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Abstract: We examine identical equations for multiplicative functions and certain special cases,
such as totients and quadratics. We confine ourselves to identical equations expressing the
value f(mn) (or the value f(m)f(n)) nontrivially in terms of the values f(m/a)f(n/b) and
f(mn/(ab)), where a | m and b | n, and holding for all m and n. Particular attention is paid
to Busche–Ramanujan type identities. We characterize all functions that satisfy the identical
equations. Quasi-multiplicative functions are central to this discussion.
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1 Introduction

An arithmetical function f is said to be multiplicative if f(1) = 1 and f(mn) = f(m)f(n)

whenever (m,n) = 1. Furthermore, a multiplicative function f is said to be completely
multiplicative if f(mn) = f(m)f(n) for all positive integers m and n. See [18, 28].

An arithmetical function f is said to be quasi-multiplicative [15, p. 184] if f(1) ̸= 0 and
f(1)f(mn) = f(m)f(n) whenever (m,n) = 1. Quasi-multiplicative functions f with f(1) = 1

are the multiplicative functions. It is easy to see that f is quasi-multiplicative if and only if
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f(1) ̸= 0 and f/f(1) is multiplicative. Furthermore, a quasi-multiplicative function f is said to
be completely quasi-multiplicative if f(1)f(mn) = f(m)f(n) for all positive integers m and n.
Completely quasi-multiplicative f with f(1) = 1 are the completely multiplicative functions. It
is easy to see that f is completely quasi-multiplicative if and only if f(1) ̸= 0 and f/f(1) is
completely multiplicative. See [8, 11].

The Dirichlet product of arithmetical functions f and g is defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

The unitary product of f and g is defined by

(f ⊕ g)(n) =
∑
d∥n

f(d)g(n/d),

where the sum goes over the positive unitary divisors d of n (i.e., d > 0, d|n, (d, n/d) = 1).
The function δ defined by δ(1) = 1 and δ(n) = 0 for n ̸= 1 serves as the identity under Dirichlet
and unitary products. The symbol f ∗−1 is used for the Dirichlet inverse of f , and the unitary
inverse of f is denoted by f⊕−1. The Dirichlet and unitary inverses exist if and only if f(1) ̸= 0.
See [12, 18].

An arithmetical function f is said to be a rational arithmetical function of order (r, s) (see [28])
if there exist nonnegative integers r and s and completely multiplicative functions g1, g2, . . . , gr
and h1, h2, . . . , hs such that

f = g1 ∗ g2 ∗ · · · ∗ gr ∗ h−1
1 ∗ h−1

2 ∗ · · · ∗ h−1
s .

Rational arithmetical functions of order (1, 1) are totients [9], and rational arithmetical functions
of order (2, 0) are quadratics or specially multiplicative functions [10]. An arithmetical function f
is said to be a quasi-rational arithmetical function of order (r, s) if there exist nonnegative integers
r and s and completely quasi-multiplicative functions g1, g2, . . . , gr and h1, h2, . . . , hs such that

f = g1 ∗ g2 ∗ · · · ∗ gr ∗ h−1
1 ∗ h−1

2 ∗ · · · ∗ h−1
s .

An arithmetical function f is a quasi-rational arithmetical function of order (r, s) if and only if
f(1) ̸= 0 and f/f(1) is a rational arithmetical function of order (r, s). Quasi-rational arithmetical
functions of order (1, 1) are quasi-totients, and quasi-rational arithmetical functions of order (2, 0)
are quasi-quadratics or specially quasi-multiplicative functions. See [8, 16].

Multiplicative functions constitute perhaps the most important subclass of the class of
arithmetical functions. For example, Euler’s totient function φ is a multiplicative function. In fact,
it is a totient function, that is, a rational arithmetical function of order (1, 1). Quasi-multiplicative
functions appear also in mathematical literature. For example, the function S(n) = nφ(n)/2 is
a quasi-multiplicative function. To be more precise, S(n) is a quasi-totient. The function S(n)
counts the sum of the elements in the set {x : 1 ≤ x ≤ n, (x, n) = 1}, see [2].

