.

(b) Consider

m =

j∑
i=0

i, j =
n− 2

2
.

If j = 0, then m = 0 ⇒ n = 2 ∈ 2N (from j =
n− 2

2
). Rightfully, there is no minor of

M2 in R2.
Suppose j = 1, then m = 1 ⇒ n = 4 ∈ 2N. That is, there is only one M2 in R4.
When j = 2, then m = 3 ⇒ n = 6 ∈ 2N, meaning there are three M2 in R6.
Now, suppose that j = k, then m = 0 + 1 + · · · + k =

∑k
i=0 i ⇒ n = 2(k + 1) ∈ 2N.

That is, there are
∑k

i=0 i number of M2 in R2(k+1).
Finally, suppose that j = k + 1, then m = 0 + 1 + · · · + 2k + 1 =

∑k+1
i=0 i ⇒ n =

2(k + 2) ∈ 2N. That is, there are
∑k+1

i=0 i number of M2 in R2(k+2).

Thus, m =
∑j

i=0 i, j =
n− 2

2
is true for all values of j and n ∈ 2N.

Remark 3.2. The proof of Theorem 3.1 above can be visualized from the illustrated examples in
Subsection 3.1 (i)–(v), for all values of n ∈ 2N.

Corollary 3.1. Let Rn be an hl-rhotrix of dimension n. Then, the index ρ of an hl-rhotrix Rn is
given as

ρ = j + 1, j =
n− 2

2
.

Proof. The proof follows from Theorem 3.1.
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Remark 3.3. Corollary 3.1 above shows the relationship between j and ρ, and that there is a
one-to-one correspondence between the two functions.

Generally, the properties of these hl-rhotrices are summarized in Table 1 below:

Table 1. Rediscovered properties of hl-rhotrices

Rn R2 M2

2 1 0

4 2 1

6 3 3

8 4 6

10 5 10
...

...
...

n n
2

∑j
i=0 i, j = n−2

2

3.2 Identity of hl-rhotrices under RMM operation

Consider an hl-rhotrix Rn of dimension n, if I is also an hl-rhotrix of dimension n such that:
Rn ◦ In = Rn = In ◦Rn. Then, I is an identity element. The procedure is as follows:
(i) We look for b11, b21, d11, b12, b31, d21, d12, b13, b32, d22, b23, b33, such that:

R4 ◦ S4 =

〈
a11

a21 c11 a12
a31 c21 c12 a13

a32 c22 a23
a33

〉
◦

〈
b11

b21 d11 b12
b31 d21 d12 b13

b32 d22 b23
b33

〉

=

〈
a11

a21 c11 a12
a31 c21 c12 a13

a32 c22 a23
a33

〉
.

Using the multiplication result for R4 ◦ I4, we obtain:

a11b11 + a13b31 = a11; a13b33 + a11b13 = a13; a31b11 + a33b31 = a31; a33b33 + a31b13 = a33;

c11d11 + c12d21 = c11; c21d11 + c22d21 = c21; c22d22 + c21d12 = c22; c12d22 + c11d12 = c12;

a21b12 + a12b32 = a21; a12b23 + a21b12 = a12. a32b21 + a23b32 = a32; a23b23 + a32b12 = a23;

and obtain the multiplication of the system as:
b11 = b33 = 1 and b31 = b13 = 0;

b21 = b23 = 1 and b32 = b12 = 0;

d11 = d22 = 1 and d21 = d12 = 0.
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Note that R4 ◦ I4 = R4 = I4 ◦R4. Thus, the identity rhotrix in this case is

I4 =

〈
1

1 1 0

0 0 0 0

0 1 1

1

〉
.

(ii) Following the same analysis as above, gives the identity of R6 as

I6 =

〈
1

1 1 0

1 1 1 0 0

0 0 0 0 0 0

0 0 1 1 1

0 1 1

1

〉
.

(iii) Similarly, the identity rhotrix of R8 is

I8 =

〈
1

1 1 0

1 1 1 0 0

1 1 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 0 1 1 1

0 1 1

1

〉
.

