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1 Introduction

The usual sequence of Fibonacci numbers {Fn}n≥0 is defined by the well-known recursive relation
of order 2, given by Fn = Fn−1 + Fn−2, for n ≥ 2, with initial conditions F0 = 0 and F1 = 1.
Since its appearance in connection with the famous problem of the evolution of the population of
rabbits, in the seminal work of Fibonacci, the sequence of Fibonacci numbers has been widely
studied. Several properties and applications of the Fibonacci numbers have been established
in various papers of the literature (see, for instance, [7, 8]). Moreover, this sequence has been
the subject of many generalizations, and it has been the source of several identities in additive
number theory. Among the generalizations of the sequence of Fibonacci numbers that have been
proposed in the literature, there is the connection with a periodicity condition linked to a particular
parametrization.

Indeed, Edson and Yayenie in [5] introduce a new generalization for the sequence of Fibonacci
numbers, labelled bi-periodic Fibonacci sequence, which is defined as follows. Let a and b be
two non-zero real numbers and consider the sequence {F (a,b)

n }n≥0 defined by

F (a,b)
n =

{
aF

(a,b)
n−1 + F

(a,b)
n−2 , if n is even,

bF
(a,b)
n−1 + F

(a,b)
n−2 , if n is odd,

(1)

for n≥ 2, with initial conditions given by F
(a,b)
0 =0 and F

(a,b)
1 =1. When a= b=1, we have the

classical Fibonacci sequence, and when a= b= 2, we get the Pell numbers. If we set a= b= k

for some positive integer k, we get the k-Fibonacci numbers, representing a generalization of the
classical Fibonacci numbers. The sequence of bi-periodic Fibonacci numbers has been studied
with the aid of several interesting approaches (see, for example, [4, 5, 10]), and k-periodic binary
recurrences (see [6]). Recently, in [10] a matrix formulation approach of Expression (1) allows
to obtain various properties of the bi-periodic Fibonacci numbers, especially their analytic and
combinatorial formulations.

In the present study, we are interested in the generalization of the bi-periodic Fibonacci
sequence (1) as follows. Let p ≥ 2 be an integer number and sj (0 ≤ j ≤ p − 1), ajk
(0 ≤ j ≤ p − 1, 1 ≤ k ≤ p − 1) be two finite sequences of real numbers, and set [s] = [sj] and
[a] = [aj,k]. For every fixed j (0 ≤ j ≤ p− 1), let {G([s],[a])

np+j }n≥0 be the sequence, whose general
term G

([s],[a])
np+j is defined as

G
([s],[a])
np+j = aj,1G

([s],[a])
np+j−1 + aj,2G

([s],[a])
np+j−2 + · · ·+ aj,p−1G

([s],[a])
np+j−p+1 + sjG

([s],[a])
np+j−p, (2)

for n ≥ 1, where G
([s],[a])
k (0 ≤ k ≤ p− 1) are the initial conditions, more explicitly,
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Gm =



a0,1G
([s],[a])
np−1 + a0,2G

([s],[a])
np−2 + . . .+ a0,p−1G

([s],[a])
np−p+1 + s0G

([s],[a])
np−p , for m = np,

a1,1G
([s],[a])
np + a1,2G

([s],[a])
np−1 + . . .+ a1,p−1G

([s],[a])
np−p+2 + s1G

([s],[a])
np−p+1, for m = np+ 1,

...

ap−1,1G
([s],[a])
np+p−2 + ap−1,2G

([s],[a])
np+p−3 + . . .+ ap−1,p−1G

([s],[a])
np + sp−1G

([s],[a])
np−1 ,

for m = np+ p− 1.

Our main goal is to provide some properties of the generalized p-periodic linear recursive
sequences {G([s],[a])

n }n≥0, using the matrix formulation of Expression (2). Properties of these
sequences are provided, using the Rachidi et. al. methods (see, [2, 3, 10]). More specifically, the
matrix formulation of Expression (2) leads to the computation of the matrix powers. Therefore,
our fundamental tool is based on some properties of the Fibonacci–Horner decomposition for
computing the matrix powers, in connection with a specific weighted linear recursive sequence
of Fibonacci type. Therefore, the analytic Binet representation and the combinatorial formula, as
well as some identities of the p-periodic Fibonacci numbers are established. For illustrating our
general results, properties of some special cases are studied and illustrative numerical example
are given.

This paper is organized as follows. In Section 2 we are concerned with the matrix formulation
of the p-periodic Fibonacci numbers. Section 3 is devoted to the linear and combinatorial
formulation of p-periodic Fibonacci numbers. Section 4 is devoted to the analytic representation
of the sequence (2). In Section 5, we provide some properties of the 3-periodic Fibonacci
sequences. Some concluding remarks and perspectives are exhibited in Section 6.

2 Matrix formulation of the bi-periodic Fibonacci sequence

2.1 Two special cases

For reason of clarity and conciseness, we present in this sub-section some special cases on the
matrix formulation of the p-periodic Fibonacci numbers for p = 2, 3, respectively.