This paper focuses on identical equations for multiplicative functions and certain subclasses
thereof. An identical equation is an identity that holds for all functions in the given class.
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We consider only identities that express the value f(mn) (or the value f(m)f(n)) nontrivially in
terms of the values f(m/a)f(n/b) and f(mn/(ab)), where a | m and b | n, and hold for allm and
n. An identical equation for completely multiplicative functions f is simply f(mn) = f(m)f(n).
Multiplicative functions f satisfy f(mn) = f(m)f(n) possibly only for positive integers m and
n with (m,n) = 1. Therefore, following Vaidyanathaswamy, we say that f(mn) = f(m)f(n) is
a restricted identical equation for multiplicative functions.

The starting point of the study of identical equations for multiplicative functions is the identity

f(mn) =
∑
a|m

∑
b|n

f(m/a)f(n/b)f ∗−1(ab)C(a, b), (1)

where

C(a, b) =

(−1)ω(b) if γ(a) = γ(b),

0 otherwise,

for all positive integers m and n, given by R. Vaidyanathaswamy. Here ω(n) and γ(n) denote
respectively the number and the product of the distinct prime divisors of n > 1, with ω(1) = 0

and γ(1) = 1. Vaidyanathaswamy [27, 28, p. 645] proved (1) in two different ways, and later
A. A. Gioia [6] introduced a third proof. Vaidyanathaswamy refers to (1) as the identical equation
for multiplicative functions.

This paper provides a comprehensive survey of identical equations of the type described above
for multiplicative functions and characterizes the functions that satisfy them. A central focus is
placed on quasi-multiplicative functions, as these play a significant role in the theory. In fact, the
identical equations for multiplicative functions in this paper are identities for quasi-multiplicative
functions. For example, an arithmetical function f with f(1) ̸= 0 (and thus possessing the
Dirichlet inverse) satisfies (1) if and only if f is quasi-multiplicative. Particular attention is given
to identities like the Busche–Ramanujan type and their implications for special classes of rational
arithmetical functions, such as quadratics. We also recall two fundamental identities, although
they do not fall within the main theme of this paper. In this paper, we consider only arithmetical
functions of one variable. For identical equations involving arithmetical functions of several
variables, we refer the reader to [17, 26].

2 Identical equations

As noted in the introduction, the study of identical equations begun from Vaidyanathaswamy’s
identity (1). This identity may be considered a cornerstone of identical equations for multiplicative
functions. M. V. Subbarao and A. A. Gioia [25, Theorem 1] gave a generalization of this identity
relating to generalized convolutions. Krishna [14] presented another proof for the generalized
identity. The generalized identity is given as

f(mn) =
∑
a|m

∑
b|n

f(m/a)f(n/b)fK−1(ab)K((mn/ab, ab))K((m/a, n/b))C(a, b), (2)

where K is an arithmetical function satisfying K(1) = 1 and

K((a, b))K((ab, c)) = K((a, bc))K((b, c))
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for all positive integers a, b, c. Here fK−1 is the inverse of f with respect to the K-product
[7]. A generalized, structured version of the K-product and equation (2) is given by McCarthy
[18, Chapter 4].

M. V. Subbarao and A. A. Gioia [25, Theorem 2] gave also two further identities for
multiplicative functions; these identities involve unitary divisors. In fact, they proved that every
multiplicative function f satisfies the identities

f(mn) =
∑
a∥m

γ(a)|γ((m,n))

∑
b∥n

γ(b)|γ((m,n))

f(m/a)f(n/b)f⊕−1(ab)λ(a, b), (3)

f(mn) =
∑
a∥m

∑
b∥n

γ(a)|γ(b)|γ((m,n))

f(m/a)f(n/b)f(ab)(−1)ω(a)+ω(b), (4)

where

λ(a, b) =

(−1)ω(a) if γ(a)|γ(b),
0 otherwise.

Haukkanen [8] presented a generalization of (1) in terms of regular convolutions as

f(mn) =
∑

a∈A(m)

∑
b∈A(n)

f(m/a)f(n/b)fA−1(ab)C(a, b) (5)

for all positive integers m and n with m ∈ A(mn), where fA−1 is the inverse of f with respect
to A-convolution. Here A is Narkiewicz’s convolution, for details, see [8,18]. This is a restricted
identical equation and it is studied in detail in [8]. We do not consider this equation in this paper.