(iv) Then, identity rhotrix of R10 is

I10 =

〈
1

1 1 0

1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1

0 1 1

1

〉
.
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(v) The same analysis gives the identity rhotrix of R12 as

I12 =

〈
1

1 1 0

1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1

0 1 1

1

〉
.

Remark 3.4. RMM brings out the rich symmetric properties inherent in even-dimensional rhotrices.
In another paper, the symmetry in even-dimensional rhotrices and application in organic chemistry
is being investigated. For example, the structures of Buthane, Cyclobutane and Cyclooctane
correspond to the structures of R2, R4 and R6, respectively.

3.3 Inverse of hl-rhotrices under RMM

The concept of a unique identity hl-rhotrix under RMM guarantees the existence of an inverse
hl-rhotrix. If for an hl-rhotrix Rn, we can find another hl-rhotrix Sn, under the multiplication
operation, such that Rn ◦ Sn = Sn ◦Rn = In, then Sn is the inverse of Rn. For a particular n, we
consider the following:

(i) Let S4 be the inverse of R4. That is, given

S4 =

〈
b11

b21 d11 b12
b31 d21 d12 b13

b32 d22 b23
b33

〉
and R4 =

〈
a11

a21 c11 a12
a31 c21 c12 a13

a32 c22 a23
a33

〉
,

we must have R4 ◦ S4 = S4 ◦R4 = I4. Thus,〈
a11

a21 c11 a12
a31 c21 c12 a13

a32 c22 a23
a33

〉
◦

〈
b11

b21 d11 b12
b31 d21 d12 b13

b32 d22 b23
b33

〉
=

〈
1

1 1 0

0 0 0 0

0 1 1

1

〉
.
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Therefore, the inverse R−1
4 is〈

a33
A

a23
B

c22
C

−a12
B

−a31
A

−c21
C

−c12
C

−a13
A

−a32
B

c11
C

a21
B

a11
A

〉
,

where A = a11a33 − a31a13, B = a32a12 − a21a23 and C = c11c22 − c21c12 for a system in
R4.

(ii) Similarly, the inverse R−1
6 is〈

a44
A

a34
B

c33
C

−a12
B

a24
E

c23
F

a33
D

−c12
F

−a13
E

−a41
A

−c31
C

−a32
D

−a23
D

−c13
C

−a14
A

−a42
E

−c32
F

a22
D

c21
F

a31
E

−a43
B

c11
C

a21
B

a11
A

〉
,

where

A = a11a44 − a41a14; B = a21a34 − a43a12; C = c11c33 − c31c13; D = a22a33 − a32a23;

E = a31a24 − a42a13; F = c21c23 − c32c12.

for systems in R6.

(iii) The inverse R−1
8 is〈

a55
A

a45
B

c44
C

−a12
B

a35
D

c34
E

a44
F

−c12
E

−a13
D

a25
G

c24
H

a34
I

c33
J

−a23
I

−c13
H

−a14
G

−a51
A

−c41
C

−a42
F

−c32
J

−c23
J

−a24
F

−c14
C

−a15
A

−a52
G

−c42
H

−a43
I

c22
J

a32
I

c31
H

a41
G

−a53
D

−c43
E

a22
F

c21
E

a31
D

−a54
B

c11
C

a21
B

a11
A

〉
,

where

A = a11a55 − a51a15; B = a21a45 − a54a12; C = c11c44 − c41c14; D = a31a35 − a53a13;

E = c21c34 − c43c12; F = a22a44 − a42a24; G = a41a25 − a52a14; H = c31c24 − c42c13;

I = a32a34 − a43a23; J = c22c33 − c32c23.

for systems in R8.
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(iv) The inverse R−1
10 is〈

a66
A

a56
B

c55
C

−a12
B

a46
D

c45
E

a55
F

−c12
E

−a13
D

a36
G

c35
H

a45
I

c44
J

−a23
I

−c13
H

−a14
G

a26
K

c25
F

a35
M

c34
N

a44
O

−c23
N

−a24
M

−c14
L

−a15
K

−a61
A

−c51
C

−a52
L

−c42
J

−a43
O

−a34
O

−c24
J

−a25
F

−c15
C

−a16
A

−a62
K

−c52
L

−a53
M

−c43
N

a33
O

c32
N

a42
M

c41
L

a51
K

−a63
G

−c53
H

−a54
E

c22
J

a32
I

c31
H

a41
G

−a64
D

−c54
E

a22
F

c21
E

a31
D

−a65
B

c11
C

a21
B

a11
A

〉
,

where
A = a11a66 − a61a16; B = a21a56 − a65a12; C = c11c55 − c51c15; D = a31a46 − a64a13;