Special case p = 2. For p = 2 we show easily that Expression (2) is reduced to the bi-periodic
Fibonacci sequence (1). That is, let us consider the integers s0, s1 and a01 = a, a11 = b, and set
[a] = [a01, a11]. Then, Expression (2) takes the form

G(2,[a])
n =

{
aG

(2,[a])
n−1 + s0G

(2,[a])
n−2 , if n is even,

bG
(2,[a])
n−1 + s1G

(2,[a])
n−2 , if n is odd.

(3)

Let us consider the vector columns Y (2,[a])
n =

[
G

(2,[a])
2n , G

(2,[a])
2n−1

]T
, Z(2,[a])

n =
[
G

(2,[a])
2n+1 , G

(2,[a])
2n

]T
,

(here and in the sequel the notation [c1, . . . , cp]
T means the transpose of the vector line [c1, . . . , cp].)

and the two matrices A0 =

[
a s0
1 0

]
and A1 =

[
b s1
1 0

]
. We can show that the sequence of numbers

{G(2,[a])
n }n≥0 defined as in Expression (3) (or Expression (1)) is equivalent to the following two
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matrix equations Y (2,[a])
n = A0Z

(2,[a])
n−1 and Z(2,[a])

n = A1Y
(2,[a])
n . Therefore, we have Z(2,[a])

n =

A1Y
(2,[a])
n = A1A0Z

(2,[a])
n−1 . This implies that we have Z(2,[a])

n = AZ
(2,[a])
n−1 , where A = A1A0 =[

ab+ s1 bs0
a s0

]
.

Special case p = 3. Let sj (0 ≤ j ≤ 2) and ajk (0 ≤ j ≤ 2, 1 ≤ k ≤ 2) be two sequences of real

numbers. Then, the related sequence {G(3,[a])
n }n≥0 is given by

G(3,[a])
n =


a01G

(3,[a])
n−1 + a02G

(3,[a])
n−2 + s0G

(3,[a])
n−3 if n = 3k,

a11G
(3,[a])
n−1 + a12G

(3,[a])
n−2 + s1G

(3,[a])
n−3 if n = 3k + 1,

a21G
(3,[a])
n11 + a22G

(3,[a])
n−2 + s2G

(3,[a])
n−3 if n = 3k + 2.

(4)

Let us consider the following vector columns

X(3,[a])
n =

[
G

(3,[a])
3n , G

(3,[a])
3n−1 , G

(3,[a])
3n−2

]T
,

Y (3,[a])
n =

[
G

(3,[a])
3n+1 , G

(3,[a])
3n , G

(3,[a])
3n−1

]T
,

Z(3,[a])
n =

[
G

(3,[a])
3n−1 G

(3,[a])
3n−2 , G

(3,[a])
3n−3

]T
,

and the square matrices

A0 =

a01 a02 s0
1 0 0

0 1 0

 , A1 =

a11 a12 s1
1 0 0

0 1 0

 , A2 =

a21 a22 s2
1 0 0

0 1 0

 .

Hence, the matrix formulation of the three expressions of (4) can be written under the following
matrix equation X(3,[a])

n = A0Z
(3,[a])
n , Y (3,[a])

n = A1X
(3,[a])
n and Z

(3,[a])
n+1 = A2Y

(3,[a])
n . The first two

preceding matrix formulas show that Y (3,[a])
n = A1X

(3,[a])
n = A1A0Z

(3,[a])
n . Therefore, for every

n ≥ 0, we obtain Z
(3,[a])
n+1 = A2Y

(3,[a])
n = A2A1A0Z

(3,[a])
n , or equivalently

Z
(3,[a])
n+1 = AZ(3,[a])

n , where A = A2A1A0. (5)

These special cases will be used in the next sections for providing results on the p-periodic
Fibonacci sequences of order r.

2.2 General setting: Matrix formulation of (2)

Let {G([s],[a])
n }n≥0 be the p-periodic Fibonacci sequence defined as in (2). We consider the

following column matrices X(j)
n = [G

([s],[a])
np+j , G

([s],[a])
np+j−1, . . . , G

([s],[a])
np+j−p+1]

T , where −1 ≤ j ≤ p− 1.

For j = −1 in the former expression, we have X(−1)
n = X

(p−1)
n−1 . Let us consider the square matrix

Aj =


aj1 aj2 . . . ajp−1 sj
1 0 . . . 0 0

0 1 0 . . . 0
... . . . . . . . . .

...
0 . . . 0 1 0

 . (6)
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Taking into account Expression (2), we show that X(j)
n = AjX

(j−1)
n . Therefore, we have X(0)

n =

A0X
(−1)
n = A0X

(p−1)
n−1 , X(1)

n = A1X
(0)
n = A1A0X

(p−1)
n−1 , and X(2)

n = A2X
(1)
n = A2A1A0X

(p−1)
n−1 .