Sitaramaiah et al. [19, 24] gave a generalization of (1) in terms of ψ-convolutions as

f(ψ(m,n)) =
∑

ψ(a,x)=m

∑
ψ(b,y)=n

f(x)f(x)fψ−1(ψ(a, b))C(a, b), (6)

where fψ−1 is the inverse of f with respect to ψ-convolution. Equation (6) has been studied
rigorously in [19, 24], and it is not an identical equation of the type considered in this paper.

Vaidyanathaswamy [27, 28, p. 645] also considered identical equations for certain subclasses
of the class of multiplicative functions. Specifically, he proved that a multiplicative function f is
a quadratic if and only if there is a completely multiplicative function fa such that

f(m)f(n) =
∑
d|(m,n)

f(mn/d2)fa(d) (7)

for all positive integers m and n. The function fa is given by fa = g1g2 and is termed as the
associated completely multiplicative function. Equation (7) is known as the Busche–Ramanujan
identity [4, 18, 20]. Totients satisfy a restricted Busche–Ramanujan identity, which means that
(7) holds for all positive integers m and n such that m and n do not contain any common prime
factor to the same power. Detailed treatments of restricted Busche–Ramanujan identities can be
found in [8, 16, 28].
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The inverse form of (7) reads

f(mn) =
∑
d|(m,n)

f(m/d)f(n/d)µ(d)fa(d) (8)

for all positive integers m and n, where µ is the Möbius function, or

f(mn) =
∑
d|(m,n)

f(m/d)f(n/d)f ∗−1
a (d) (9)

for all positive integers m and n. Equations (7), (8) and (9) are equivalent. The divisor functions
σk and Ramanaujan’s τ -function are examples of arithmetical functions satisfying Busche–
Ramanujan identities. See [18].

Carroll and Gioia [5] proved that an arithmetical function f is a rational arithmetical function
of order (N, 0) if and only if f is multiplicative and

f(mn) =
∑

d|(m,γ(n)N )

∑
e|(n,γ(m)N/d)

f(m/d)f(n/e)f ∗−1(de)C(d, e) (10)

for all positive integers m and n. It is easy to see that if f(1) = 1, then (10) implies that
f is multiplicative. Therefore we can say that an arithmetical function f with f(1) = 1 is a
rational arithmetical function of order (N, 0) if and only if (10) holds. Equation (10) is referred
to as a Busche–Ramanujan identity of order N . The N -fold divisor function τN(n) satisfies
a Busche–Ramanujan identity of order N . It is defined as the number of ordered N -tuples
(n1, n2, . . . , nN) of positive integers for which n1n2 · · ·nN = n. This function is also known
as the Piltz divisor function and is denoted by dN(n), see [3, 21].

Totients possess various identical equations. We write totients f in the form f = ft ∗ f ∗−1
v ,

where ft and fv are completely multiplicative functions, termed as integral and inverse parts of f .
It is known [9] that an arithmetical function f is a totient if and only if there is a completely
multiplicative function h such that

f(m)f(n) =
∑
d|(m,n)

f(mn/d)µ(d)h(d) (11)

for all positive integers m and n. In this case h = fv. It is likewise known [9] that an arithmetical
function f is a totient if and only if there is a completely multiplicative function h such that

f(mn) = f(m)
∑
d|n

γ(d)|m

f(n/d)h(d) (12)

for all positive integers m and n. In this case h = fv. Euler’s totient function φ, Jordan’s totient
function Jk and Dedekind’s totient function ψ are typical examples of totients. See [9, 13, 18].

A multiplicative function f is over-multiplicative [23] if there exists an arithmetical function
F with F (1) = 1 such that

f(mn) = f(m)f(n)F ((m,n)) (13)

for all positive integers m and n. It is known [13] over-multiplicative functions are totients and
vice versa.
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Multiplicative functions satisfy the nice formula

f(m)f(n) = f((m,n))f([m,n]) (14)

for all positive integers m and n, or

f(m)f(n) = f((m,n))f(mn/(m,n)) (15)

for all positive integers m and n. These equations are, in fact, characterizations of semi-multi-
plicative functions. For further details, see [11].