E = c21c45 − c54c12; F = a22a55 − a52a25; G = a41a36 − a63a14; H = c31c35 − c53c13;

I = a32a45 − a54a23; J = c22c44 − c42c24; K = a51a26 − a62a15; L = c41c25 − c52c14;

M = a42a35 − a53a24; N = c32c34 − c43c23; O = a33a44 − a43a34.

for the system in R10.

(v) Finally, the inverse R−1
12 is〈

a77
A

a67
B

c66
C

−a12
B

a57
D

c56
E

a66
F

−c12
E

−a13
D

a47
G

c46
H

a56
I

c55
J

−a23
I

−c13
H

−a14
G

a37
K

c36
L

a46
M

c45
N

a55
O

−c23
N

−a24
S

−c14
L

−a15
K

a27
P

c26
Q

a36
R

c35
S

a45
T

c44
U

−a34
T

−c24
S

−a25
R

−c15
Q

−a16
P

−a71
A

−c61
C

−a62
F

−c52
J

−a53
O

−c43
U

−c34
U

−a35
O

−c25
J

−a26
F

−c16
C

−a17
A

−a72
P

−c62
Q

−a63
R

−c53
S

−a54
T

c33
U

a43
T

c42
S

a52
R

c51
Q

a61
P

−a73
K

−c63
L

−a64
M

−c54
N

a33
O

c32
N

a42
M

c41
L

a51
K

−a74
G

−c64
H

−a65
I

c22
J

a32
I

c31
H

a41
G

−a75
D

−c65
E

a22
F

c21
E

a31
D

−a76
B

c11
C

a21
B

a11
A

〉
,

where
A = a11a77 − a71a17; B = a21a67 − a76a12; C = c11c66 − c61c16; D = a31a57 − a75a13;

E = c21c56 − c65c12; F = a22a66 − a62a26; G = a41a47 − a74a14; H = c31c46 − c64c13;

I = a32a56 − a65a23; J = c22c55 − c52c25; K = a51a37 − a73a15; L = c41c36 − c63c14;

M = a42a46 − a64a24; N = c32c45 − c54c23; O = a33a55 − a53a35; P = a61a27 − a72a16;

Q = c51c26 − c62c15; R = a52a36 − a63a25; S = c42c35 − c24c53; T = a43a45 − a54a34;

U = c33c44 − c43c34.

for the system in R12.
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4 Numerical examples

Example 1. Consider some numerical examples of R4 and R6, under RMM operation, and their
inverses.

(i) Let A4 =

〈
−2

3 4 5

7 8 −9 10

1 6 8

3

〉
and B4 =

〈
3

−5 5 2

8 7 9 10

6 −4 −5

4

〉
The multiplication of the minors of R2 and M2 in R4 are〈

−2

7 10

3

〉
◦

〈
3

8 10

4

〉
=

=

〈
−2× 3 + 10× 8

7× 3 + 3× 8 −2× 10 + 10× 4

7× 10 + 3× 4

〉
=

〈
74

45 20

82

〉
,

〈
4

8 −9

6

〉
◦

〈
5

7 9

−4

〉
=

=

〈
4× 5 +−9× 7

8× 5 + 6× 7 4× 9 +−9×−4

8× 9 + 6×−4

〉
=

〈
−43

82 72

48

〉
,

and[
3 5

1 8

]
◦

[
−5 2

6 −5

]
=

[
3×−5 + 5× 6 3× 2 + 5×−5

1×−5 + 8× 6 1× 2 + 8×−5

]
=

[
15 −19

43 −38

]
.