By iteration of the preceding process, we get

X(k)
n = AkX

(k−1)
n =

[ ∗,k∏
j=0

Aj

]
X

(p−1)
n−1 ,

where
∏∗,k

j=0Aj = Ak · · ·A1A0. The notation “
∏∗,p−1

j=0 ” is due to the non-commutativity of the
matrix product. Therefore, we have the following proposition.

Proposition 2.1. Under the previously formulated conditions, for every n ≥ 1, we have

X(p−1)
n = AX

(p−1)
n−1 , where A =

∗,p−1∏
j=0

Aj, (7)

The matrix formulation (7) of the p-periodic Fibonacci sequence (2), as well as, the matrix
formulation of its special cases, will be used in the next sections for studying analytic and
combinatorial expressions of the p-periodic Fibonacci sequence and the bi-periodic Leonardo
sequence. Moreover, some new identities related to these sequences will be provided.

3 The linear and combinatorial expression of sequences (2)
via the Fibonacci–Horner decomposition

Let {G([s],[a])
n }n≥0 be the generalized p-periodic linear recursive sequence defined as in (2).

Expression (7) implies that we have

X(p−1)
n = AnX

(p−1)
0 , where A =

∗,p−1∏
j=0

Aj, (8)

where X
(p−1)
0 is the vector column X

(p−1)
0 = [G

([s],[a])
p−1 , G

([s],[a])
p−2 , . . . , G

([s],[a])
0 ]T . In addition, the

computation of the entries of the powers An of the matrix A =
∏∗,p−1

j=0 Aj , can be also obtained
from the so-called Fibonacci–Horner decomposition introduced in [2, 9].

Lemma 3.1. (Rachidi et al. [2, 9]) Let M be a square p× p matrix and

P (z) = zp − a0z
p−1 − · · · − ap−1

its characteristic polynomial. Then, the Fibonacci–Horner decomposition of Mn for n ≥ r, is
given byMn = unM0 + un−1M1 + · · ·+ un−p+1Mp−1, for every n ≥ p,

M0 = Ip ; Mi = M i − a0M
i−1 − · · · − ai−1Ip, for every i = 1, · · · , p− 1,

(9)

where Ip is the identity matrix of order p× p and the sequence {un}n≥0 is defined by
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un =
∑

k0+2k1+···+pkp−1=n−p+1

(
k0 + k1 + · · ·+ kp−1

k0, k1, . . . , kp−1

)
ak00 ak11 · · · akp−1

p−1 , (10)

for every n ≥ 1, with up−1 = 1 and un = 0 for 0 ≤ n ≤ p− 2, and(
k0 + k1 + · · ·+ kp−1

k0, k1, . . . , kp−1

)
=

(k0 + k1 + · · ·+ kp−1)!

k0!k1! · · · kp−1!
ak00 ak11 · · · akp−1

p−1 .

It was established in [9] that the sequence {un}n≥0 defined by (10) satisfies the following
linear recurrence relation

un+1 = a0un + a1un−1 + · · ·+ ap−1un−p+1, for every n ≥ p− 1, (11)

in other words, {un}n≥0 is a recurrence of order p. It is usually, denoted by un = ρ(n+ 1, p).

Application of Lemma 3.1, namely Expression (9), for computing of the matrix powers An of
A =

∏∗,p−1
j=0 Aj , allows us to obtain the following result.

Proposition 3.1. Let A =
∏∗,p−1

j=0 Aj be the matrices defined by (7) and

P (z) = zp − a0z
p−1 − · · · − ap−1

its characteristic polynomial. Then, the Fibonacci–Horner decomposition of An, for n ≥ p, is
given by An = unA

(0) + un−1A
(1) + · · ·+ un−p+1A

(p−1), for every n ≥ p,

A(0) = Ip ; A
(i) = Ai − a0A

i−1 − · · · − ai−1Ip, for i = 1, · · · , p− 1,
(12)

where Ip is the identity matrix of order p× p and the sequence {un}n≥0 is defined by (10)–(11).

For every j (1 ≤ j ≤ p − 1) we set Aj = (γ
(j)
h,k)1≤h,k≤p and A(j) = (α

(j)
h,k)1≤h,k≤p. Following

Expression (12), we get

α
(j)
h,k = γ

(j)
h,k − a0γ

(j−1)
h,k − · · · − aj−2γ

(1)
h,k − aj−1δhk, (13)

where δhk is the Kronecker symbol. Combining Expressions (8), namely, X(p−1)
n = AnX

(p−1)
0 ,

and (12) we obtain

X(p−1)
n = unA

(0)X
(p−1)
0 + un−1A

(1)X
(p−1)
0 + · · ·+ un−r+1A

(p−1)X
(p−1)
0 , (14)

for every n ≥ r, where A =
∏∗,p−1

j=0 Aj and {un}n≥0 is the sequence defined by (10)–(11). For
every j (1 ≤ j ≤ p− 1), we have

A(j)X
(p−1)
0 =


α
(j)
1,1 α

(j)
1,2 . . . α

(j)
1,p

α
(j)
2,1 α

(j)
2,2 . . . α

(j)
2,p

...
... . . . ...

