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Abstract: In this note, we introduce arithmetic Heilbronn supercharacters that generalize the
notions of arithmetic Heilbronn characters and Heilbronn supercharacters and discuss several
properties of them.
Keywords: Heilbronn character, Supercharacter theory, L-function.
2020 Mathematics Subject Classification: 11R42, 20C15.

1 Introduction

Let Q ⊂ K be a number field. In order to study the zeros of the Dedekind zeta function ζK(s),
Heilbronn [5] introduced what are now called Heilbronn characters, which allowed him to give a
simple proof of the famous Aramata and Brauer Theorem [1, 3], that is ζK(s)/ζ(s) is entire.

More generally, if K ⊂ L is a number field externsion, the problem if ζL(s)/ζK(s) is entire is
open, and it would be a consequence of the Artin conjecture for L-functions [2]. This connection
suggests that the method of Heilbronn is useful in studying L-functions and, indeed, it was used
by several authors; see for instance [6].

In [8], P.-J. Wong introduced the so called arithmetic Heilbronn characters which generalize the
classical Heilbronn characters and, at the same time, catch almost all properties of them. The aim
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of this note is to further generalize the arithmetic Heilbronn characters, in the framework of the
supercharacter theory, introduced by Diaconis and Isaacs [4].

In Definition 3.2 we introduce the notion of arithmetic Heilbronn supercharacters, which
generalizes both the arithmetic Heilbronn characters and the Heilbronn supercharacters; see [7,
Section 4.1]. Using the supercharacter theoretic formalism, we prove several generalizations
of some classical results: Artin–Takagi decomposition (Theorem 3.6), Heilbronn–Stark Lemma
(Theorem 3.7) and Uchida–van der Waall Theorem (Theorem 3.8).

2 Preliminaries

Definition 2.1. Let G be a finite group. Let K be a partition of G and let X be a partition of
Irr(G). The ordered pair C := (X ,K) is a supercharacter theory if:

1. {1} ∈ K,

2. |X | = |K|, and

3. for each X ∈ X , the character σX =
∑

ψ∈X ψ(1)ψ is constant on each K ∈ K.

The characters σX are called supercharacters, and the elements K in K are called superclasses.
We denote by Sup(G) the set of supercharacter theories of G.

Diaconis and Isaacs showed their theory enjoys properties similar to the classical character
theory. For example, every superclass is a union of conjugacy classes in G; see [4, Theorem 2.2].
The irreducible characters and conjugacy classes of G give a supercharacter theory of G, which
will be referred to as the classical theory of G.

Also, as noted in [4], every group G admits a non-classical theory with only two supercharacters
1G and Reg(G)− 1G and superclasses {1} and G \ {1}, where 1G denotes the trivial character of
G and

Reg(G) =
∑

χ∈Irr(G)

χ(1)χ

is the regular character of G. This theory will be called the maximal theory of G.
We recall that a character λ of G is called linear, if λ(1) = 1, that is λ : G → C∗ is a group

homomorphism. Also, if χ is a character of G, then χ is written uniquely as a linear combination

χ = a1χ1 + a2χ2 + · · ·+ arχr,

where ai are non-negative integers and Irr(G) = {χ1, . . . , χr}. The constituents of χ are those
irreducible characters χi for which ai > 0, where 1 ≤ i ≤ r. We mention also that Irr(G) span
the space of complex-valued functions on G which are constant on the conjugacy classes of G.

We note that from the definition, every supercharacter is a character. Moreover, according
to [4, Theorem 2.2], if (X ,K) is a supercharacter theory, then the characters σX for X ∈ X span
the space of all complex-valued functions on G that are constant on the member of K.

Let CG ∈ Sup(G) be a supercharacter theory of G, CG = (XG,KG). Let g ∈ G. We denote
by SClG(g), the superclass of G which contains g.
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Definition 2.2. ([7, Definition 2.7]) Let G be a finite group and H be a subgroup of G. Let
CG ∈ Sup(G) be a supercharacter theory of G and CH ∈ Sup(H) be a supercharacter theory of
H . We say that CG and CH are compatible if for any h ∈ H , we have

SClH(h) ⊆ SClG(h).

Moreover, if CH and CG are compatible and Φ : H → C is a superclass function of H , i.e., a
function constant on superclasses of H , then the superinduction ΦG : G→ C is defined by

SIndGH ΦG(g) =
|G|

|H| · | SClG(g)|
∑

x∈SClG(g)

Φ0(x),

where Φ0(x) denotes Φ(x) if x ∈ H and zero otherwise.

Remark 2.3. Let H1 ⊂ H2 ⊂ G be a chain of subgroups of G and let CH1 , CH2 and CG be
supercharacter theories of H1, H2 and, respectively, G. If CH1 and CH2 are compatible and CH2

and CG are compatible, then CH1 and CG are also compatible.

We recall the following result, see [7, Proposition 2.14]:

Proposition 2.4 (Super Frobenius Reciprocity). Let G be a finite group and H be a subgroup of
G. Let CG ∈ Sup(G) and CH ∈ Sup(H) such that CG and CH are compatible. For all superclass
functions Φ on H and all superclass functions θ on G,

⟨SIndGH ΦG, θ⟩ = ⟨Φ, θ|H⟩,

where θ|H is the restriction of θ from G to H .

As it was noted in [7], the superinduction is unique, in the sense that it satisfies the Super
Frobenius Reciprocity. More precisely, if Φ → Φ(G) is another arbitrary map sending superclass
functions of H to superclass functions of G such that

⟨Φ(G), θ⟩ = ⟨Φ, θ|H⟩,

for any super class function θ of G, it follows that Φ(G) = SIndGH ΦG.