Thus,

A4 ◦B4 =

〈
74

15 −43 −19

45 82 72 20

43 48 −38

82

〉
(ii) To solve for A−1

4 , we follow the inverse operation of R4 as presented in 3.3 (i), and obtain:

A−1
4 =

〈
− 3

76

8
19

1
16

− 5
19

7
76

1
12

− 3
32

5
38

− 1
19

1
24

3
19

1
38

〉
.
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Example 2. Some text here?

(i) Let

A6 =

〈
2

0 1 3

4 −1 −1 4 −2

1 2 −1 2 1 1

2 −4 1 1 2

2 0 −1

3

〉
and B6 =

〈
1

2 1 1

3 −1 1 4 −2

1 1 1 2 −1 −1

−2 4 0 0 1

1 0 −1

1

〉
Then,

A6 ◦B6 =

〈
3

3 2 −3

16 17 1 −4 −10

4 2 0 −2 −1 −1

2 8 −2 −16 −2

3 −2 3

2

〉
(ii) To solve for A−1

6 , we follow the inverse operation of R6 in Subsection 3.3 (ii), and obtain,

A−1
6 =

〈
3
5

1
6 0 1

2

1
6

1
15 1 − 4

15
1
6

−1
5 1 1 −2 1

2 −1
5

−1
6

4
15 −1 − 1

15
1
3

1
3 −1

2 0

2
5

〉
(iii) To obtain the identity element, we have A6 ◦ A−1

6 = I6

A6 =

〈
2

0 1 3

4 −1 −1 4 −2

1 2 −1 2 1 1

2 −4 1 1 2

2 0 −1

3

〉
◦

〈
3
5

1
6 0 1

2

1
6

1
15 1 − 4

15
1
6

−1
5 1 1 −2 1

2 −1
5

−1
6

4
15 −1 − 1

15
1
3

1
3 −1

2 0

2
5

〉

=

〈
1

1 1 0

1 1 1 0 0

0 0 0 0 0 0

0 0 1 1 1

0 1 1

1

〉
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Example 3. Simple equation under RMM operation.

Find X4 if X4A4 = B4, where

A4 =

〈
−2

3 4 5

7 8 −9 10

1 6 8

3

〉
and B4 =

〈
3

−5 5 2

8 7 9 10

6 −4 −5

4

〉
,

X4 = A−1
4 B4.

Then,

A−1
4 =

1

−153

〈
3

8 6 −5

−7 −8 −9 −10

−1 4 3

−2

〉
.

Therefore, A−1
4 multiplies B4 gives

X4 =
1

−153

〈
3

8 6 −5

−7 −8 −9 −10

−1 4 3

−2

〉
◦

〈
3

−5 5 2

8 7 9 10

6 −4 −5

4

〉
,

X4 =
1

153

〈
71

70 33 −41

37 12 −78 10

−13 72 17

78

〉
.

5 Conclusion

This research work developed and examined a new multiplication method called the robust
multiplication method (RMM) for higher even-dimensional rhotrices and presented a number
of its properties. It also examined the concepts of minor rhotrices and their application in
hl-rhotrices. The recent articles [2, 3] on tertions and other algebraic objects are an eye-opener
to more properties of even-dimensional rhotrices. All even-dimensional rhotrices have an even
cardinality. That is, |Rn| = 1

2
(n2 + 2n) for all n ∈ 2N, for example, a rhotrix of dimension 2

has a cardinality of 4, and this corresponds to the cardinality of the quaternions A- and V-tertions
(AV-tertions). However, note that these objects are different from the popular structure of the
quaternion group (Qt) of cardinality 8. The foregoing naturally prompts questions like: Do all
even-dimensional AV-tertions correspond to even-dimensional rhotrices? Do all odd-dimensional
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AV-tertions correspond to heart-based (odd-dimensional) rhotrices? If the answers to these two
questions are in the affirmative, then AV-tertions are a generalization of both even- and odd-
dimensional rhotrices. At any rate, the quaternion AV-tertions is a meeting point between rhotrices
and tertions. Therefore, this is a call for representations of high-dimensional AV-tertions. We
project that the Robust Multiplication Method presented in this paper portends a wider
application of rhotrices in agriculture, exploration, theoretical chemistry and physics due to
its beautiful symmetries, and would be an alternative multiplication method for higher even-
dimensional AV-tertions.
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