We conclude this section with two fundamental identical equations for multiplicative functions.
These identities, however, are not of the specific type considered in the main theme of this
paper. The first is the multiplicative function identity on prime powers, which states that a
multiplicative function is completely determined by its values on prime powers. Specifically,
if n = pa11 p

a2
2 · · · parr is the prime factorization of n, then

f(n) = f(pa11 )f(pa22 ) · · · f(parr ).

This identity leads naturally to the concept of Selberg multiplicative functions [11, 22]. The
second is the Euler product expansion [1]: If f is a multiplicative function and the Dirichlet
series

∞∑
n=1

f(n)

ns

converges absolutely for some s ∈ C, then it can be expressed as

∞∑
n=1

f(n)

ns
=
∏
p

(
∞∑
k=0

f(pk)

pks

)
,

where the product is over all prime numbers p. These identities highlight the connection between
the multiplicative nature of f and the fundamental theorem of arithmetic.

3 Characterizations

In this section we characterize all functions satisfying identities (1), (2), (3), (4), (7), (10),
(11), (12) and (13). It appears that these identities provide new insights into the structure of
quasi-multiplicative functions.

Theorem 3.1. Suppose that f(1) ̸= 0. Then f satisfies (1) if and only if f is quasi-multiplicative.

Proof. Suppose that f satisfies (1).Then taking (m,n)=1 in (1) gives f(mn)=f(m)f(n)f ∗−1(1),
i.e., f(1)f(mn) = f(m)f(n), hence f is quasi-multiplicative.

Conversely, suppose that f is quasi-multiplicative. Then f/f(1) is multiplicative and
consequently it satisfies (1). It is easy to see that (f/f(1))∗−1 = f(1)f ∗−1. We thus see that
f satisfies (1).

Theorems 3.2 and 3.3 can be proved practically in the same way as Theorem 3.1.
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Theorem 3.2. Suppose that f(1) ̸= 0. Then f satisfies (2) if and only if f is quasi-multiplicative.

Theorem 3.3. Suppose that f(1) ̸= 0. Then f satisfies (3) if and only if f is quasi-multiplicative.

Theorem 3.4. An arithmetical function f satisfies (4) if and only if f is identically 0 or f is
quasi-multiplicative with f(1) = ±1.

Proof. Suppose that f satisfies (4). Taking m = n = 1 in (4) gives f(1) = f(1)3, i.e., f(1) = 0

or f(1) = ±1. If f(1) = 0, taking m = 1 in (4) gives f(n) = f(n)f(1)2 = 0 for all positive
integers n. If f(1) = ±1, then taking (m,n) = 1 we obtain f(mn) = ±f(m)f(n), i.e.,
f(1)f(mn) = f(m)f(n), which means that f is quasi-multiplicative.

We then prove the converse. If f is identically 0, then both sides of (4) vanish. If f is
quasi-multiplicative with f(1) = 1, then it is multiplicative and thus (4) holds. If f is quasi-
multiplicative with f(1) = −1, then −f is multiplicative and and satisfies (4). Multiplying both
sides by −1 we see that f satisfies (4).

Theorem 3.5. Suppose that f(1) ̸= 0. Then f is a quasi-quadratic if and only if there is a
completely quasi-multiplicative function fa such that (7) holds for all positive integers m and n.

Proof. If an arithmetical function f with f(1) ̸= 0 is a quasi-quadratic, then g = f/f(1) is a
quadratic. This means that there is a completely multiplicative function ga such that

g(m)g(n) =
∑
d|(m,n)

g(mn/d2)ga(d) (16)

for all positive integers m and n, or

f(m)f(n) =
∑
d|(m,n)

f(mn/d2)f(1)ga(d)

for all positive integers m and n. Denoting fa = f(1)ga we see that (7) holds, where fa is a
completely quasi-multiplicative function.