α
(j)
p,1 α

(j)
1,2 . . . α

(j)
p,p



G

([s],[a])
p−1

G
([s],[a])
p−2

...
G

([s],[a])
0

 =


ω
(j)
1

ω
(j)
2
...

ω
(j)
p

 ,

where

ω
(j)
h =

p∑
k=1

α
(j)
h,kG

([s],[a])
p−k , (15)

with the α
(j)
h,k given by (13), namely α

(j)
h,k = γ

(j)
h,k −

∑j−1
r=0 arγ

(j−r−1)
r,k with γ

(0)
h,k = δhk. Therefore,

we get the following matrix equation
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X(p−1)
n = AnX

(p−1)
0 = unX

(p−1)
0 +

p−1∑
j=1

un−jA
(j)X

(p−1)
0 .

Since X
(p−1)
n = [G

([s],[a])
np+p−1, G

([s],[a])
np+p−2, . . . , G

([s],[a])
np ]T , we have

G
([s],[a])
np+p−1

G
([s],[a])
np+p−2

...
G

([s],[a])
np

 = un


G

([s],[a])
p−1

G
([s],[a])
p−2

...
G

([s],[a])
0

+

p−1∑
j=1

un−j


ω
(j)
1

ω
(j)
2
...

ω
(j)
p

 =


unG

([s],[a])
p−1 +

∑p−1
j=1 un−jω

(j)
1

unG
([s],[a])
p−2 +

∑p−1
j=1 un−jω

(j)
2

...
unG

([s],[a])
0 +

∑p−1
j=1 un−jω

(j)
p

 .

In summary, we get the following result.

Theorem 3.1. Let {G([s],[a])
n }n≥0 be the generalized p-periodic linear recursive sequence defined

as in (2). Then, for every h (0 ≤ h ≤ p− 1), we have

G
([s],[a])
np+p−h = unG

([s],[a])
p−h +

p−1∑
j=1

un−jω
(j)
h , (16)

where {un}n≥0 is the sequence defined by (10)–(11) and ω
(j)
h are given by (15).

As a consequence of Expression (10) and Theorem 3.1, namely formula (16), we derive the
combinatorial expression of the p-periodic Fibonacci sequence (2).

Corollary 3.1. Let {G([s],[a])
n }n≥0 be the generalized p-periodic linear recursive sequence defined

as in (2). Then, for every h (0 ≤ h ≤ p− 1), the following combinatorial formula holds

G
([s],[a])
np+p−h = ρ(n+ 1, r)G

([s],[a])
p−h +

p−1∑
j=1

ρ(n− j + 1, r)ω
(j)
h , (17)

where ρ(n+ 1, r) is given by (10) and ω
(j)
h are given by (15) (and (13)).

In the next section we illustrate the general results of this section by studying the special case
p = 2, namely, the special case of bi-periodic Fibonacci numbers.

3.1 Special case p = 2

In the special case p = 2, we can apply the Fibonacci–Horner decomposition (12) to the related

matrix A=A1A0=

[
ab+ s1 bs0

a s0

]
, whose characteristic polynomial is P (z) = z2 − a0z − a1,

where a0 = ab+ s0 + s1 and a1 = −s0s1. As a corollary of Proposition 3.1, we get the following
corollary.

Corollary 3.2. For every n ≥ 2, we have An = unA
(0) + un−1A

(1), whereA(0) = I2 and A(1) = A− a0I2,

un+1 = a0un + a1un−1,
(18)

where I2 is the 2× 2 identity matrix, with u0 = 0, u1 = 1 and a0 = ab+ s0 + s1, a1 = −s0s1 are
the coefficients of the characteristic polynomial of the matrix A = A1A0.
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Following Expression (8), namely X
(p−1)
n = An.X

(p−1)
0 , where A =

∏∗,p−1
j=0 Aj , we obtain a

linear formula for Z(2,[a])
n =t [G

(2,[a])
2n+1 , G

(2,[a])
2n ] as follows

Z(2,[a])
n = (unA

(0) + un−1A
(1))Z

(2,[a])
0 ,

for every n ≥ 2, where A(0), A(1) and {un}n≥0 are given as in (18) and Z
(2,[a])
0 =t [G

(2,[a])
1 , G

(2,[a])
0 ].

Since An = (un − a0un−1)I2 + un−1A, we get

Z(2,[a])
n = AnZ

(2,[a])
0 = (un − a0un−1)Z

(2,[a])
0 + un−1AZ

(2,[a])
0 ,

for every n ≥ 2. A direct computation implies[
G

(2,[a])
2n+1

G
(2,[a])
2n

]
= (un − a0un−1)

[
G

(2,[a])
1

G
(2,[a])
0

]
+ un−1

[
(ab+ s1)G

(2,[a])
1 + bs0G

(2,[a])
0

aG
(2,[a])
1 + s0G

(2,[a])
0

]
.

In addition, application of Expression (16) allows us to obtainG
(2,[a])
2n+1 = bs0un−1G

(2,[a])
0 + (un + (ab− a0 + s1)un−1)G

(2,[a])
1

G
(2,[a])
2n = (un + (s0 − a0)un−1)G

(2,[a])
0 + aun−1G

(2,[a])
1 .

