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Abstract: The analytical study of the Pell number and the role of floor and ceiling functions into
their computation is examined. Closed expressions of Pell numbers were initially derived using
Binet’s formula, followed by an asymptotic behavior study of the sequence using this formula.
Taking into account the decreasing trend in the term |β|n = |1 −

√
2|n for large values of n, a

formula that closely approximates Pell numbers has been developed. In this context, relationships
between numbers are clarified using floor and ceiling functions. The accuracy with which various
theorems and lemmas mathematically prove these approximations is also included. The study
also looks at limit processes with emphasis placed upon the determining influence that the ratio
α = 1 +

√
2 has on the growth rate of the sequence.
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1 Introduction

The recursive sequences have provided deep links among mathematical structures. The Pell
numbers among these have seen continuous exploration over the ages by many mathematicians,
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mainly due to their link to Diophantine equations. From a number-theoretical point of view, the
Pell numbers are famous for being used in determining integer solutions to equations such as
x2 − 2y2 = 1 [1, 2].

The interaction between floor and ceiling functions with special sequences has caught the idea
of researchers in recent years. In this regard, T. Koshy has dealt very well with the work of these
functions in the relation of Fibonacci and Lucas numbers with integers [7]. It is, therefore, noted
that these studies have greatly influenced the use of similar approaches for Pell numbers and
demonstrated a great advantage of these functions in estimating numbers and learning relations
among integers. These functions are widely used in number theory, especially in their analysis
and prediction over relationships among integers [3, 8].

This paper intends to proceed further into the relationship of Pell numbers with the floor
and ceiling function. Numerical closure relationships yield numerical approximations that can
significantly enhance the precision of high-interval Pell numbers where n is large. Their solution
will open new roads at the intersection of number theory and analytical methods. They show how
these methods can be adapted to a much wider arena of social applications.

This work significantly adds to the understanding of recursive structures in number theory,
aiming at initially providing new ideas directed toward mathematical modeling and developing
algorithms.

2 Preliminaries

In this section, we will include the definitions and theorems that will be used throughout our
study.

Definition 2.1. ([5,6]). The floor value of a real number x, denoted by ⌊x⌋, is the greatest integer
less than or equal to x. The ceiling value of x, denoted by ⌈x⌉, is the smallest integer greater than
or equal to x. The floor value rounds x down, while the ceiling value rounds it up. If x /∈ Z, the
floor value of x is the nearest integer on the left of x on the number line, and the ceiling value is
the nearest integer on the right. The floor function is represented as f(x) = ⌊x⌋, and the ceiling
function as g(x) = ⌈x⌉, known respectively as the greatest integer function and the smallest
integer function.

Theorem 2.1. ([5]). Let x be any real number, and let n be any integer. Then:
1. ⌊n⌋ = n = ⌈n⌉;

2. ⌈x⌉ = ⌊x⌋+ 1 (x /∈ Z);

3. ⌊x+ n⌋ = ⌊x⌋+ n;

4. ⌈x+ n⌉ = ⌈x⌉+ n;

5.
⌊n
2

⌋
=

n− 1

2
, if n is odd;

6.
⌈n
2

⌉
=

n+ 1

2
, if n is odd.
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Definition 2.2. ([4]). Pell numbers are defined as a sequence Pn obtained through the following
recurrence relation:

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 (n ≥ 2).

This definition shows that the first few terms of the sequence are 0, 1, 2, 5, 12, 29, 70, . . . .

Pell numbers can be expressed in a closed form using the Binet formula [4]:

Pn =
αn − βn

2
√
2

,

where α = 1 +
√
2, β = 1−

√
2.

3 Main results

Since |β| < 1, the term βn tends to 0 for large values of n. Therefore, for large n, the following
approximation can be obtained:

Pn ≈ αn

2
√
2
.

Now, let us calculate αn

2
√
2

for the first ten values of n and observe if there is a pattern:

α1

2
√
2
= 0.853553390593274,

α2

2
√
2
= 2.06066017177982,

α3

2
√
2
= 4.97487373415292,

α4

2
√
2
= 12.0104076400857,

α5

2
√
2
= 28.9956890143242,

α6

2
√
2
= 70.0017856687341,

α7

2
√
2
= 168.999260351792,

α8

2
√
2
= 408.000306372319,

α9

2
√
2
= 984.99987309643,

α10

2
√
2
= 2378.00005256518.