3 Main results

Definition 3.1. Let G be a finite group. Let C := {CH ∈ Sup(H) : H ⩽ G} be a family of
supercharacter theories on the all subgroups ofG. We say that C is compatible if, for any subgroups
H1 ⊂ H2 of G, CH1 and CH2 are compatible.

We introduce the following generalization of [8, Definition 3.1], in the framework of the
supercharacter theory:
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Definition 3.2. Let G be a finite group and C be a compatible family of supercharacter theories on
the subgroups of G. Let

I(G, C) = {(H, σ) : σ is a supercharacter of H}.

Suppose that there is a set of integers {n(H, σ) : (H, σ) ∈ I(G, C)} satisfying the following three
properties:

ACH1 n(H, σ1+σ2) = n(H, σ1)+n(H, σ2) for any subgroup H of G and any supercharacters
σ1 and σ2 of H .

ACH2 n(G, SIndGH σ
G) = n(H, σ) for any subgroup H of G and any supercharacter σ of H .

ACH3 n(H, σ) ≥ 0 for any supercharacter σ of a subgroup H of G with linear constituents,
that is σ = λ1 + · · ·+ λm, where λi are linear characters of H .

Then the arithmetic Heilbronn supercharacter of a subgroup H of G associated to n(H, σ)’s is

ΘH :=
∑
X∈XH

n(H, σX)

σX(1)
σX ,

where CH = (XH ,KH) and σX =
∑

χ∈X χ(1)χ.

Proposition 3.3. With the above notations, we have that

ΘH =
∑
X∈XH

n(G, SIndGH σ
G
X)

σX(1)
σX .

Proof. It follows immediately from ACH2.

Example 3.4. Let K/Q be a Galois extension with Galois group G := Gal(K/Q). Let C be a
compatible family of supercharacter theories on the subgroups of G. For any subgroup H of G
and any supercharacter σ of H , we define:

n(H, σ) := ords=s0 L(s, σ,K/K
H),

where L(s, σ,K/KH) is the L-Artin function associated to the extension KH ⊂ K and
s0 ∈ C \ {1} is a fixed point.

Then the integers n(H, σ) satisfy the conditions ACH1, ACH2 and ACH3.

Lemma 3.5. Let C = (X ,K) be a supercharacter theory on G. Then, for any X ∈ X we have

⟨σX , σX⟩ = σX(1).

Proof. Without any loss of generality, assume that X = {χ1, . . . , χm} ⊂ Irr(G) = {χ1, . . . , χr},
that is σX = χ1(1)χ1 + · · ·+ χm(1)χm. It follows that σX(1) = χ1(1)

2 + · · ·+ χm(1)
2.

On the other hand, we have

⟨σX , σX⟩ =
m∑
i=1

m∑
j=1

χi(1)χj(1)⟨χi, χj⟩.

Since Irr(G) is an orthonormal basis in the space of complex valued functions, i.e., ⟨χi, χj⟩ = δij ,
for all 1 ≤ i, j ≤ m, we get the required solution.
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Theorem 3.6 (Artin–Takagi decomposition). We have that:

n(G,Reg(G)) =
∑
X∈XG

n(G, σX) =
∑
X∈XG

n(G, σX)

σX(1)
⟨σX , σX⟩.

Proof. Since Reg(G) =
∑

χ∈Irr(G) χ(1)χ =
∑

X∈XG
σX , the formula follows from AHC1 and

Lemma 3.5.

Theorem 3.7 (Heilbronn–Stark Lemma). For every subgroup H of G, one has ΘG|H = ΘH .

Proof. By Super Frobenius Reciprocity we have

ΘG|H =
∑
X∈XG

n(G, σX)

σX(1)
σX |H =

∑
X∈XG

n(G, σX)

σX(1)

∑
Y ∈XH

⟨σX |H , σY ⟩σY

=
∑
X∈XG

n(G, σX)

σX(1)

∑
Y ∈XH

⟨σX , SIndGH σGY ⟩σY

=
∑
Y ∈XH

( ∑
X∈XG

n(G, σX)

σX(1)
⟨σX , SIndGH σGY ⟩

)
σY .

On the other hand, from AHC1 it follows that∑
X∈XG

n(G, σX)

σX(1)
⟨σX , SIndGH σGY ⟩ = n

(
G,
∑
X∈XG

1

σX(1)
⟨σX , SIndGH σGY ⟩σX

)
= n(G, SIndGH σ

G
Y ).

Hence, the conclusion follows from Proposition 3.3.

Theorem 3.8 (Uchida–van der Waall Theorem). Let H be a subgroup of G such that

SIndGH 1H = 1G +
∑
i∈I

SIndGHi
σi,

where Hi are subgroups of G, σi are supercharacters of Hi with linear constituents, and I is a
finite set of indices. Then

n(H, 1H) ≥ n(G, 1G).

Proof. From ACH1 and the hypothesis, it follows that

n(G, SIndGH 1H) = n(G, 1G) +
∑
i∈I

n(G, SIndGHi
σi). (1)

From ACH2 and (1), it follows that

n(H, 1H) = n(G, 1G) +
∑
i∈I

n(Hi, σi). (2)

The conclusion follows from (2) and ACH3.

Remark 3.9. If we consider the classical theory on all the subgroups of G, then the hypothesis of
Theorem 3.8 is satisfied when G is solvable, according to [6, Lemma 2.4].
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4 Conclusion

We introduced the notion of arithmetic Heilbronn supercharacters and we generalized several
previous results in the framework of supercharacter theory, namely Artin–Takagi decomposition,
Heilbronn–Stark Lemma and Uchida–van der Waall Theorem.
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