In summary, since a0 = ab+ s0 + s1, a direct computation allows us to the following result.

Proposition 3.2. Under the previously formulated conditions, the linear formula of the bi-periodic
Fibonacci numbers is given byG

(2,[a])
2n+1 = bs0un−1G

(2,[a])
0 + (un − s0un−1)G

(2,[a])
1

G
(2,[a])
2n = (un − (ab+ s1)un−1)G

(2,[a])
0 + aun−1G

(2,[a])
1 .

The combinatorial expression of the bi-periodic Fibonacci numbers is derived as in Corollary
3.1, namely, Expression (17). That is, since un = ρ(n + 1, 2), for every n ≥ 2, with u0 = 0 and
u1 = 1, we have the following corollary.

Corollary 3.3. Let {G(2,[a])
n }n≥0 be the bi-periodic Fibonacci sequence defined as in (1), of where

initial conditions G
(2,[a])
j (0 ≤ j ≤ 2). Then, the combinatorial formula of the bi-periodic

Fibonacci numbers is given byG
(2,[a])
2n+1 = bs0ρ(n, 2)G

(2,[a])
0 + [ρ(n+ 1, 2)− s0ρ(n, 2)]G

(2,[a])
1

G
(2,[a])
2n = [ρ(n+ 1, 2)− (ab+ s1)ρ(n, 2)]G

(2,[a])
0 + aρ(n, 2)G

(2,[a])
1 ,

where ρ(n+1, 2) =
∑

k0+2k1=n−1

(
k0 + k1
k0, k1

)
(ab+s0+s1)

k0(−s0s1)
k1 , with ρ(1, 2) = 0, ρ(2, 2) = 1.
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4 Analytic expression of (2) via the Fibonacci–Horner
decomposition: The case of simple roots

4.1 General setting

Let {G([s],[a])
n }n≥0 be the generalized p-periodic linear recursive sequence (2) and consider its

matrix formulation given by Expression (7), namely, X(p−1)
n = AX

(p−1)
n−1 . This former expression

implies that we have Expression (8), i.e., X
(p−1)
n = AnX

(p−1)
0 , where A =

∏∗,p−1
j=0 Aj of

characteristic polynomial P (z) = zp−a0z
p−1−· · ·−ap−1, with Aj is the companion matrix (6).

Let us consider the Fibonacci–Horner decomposition (12) of the powers An, for n ≥ p, namelyAn = unA
(0) + un−1A

(1) + · · ·+ un−r+1A
(p−1), for every n ≥ p,

A(0) = Ip ; A
(i) = Ai − a0A

i−1 − · · · − ai−1Ip, for every i = 1, . . . , p− 1,

where Ip is the identity matrix of order p× p and the sequence {un}n≥0 is defined by (10)–(11).
Note that P (z) = zp − a0z

p−1 − · · · − ap−1 is also the characteristic polynomial of the sequence
{un}n≥0.

Suppose that the roots of the polynomial P (z) = zp − a0z
p−1 − · · · − ap−1 are simple. In

the aim to provide an explicit formula of the analytic of the fundamental solution, we will use the
result of [1] and [3, Theorem 2.2]. Indeed, the analytic formula of v(r)n is given in the following
lemma.

Lemma 4.1. (Rachidi et al.) Suppose that the roots λ1, . . . , λr of the characteristic polynomial
P (z) = zp−a1z

p−1−· · ·−ap−2z−ar−1 (ap−1 ̸= 0) satisfy λi ̸= λj for i ̸= j. Then, the analytic
Binet formula of the general term un of the sequence {un}n≥0 is given by

un =

p∑
i=1

λn
i

P ′ (λi)
=

p∑
i=1

λn
i∏

k ̸=i

(λi − λk)
, for every n ≥ p, (19)

with up−1 = 1, un = 0 for 0 ≤ n ≤ p− 2, where P ′(z) is the derivative of P (z).

Application of Lemma 4.1 to result of Theorem 3.1, namely to Expression (16) we can
formulate the analytic formula of the p-periodic Fibonacci sequence defined as in (2) as follows.

Theorem 4.1. Let {G([s],[a])
n }n≥0 be the generalized p-periodic linear recursive sequence defined

as in (2). Then, for every s (0 ≤ s ≤ p− 1), we have

G
([s],[a])
np+p−h =

 p∑
i=1

λn
i∏

k ̸=i

(λi − λk)

G
([s],[a])
p−h +

p−1∑
j=1

 p∑
i=1

λn−j
i∏

k ̸=i

(λi − λk)

ω
(j)
h , (20)

where {un}n≥0 is the sequence defined by (10)–(11) and the ω
(j)
s are given by (15).