Conversely, assume that there is a completely quasi-multiplicative function fa such that (7)
holds for all positive integers m and n. Taking m = n = 1 in (7) shows that fa(1) = f(1).
Then g = f/f(1) satisfies (16), where ga = fa/f(1) a completely multiplicative function. Thus
g = f/f(1) is a quadratic and, further, f is a quasi-quadratic.

Remark 3.1. The inverse form of (7) for quasi-quadratics is

f(1)2f(mn) =
∑
d|(m,n)

f(m/d)f(n/d)µ(d)fa(d) (17)

for all positive integers m and n, or,

f(mn) =
∑
d|(m,n)

f(m/d)f(n/d)f ∗−1
a (d) (18)

for all positive integers m and n. This can be verified, for example, by noting that the Dirichlet
inverse of a completely quasi-multiplicative function fa is f ∗−1

a = µfa/fa(1)
2 and fa(1) =

g1(1)g2(1) = f(1).
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Theorem 3.6. Suppose that f(1) ̸= 0. Then f is a quasi-rational arithmetical function of order
(N, 0) if and only if f satisfies identity (10).

Proof. An arithmetical function f with f(1) ̸= 0 is a quasi-rational arithmetical function of order
(N, 0) if and only if g = f/f(1) is a rational arithmetical function of order (N, 0). This means
that

g(mn) =
∑

d|(m,γ(n)N )

∑
e|(n,γ(m)N/d)

g(m/d)g(n/e)g∗−1(de)C(d, e) (19)

for all positive integers m and n. Taking g = f/f(1) and noting that g∗−1 = f(1)f ∗−1 in (19) we
obtain (10), and, conversely, from (10) we obtain (19).

Theorem 3.7. Suppose that f(1) ̸= 0. Then f is a quasi-totient if and only if there is a completely
quasi-multiplicative function h such that (11) holds for all positive integers m and n.

Proof. An arithmetical function f with f(1) ̸= 0 is a quasi-totient if and only if g = f/f(1) is a
totient. This means that there is a completely multiplicative function h′ such that

g(m)g(n) =
∑
d|(m,n)

g(mn/d)µ(d)h′(d)

for all positive integers m and n, or

f(m)f(n) =
∑
d|(m,n)

f(mn/d)µ(d)f(1)h′(d) (20)

for all positive integers m and n. Denoting h(n) = f(1)h′(n) for all positive integers n we can
write (20) in the form (11), where h is a completely quasi-multiplicative function.

Remark 3.2. If f is a quasi-totient, then (11) can be written as

f(m)f(n) = f(1)2
∑
d|(m,n)

f(mn/d)h∗−1(d). (21)

This follows from the observations h∗−1 = µh/h(1)2 and h(1) = f(1).

Theorem 3.8. Suppose that f(1) ̸= 0. Then f is a quasi-totient if and only if there is a completely
quasi-multiplicative function h such that (12) holds for all positive integers m and n.

Proof. An arithmetical function f with f(1) ̸= 0 is a quasi-totient if and only if g = f/f(1) is a
totient. This means that there is a completely multiplicative function h′ such that

g(mn) = g(m)
∑
d|n

γ(d)|m

g(n/d)h′(d)

for all positive integers m and n, or

f(mn) = f(m)
∑
d|n

γ(d)|m

f(n/d)h′(d)/f(1) (22)

for all positive integers m and n. Denoting h(n) = h′(n)/f(1) for all positive integers n we can
write (22) in the form (12), where h is a completely quasi-multiplicative function.
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Theorem 3.9. Suppose that f(1) ̸= 0. Then f is a quasi-totient if and only if there is an
arithmetical function F with F (1) ̸= 0 such that (13) holds for all positive integers m and n.

Proof. An arithmetical function f with f(1) ̸= 0 is a quasi-totient if and only if g = f/f(1) is a
totient. This means that there exists an arithmetical function F ′ with F ′(1) = 1 such that

g(mn) = g(m)g(n)F ′((m,n))

for all positive integers m and n. In other words,

f(mn) = f(m)f(n)F ′((m,n))/f(1) (23)

for all positive integers m and n. Denoting F (n) = F ′(n)/f(1) for all positive integers n, we
can write (23) in the form (13), where F is an arithmetical function such that F (1) ̸= 0.
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