Let us add 1

2
to the expression αn

2
√
2

to see if there is a pattern:

α1

2
√
2
+

1

2
≈ 1.353553390593274,

α2

2
√
2
+

1

2
≈ 2.56066017177982,

α3

2
√
2
+

1

2
≈ 5.47487373415292,

α4

2
√
2
+

1

2
≈ 12.5104076400857,

α5

2
√
2
+

1

2
≈ 29.4956890143242,

α6

2
√
2
+

1

2
≈ 70.5017856687341,

α7

2
√
2
+

1

2
≈ 169.499260351792,

α8

2
√
2
+

1

2
≈ 408.500306372319,

α9

2
√
2
+

1

2
≈ 985.49987309643,

α10

2
√
2
+

1

2
≈ 2378.50005256518.

328



Now, by rounding down the above expression for each n, let us try to find a pattern:⌊
α1

2
√
2
+

1

2

⌋
= 1,

⌊
α2

2
√
2
+

1

2

⌋
= 2,⌊

α3

2
√
2
+

1

2

⌋
= 5,

⌊
α4

2
√
2
+

1

2

⌋
= 12,⌊

α5

2
√
2
+

1

2

⌋
= 29,

⌊
α6

2
√
2
+

1

2

⌋
= 70,⌊

α7

2
√
2
+

1

2

⌋
= 169,

⌊
α8

2
√
2
+

1

2

⌋
= 408,⌊

α9

2
√
2
+

1

2

⌋
= 985,

⌊
α10

2
√
2
+

1

2

⌋
= 2378.

Therefore, we can argue that: ⌊
αn

2
√
2
+

1

2

⌋
= Pn.

The following theorem will confirm this result. We will need the lemma below for the proof.

Lemma 3.1. It holds that:
0 <

βn

2
√
2
+

1

2
< 1

Proof. As known, β = 1−
√
2. Thus:

−1

2
< β < 0.

As a result:

0 < |β| < 1

2
and 0 <

|βn|
2
√
2
<

1

2
.

Case1: When n is even

0 <
βn

2
√
2
<

1

2
.

Therefore:
1

2
<

βn

2
√
2
+

1

2
< 1 ⇒ 0 <

βn

2
√
2
+

1

2
< 1.

Case2: When n is odd

0 < − βn

2
√
2
<

1

2
.

This results in:
−1

2
<

βn

2
√
2
< 0 ⇒ 0 <

βn

2
√
2
+

1

2
<

1

2
.

Hence, in both cases:

0 <
βn

2
√
2
+

1

2
< 1.

Thus, the proof is complete.
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Theorem 3.1. It holds that:

Pn =

⌊
αn

2
√
2
+

1

2

⌋
Proof. According to the Binet formula,

Pn =
αn − βn

2
√
2

.

This implies:

Pn =

(
αn

2
√
2
+

1

2

)
−
(

βn

2
√
2
+

1

2

)
.

Therefore,
αn

2
√
2
+

1

2
= Pn +

(
βn

2
√
2
+

1

2

)
.

According to Lemma 3.1, it holds that

0 <
βn

2
√
2
+

1

2
< 1.

Therefore,

Pn <
αn

2
√
2
+

1

2
< Pn + 1.

Thus, we arrive at:

Pn =

⌊
αn

2
√
2
+

1

2

⌋
.

For example,
α10

2
√
2
+

1

2
≈ 2378.50005256518.

This results in: ⌊
α10

2
√
2
+

1

2

⌋
= 2378 = P10.

As expected, this outcome is correct. For real numbers x that are not integers, according to
Theorem 2.1(2), ⌊x⌋ = ⌈x⌉ − 1 holds. Therefore, we derive:

Pn =

⌈
αn

2
√
2
+

1

2

⌉
− 1.

However, for integers, according to Theorem 2.1(4) ⌈x+ n⌉ = ⌈x⌉+ n holds,

Pn =

⌈
αn

2
√
2
+

1

2
− 1

⌉
=

⌈
αn

2
√
2
− 1

2

⌉
.

This leads to the following corollary.

Corollary 3.1. It holds that:

Pn =

⌈
αn

2
√
2
− 1

2

⌉
.
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This formula is used for calculating Pn for Pell numbers:⌈
α1

2
√
2

⌉
= P1,

⌊
α2

2
√
2

⌋
= P2,⌈

α3

2
√
2

⌉
= P3,

⌊
α4

2
√
2

⌋
= P4,⌈

α5

2
√
2

⌉
= P5,

⌊
α6

2
√
2

⌋
= P6,⌈

α7

2
√
2

⌉
= P7,

⌊
α8

2
√
2

⌋
= P8,⌈

α9

2
√
2

⌉
= P9,

⌊
α10

2
√
2

⌋
= P10.