Let us illustrate the general result of Theorem 4.1 by studying the special case of the bi-periodic
Fibonacci numbers.
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4.2 Special case p = 2

Let {G(2,[a])
n }n≥0 be the sequence of bi-periodic Fibonacci numbers defined by (1); here we use

the notation [a] = (a, b). Result of Proposition 3.2 shows that the linear formula of the bi-periodic
Fibonacci numbers is given byG

(2,[a])
2n+1 = bs0un−1G

(2,[a])
0 + (un − s0un−1)G

(2,[a])
1

G
(2,[a])
2n = (un − (ab+ s1)un−1)G

(2,[a])
0 + aun−1G

(2,[a])
1 ,

where {un}n≥0 is the recursive sequence (11), defined by a recursive relation of order 2, namely,
un+1 = a0un+a1un−1, for n ≥ 1, with u0 = 0 and u1 = 1, where a0 = ab+s0+s1, a1 = −s0s1.
For ∆a,b(s0, s1) = (ab + s0 + s1)

2 + 4s0s1 ≥ 0, the two distinct roots of the characteristic

polynomial P (z) = z2 − (ab + s0 + s1)z − s0s1 are given by λ1 =
ab+ s0 + s1 +

√
∆a,b(s0, s1)

2

and λ2 =
ab+ s0 + s1 −

√
∆a,b(s0, s1)

2
. Then, by applying formula (19), we show that the analytic

Binet formula of the sequence {un}n≥0 is given by un =
1√

∆a,b(s0, s1)
[λn

1 − λn
2 ] , for every n ≥ 0.

When ∆a,b(s0, s1) = 0 the unique double root is λ = λ1 = λ2 =
ab+ s0 + s1

2
. Hence, the analytic

Binet formula of the sequence {un}n≥0 is given by un = nλn−1, for every n ≥ 1.

Therefore, the preceding discussion, combined with Proposition 3.2, allows us to formulate
the analytic Binet formula of the bi-periodic Fibonacci numbers as follows. For ∆a,b(s0, s1) ̸= 0,
we have

G
(2,[a])
2n+1 =

bs0√
∆a,b(s0, s1)

[
λn−1
1 − λn−1

2

]
G

(2,[a])
0 +

1√
∆a,b(s0, s1)

([λn
1 − λn

2 ]− s0
[
λn−1
1 − λn−1

2

]
)G

(2,[a])
1

G
(2,[a])
2n =

1√
∆a,b(s0, s1)

([λn
1 − λn

2 ]− (ab+ s1)
[
λn−1
1 − λn−1

2

]
)G

(2,[a])
0 +

a√
∆a,b(s0, s1)

[
λn−1
1 − λn−1

2

]
G

(2,[a])
1 .

For ∆a,b(s0, s1) = 0, we have

G
(2,[a])
2n+1 = bs0nλ

n−1G
(2,[a])
0 + (nλn−1 − s0(n− 1)λn−2)G

(2,[a])
1 ,

G
(2,[a])
2n = (nλn−1 − (ab+ s1)(n− 1)λn−2)G

(2,[a])
0 + a(n− 1)λn−2G

(2,[a])
1 .

In summary, we have the following proposition.

Proposition 4.1. Let {G(2,[a])
n }n≥0 be the sequence of bi-periodic Fibonacci numbers defined by

(1), and ∆a,b(s0, s1) = (ab+s0+s1)
2+4s0s1. Then, for ∆a,b(s0, s1) = (ab+s0+s1)

2+4s0s1 > 0,
the analytic Binet formula of the bi-periodic Fibonacci numbers is given as follows

G
(2,[a])
2n+1 = bs0√

∆a,b(s0,s1)
Φn−1(λ1, λ2)G

(2,[a])
0 + 1√

∆a,b(s0,s1)
∆n(λ1, λ2)G

(2,[a])
1

G
(2,[a])
2n = 1√

∆a,b(s0,s1)
Ωn(λ1, λ2)G

(2,[a])
0 + a√

∆a,b(s0,s1)
Φn(λ1, λ2)G

(2,[a])
1 .

where λ1=
ab+ 1 +

√
∆a,b(s0, s1)

2
, λ2=

ab+ 1−
√
∆a,b(s0, s1)

2
, Φn(λ1, λ2) = λn

1−λn
2 , ∆n(λ1, λ2) =

Φn(λ1, λ2)− s0Φn−1(λ1, λ2) = (λ1 − s0)λ
n−1
1 − (λ2 − s0)λ

n−1
2 and Ωn(λ1, λ2) = Φn(λ1, λ2)−

(ab+ s1)Φn−1(λ1, λ2) = (λ1 − ab− s1)λ
n−1
1 − (λ2 − ab− s1)λ

n−1
2 .
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When ∆a,b(s0, s1) = 0, we haveG
(2,[a])
2n+1 = bs0nλ

n−1G
(2,[a])
0 + (nλn−1 − s0(n− 1)λn−2)G

(2,[a])
1 ,

G
(2,[a])
2n = (nλn−1 − (ab+ s1)(n− 1)λn−2)G

(2,[a])
0 + a(n− 1)λn−2G

(2,[a])
1 ,

where λ =
ab+ s0 + s1

2
.

5 Some considerations on the 3-periodic
linear recursive sequences

Let {G(3,[a])
n }n≥0 be the generalized 3-periodic linear recursive sequence defined as in (4). It

was established in Section 2 that the matrix formulation of expression the 3-periodic Fibonacci
sequence {G(3,[a])

n }n≥0 is given by (5). More precisely, this matrix expression is given by Z
(3,[a])
n+1 =

AZ(3,[a])
n , where A = A2A1A0. For reason of simplicity, we set a01 = α1, a02 = β1, a11 = α2,

a12 = β2 and a21 = α3, a22 = β3. Then, a direct matrix computation permits us to get

A = A2.A1.A0 =

(α2α1 + β2)α3 + α1β3 + 1 (α2β1 + 1)α3 + β1β3 α2α3

α1α2 + β2 α2β1 + 1 α2

α1 β1 1

 .

We have the following corollary of Proposition 3.1.

Corollary 5.1. For every n ≥ 3, we have An = unA
(0) + un−1A

(1) + un−2A
(2), whereA(0) = I3 and A(1) = A− a0I3, A

(2) = A2 − a0A− a1I3

un+1 = a0un + a1un−1 + a2un−2, for n ≥ 2,
(21)

where I3 is the 3 × 3 identity matrix, u0 = u1 = 0 and u2 = 1 are the initial conditions and a0,
a1, a2 the coefficients of the characteristic polynomial P (z) = z3− a0z

2− a1z− a2 of the matrix
A = A2A1A0.

A direct computation, using Expression (21), implies that we have

An = a2un−3I3 + (un−1 − a0un−2)A+ un−3A
2,

for every n ≥ 3. For reason of convenience, we set A = (γh,k)1≤h,k≤p, A
2 = (γ

(2)
h,k)1≤h,k≤p and

An = (θh,k(n))1≤h,k≤p, for n ≥ 3. Therefore, a straightforward computation permits to getθh,h(n) = a2un−3 + (un−1 − a0un−2)γh,h + un−2γ
(2)
h,h, for 1 ≤ h ≤ 3

θh,k(n) = (un−1 − a0un−2)γh,k + un−2γ
(2)
h,k, for 1 ≤ h ̸= k ≤ 3

(22)

Moreover, Expression (5) shows that Z(3,[a])
n = AnZ

(3,[a])
0 , for every n ≥ 0, where Z

(3,[a])
0 =[

G
(3,[a])
2 , G

(3,[a])
1 , G

(3,[a])
0

]T
. In summary, we get the following property.
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Proposition 5.1. Let {G(3,[a])
n }n≥0 be the generalized 3-periodic linear recursive sequence defined

as in (4), of initial conditions G(3,[a])
2 , G

(3,[a])
1 , G

(3,[a])
0 . Then, the linear recursive formulas of the

numbers G(3,[a])
3n+2 , G(3,[a])

3n+1 and G
(3,[a])
3n are given as

G
(3,[a])
3n+2 = θ1,1(n)G

(3,[a])
2 + θ1,2(n)G

(3,[a])
1 + θ1,3(n)G

(3,[a])
0 ,

G
(3,[a])
3n+1 = θ2,1(n)G

(3,[a])
2 + θ2,2(n)G

(3,[a])
1 + θ2,3(n)G

(3,[a])
0 ,

G
(3,[a])
3n = θ3,1(n)G

(3,[a])
2 + θ3,2(n)G

(3,[a])
1 + θ3,3(n)G

(3,[a])
0 ,

where the θh,k(n) (1 ≤ h, k ≤ 3) are given as in (22).

Moreover, using Expression (10), we obtain the combinatorial formula of the sequence defined
in Expression (21) as follows

un = ρ(n+ 1, 3) =
∑

k0+2k1+3k2=n−2

(k0 + k1 + k2)!

k0!k1!k2!
ak00 ak11 ak22 , (23)

for every n ≥ 1, with u2 = 1 and u0 = u1 = 0. Therefore, Expression (23) and Proposition 5.1
permit us to have the following proposition.

Proposition 5.2. Let {G(3,[a])
n }n≥0 be the generalized 3-periodic linear recursive sequence defined

as in (4), of initial conditions G(3,[a])
2 , G

(3,[a])
1 , G

(3,[a])
0 . Then, the combinatorial recursive formulas

of the numbers G(3,[a])
3n+2 , G(3,[a])

3n+1 and G
(3,[a])
3n are given as

G
(3,[a])
3n+2 = θ1,1(n)G

(3,[a])
2 + θ1,2(n)G

(3,[a])
1 + θ1,3(n)G

(3,[a])
0 ,

G
(3,[a])
3n+1 = θ2,1(n)G

(3,[a])
2 + θ2,2(n)G

(3,[a])
1 + θ2,3(n)G

(3,[a])
0 ,

G
(3,[a])
3n = θ3,1(n)G

(3,[a])
2 + θ3,2(n)G

(3,[a])
1 + θ3,3(n)G

(3,[a])
0 ,

such that θh,h(n) = a2ρ(n − 2, 3) + (ρ(n, 3) − a0ρ(n − 1, 3))γh,h + ρ(n − 1, 3)γ
(2)
h,h and

θh,k(n) = (ρ(n − 2, 3) − a0ρ(n − 3, 3))γh,k + ρ(n − 3, 3)γ
(2)
h,k, for 1 ≤ h ̸= k ≤ 3, where

ρ(n, 3) is given as in Expression (23).