The following corollary contains this observation.

Corollary 3.2. It holds that:⌊
α2n

2
√
2

⌋
= P2n and

⌈
α2n+1

2
√
2

⌉
= P2n+1.

Proof. According to Lemma 3.1, we know:

−1

2
<

−β2n

2
√
2

< 0.

This leads to:
α2n

2
√
2
− 1

2
<

α2n − β2n

2
√
2

<
α2n

2
√
2
.

Since P2n ∈ Z, we have:

P2n =

⌊
α2n

2
√
2

⌋
.

Similarly, when n → 2n+ 1:

0 <
−β2n+1

2
√
2

<
1

2
,

leading to:
α2n+1

2
√
2

<
α2n+1 − β2n+1

2
√
2

<
α2n+1

2
√
2

+
1

2
.

Thus, since P2n+1 ∈ Z:

P2n+1 =

⌈
α2n+1

2
√
2

⌉
.

Thus, the proof is complete.

Theorem 3.2. It holds that:

Pn+1 =

⌊
αPn +

1

2

⌋
.
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Proof. We have that:

αPn = α · α
n − βn

2
√
2

=
αn+1 − αβn

2
√
2

=
αn+1 − βn+1 + βn+1 − αβn

2
√
2

=
αn+1 − βn+1

2
√
2

+
βn−1(β2 −

−1︷︸︸︷
α · β)

2
√
2

= Pn+1 +
βn−1(

−2
√
2·β︷ ︸︸ ︷

β2 + 1)

2
√
2

= Pn+1 − βn.

Now, adding 1

2
to both sides of the equation αPn = Pn+1 − βn, we get:

αPn +
1

2
= Pn+1 +

(
1

2
− βn

)
.

Since 0 <
1

2
−βn <

1

2
, we have:⌊

αPn +
1

2

⌋
=

⌊
Pn+1 +

(
1

2
− βn

)⌋
.

Thus, we conclude:

Pn+1 =

⌊
αPn +

1

2

⌋
.

Corollary 3.3. It holds that:

lim
n→∞

Pn+1

Pn

= α.

Proof. From Theorem 3.2, we know that Pn+1 =
⌊
αPn +

1
2

⌋
. Therefore, when calculating the

limit:

lim
n→∞

Pn+1

Pn

= lim
n→∞

αPn +
1
2
+ θ

Pn

,

where θ ∈ (0, 1), meaning that θ is a fixed error term. Continuing with the expression:

lim
n→∞

Pn+1

Pn

= lim
n→∞

(
α +

1

2Pn

+
θ

Pn

)
.

As Pn approaches infinity, the terms 1

2Pn
and θ

Pn
approach zero. The limit becomes:

lim
n→∞

(α + 0 + 0) = α.

Thus, the proof is complete.
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4 Conclusion

In the present paper, a analysis of the analytic framework of the Pell number sequence is carried
out. It greatly illustrates several amazing relationships between these numbers and the floor
and ceiling functions. First, the closed forms derived through the Binet formula allowed for
the prediction of Pell numbers with precision for great values of n. The made analysis gave an
easy explanation of how parameters α = 1 +

√
2 and β = 1 −

√
2 result in the behavior of the

sequence. More precisely, the decaying trend of the term |β|n with dominant participation of α
in the asymptotic limit process gives the important information concerning the growth rate and
other characteristics of the sequence.

The theorems and lemmas introduced in the given work exemplify the exact calculation of
the Pell number series with the help of floor and ceiling functions, where both methodologies
have their mathematical justification. The outcome addresses certain fundamental problems in
number theory and provides an extensive platform for understanding the recurrence relations
while processing such sequences using analytic methods. Therefore, the paper constitutes a
worthy addition to the related literature regarding asymptotic analysis performed on sequences
defined by recurrence, as in the case of the Pell numbers.

Future work can be done by seeing how similar methods apply to other recurrence relations or
to more complicated sequences. New directions not only are opened in theoretical mathematics
but in all the fields where such sequences occur, such as cryptography, algorithmic analysis, and
combinatorial number theory
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