Furthermore, the analytical formula of the generalized 3-periodic linear recursive sequences
can be provided, using the roots λ1, λ2 and λ3 of the characteristic polynomial P (z) =

z3 − a0z
2 − a1z − a2 of the matrix A = A2A1A0. Let consider that the roots of P (z) are

simple. Then, the term un = ρ(n+ 1, 3) is expressed under the form

un = ρ(n+ 1, 3) =
3∑

k=1

1

P ′ (λk)
λn
k =

3∑
k=1

1∏
f ̸=k

(λk − λf )
λn
k ,

for every n ≥ 3, where P ′(z) = dP
dz
(z) (see, for example, [1, 3]). Therefore, have the result.
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Proposition 5.3. Let {G(3,[a])
n }n≥0 be the generalized 3-periodic linear recursive sequence defined

as in (4), of initial conditions G(3,[a])
2 , G

(3,[a])
1 , G

(3,[a])
0 . Then, the analytical recursive formulas of

the numbers G(3,[a])
3n+2 , G(3,[a])

3n+1 and G
(3,[a])
3n are given by

G
(3,[a])
3n+2 = θ1,1(n)G

(3,[a])
2 + θ1,2(n)G

(3,[a])
1 + θ1,3(n)G

(3,[a])
0 ,

G
(3,[a])
3n+1 = θ2,1(n)G

(3,[a])
2 + θ2,2(n)G

(3,[a])
1 + θ2,3(n)G

(3,[a])
0 ,

G
(3,[a])
3n = θ3,1(n)G

(3,[a])
2 + θ3,2(n)G

(3,[a])
1 + θ3,3(n)G

(3,[a])
0 ,

such that

θh,k(n) =
3∑

d=1

λn−4
d

P ′(λd)
[(λd + a0)γh,k + γh,k] ,

for 1 ≤ h, k ≤ 3, with h ̸= k and

θh,h(n) =
3∑

d=1

λn−3
d

P ′(λd)

[
a2 + λd(λd + a0)γh,h + λdγ

(2)
h,h

]
,

where λ1, λ2, λ3 are the simple roots of the characteristic polynomial P (z) = z3−a0z
2−a1z−a2

of the matrix A = A2A1A0.

The general setting when the roots λ1, λ2 and λ3 of the characteristic polynomial P (z) =

z3 − a0z
2 − a1z − a2 (of A = A2A1A0) are not all simple, can be studied.

6 Discussion and some considerations

In the previous sections, we have introduced and studied the generalized p-periodic linear
recursive sequences, which are defined by means of the higher order of recursiveness and two
parameter sequences. We had provided their matrix formulation, where two special cases allows
us to illustrate the main role of this formulation. Then, by utilizing the Fibonacci–Horner
decomposition we have derived several fundamental properties of these sequences, especially,
the combinatorial and the analytical formulations. All results obtained in the study can be varied
according to the different values of the integer p and the two parameters sequences. For example,
in the main results we have obtained, the special case of p = 2 gives various results about the
generalized bi-periodic Fibonacci, Lucas, Jacobsthal–Pell sequences studied in [5, 10–13].

In addition, with the generalized 3-periodic linear recursive sequence defined as in (4), we can
derive other other 3-periodic linear recursive sequence. Indeed, when a01 = a11 = a21 = 0 in (4)
and initial conditions G(3,[a])

0 = G
(3,[a])
1 = G

(3,[a])
2 = 1 , we deal with the sequence of generalized

3-periodic Padovan numbers, and initial conditions G(3,[a])
0 = 3, G

(3,[a])
1 = 0, and G

(3,[a])
2 = 2, we

obtain the sequence of generalized 3-periodic Perrin numbers, as well as, with initial conditions
G

(3,[a])
0 = 1, G

(3,[a])
1 = 0, and G

(3,[a])
2 = 1, we obtain the sequence of generalized 3-periodic

Van der Laan numbers.
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7 Concluding remarks and perspectives

In the present study, we have generalized the bi-periodic Fibonacci numbers to p-periodic
Fibonacci numbers and provide their matrix formulation. Using the Fibonacci–Horner decom-
position of the powers of their related matrix, we have established the linear, the combinatorial
and the analytical expressions of the sequence of p-periodic linear recursive sequences. The
first illustrative case of our results of the general setting, we have considered the special case of
bi-periodic Fibonacci numbers. Moreover, to show the efficiency of our general results, we had
studied the generalized 3-periodic linear recursive sequences.

To the best of our knowledge, our results are not current in the literature. In addition, with
the aid of our approach and method, various Fibonacci-like type algebraic structures can be
generalized and their properties exhibited.
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