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Abstract: Ohtsuka and Nakamura found simple formulas for
∑n

j=1 F
6
j and

∑n
j=1 L

6
j , where Fk

and Lk are the k-th Fibonacci and Lucas numbers, respectively. In this note we extend their
results to a general second order sequence by deriving a formula for

∑n
j=1 (−1/q3)jw6

j+t, where
(wj(w0, w1; p, q)) is the Horadam sequence defined by w0, w1; wj = pwj−1 − qwj−2 (j ≥ 2);

where t is an arbitrary integer and w0, w1, p and q are arbitrary complex numbers, with p ̸= 0

and q ̸= 0. As a by-product we establish a divisibility property for the generalized Fibonacci
sequence.
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1 Introduction

Let Fk and Lk be the k-th Fibonacci and Lucas numbers.
In the year 2010, Ohtsuka and Nakamura [6] derived the following formulas for the sum of

the sixth powers of Fibonacci and Lucas numbers.
n∑

j=1

F 6
j =

F 5
nFn+3 + F2n

4
, (1.1)

n∑
j=1

L6
j =

L5
nLn+3 + 125F2n

4
− 32. (1.2)

We will extend (1.1) and (1.2) as follows:
n∑

j=1

F 6
j+t =

F 5
n+tFn+t+3 − F 5

t Ft+3

4
+

F2n+2t − F2t

4
, (1.3)

n∑
j=1

L6
j+t =

L5
n+tLn+t+3 − L5

tLt+3

4
+

125(F2n+2t − F2t)

4
. (1.4)

Our goal in this paper is to develop a formula for
n∑

j=1

(
1

−q3

)j

w6
j+t,

where (wj)j∈Z = (wj(w0, w1; p, q)) is the Horadam sequence, defined for all integers and arbitrary
complex numbers w0, w1, p ̸= 0 and q ̸= 0, by the recurrence relation

wj = pwj−1 − qwj−2, j ≥ 2, (1.5)

with w−j = (pw−j+1 − w−j+2) /q.
Associated with (wj) are the Lucas sequences of the first kind, (uj(p, q)) = (wj(0, 1; p, q)),

and of the second kind, (vj(p, q)) = (wj(2, p; p, q)); that is

u0 = 0, u1 = 1, uj = puj−1 − quj−2, j ≥ 2, (1.6)

and
v0 = 2, v1 = p, vj = pvj−1 − qvj−2, j ≥ 2, (1.7)

with u−j = (pu−j+1 − u−j+2) /q and v−j = (pv−j+1 − v−j+2) /q.
The closed formula for wj(w0, w1; p, q) in the non-degenerate case, p2 − 4q > 0 is

wj =
Aσj −Bτ j

σ − τ
, (1.8)

where
A = w1 − w0τ, B = w1 − w0σ, (1.9)

and σ and τ are given by

σ = σ(p, q) =
p+

√
p2 − 4q

2
, τ = τ(p, q) =

p−
√
p2 − 4q

2
; (1.10)

so that
σ + τ = p, σ − τ =

√
p2 − 4q, and στ = q. (1.11)
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In particular,

uj =
σj − τ j

σ − τ
, vj = σj + τ j. (1.12)

Further results on Horadam sequence can be found in the survey paper [5]. Properties of
Lucas sequences can be found in [7, Chapter 1].

We require the following telescoping summation identity (see [1]):

n∑
j=1

(γ
λ

)j
(γfj+1 − λfj) =

γn+1

λn
fn+1 − γf1; (1.13)

where (fj) is a sequence and γ and λ are arbitrary parameters.
As by-products, we will establish the following Fibonacci divisibility properties

4 | F3n, if n is even; 4 | L3n, if n is odd

and evaluate the following sums:
n∑

j=1

G6j+t

and
n∑

j=1

G5
j+t (Gj+t+1 +Gj+t−1),

where Gj is a generalized Fibonacci number, defined by the recurrence relation

Gj = Gj−1 +Gj−2, (j ≥ 2),

where G0 and G1 are arbitrary integers.

2 Results

Our main result, an explicit expression for the weighted sum of the sixth powers of Horadam
numbers is given in Theorem 2.1, but first we state a couple of required lemmata.

Lemma 2.1. [4, Equations (3.16), (4.5)] If j and r are integers, then

wj−rwj+r = w2
j + eqj−ru2

r,

wj+r + qrwj−r = vrwj,

where e = pw0w1 − q w2
0 − w2

1.

In particular, we have

wj−1wj+1 = w2
j + eqj−1, (2.1)

wj−2wj+2 = w2
j + eqj−2p2, (2.2)

wj+3 + q3wj−3 = p(p2 − 3q)wj. (2.3)
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Lemma 2.2. If n and t are integers, then

p
n∑

j=1

(
1

−q

)j

w2
j+t =

(
1

−q

)n

wn+twn+t+1 − wtwt+1, (2.4)

and

(p2 − 2q)
n∑

j=1

(
1

−q2

)j

w4
j+t

=

(
1

−q2

)n

w2
n+tw

2
n+t+1 − w2

tw
2
t+1 +

2eqt

p

((
1

−q

)n

wn+twn+t+1 − wtwt+1

)
.

(2.5)

Proof. The recurrence relation of the Horadam sequence allows the following arrangement:

pw2
j+t = wj+twj+t+1 + qwj+t−1wj+t. (2.6)

Use γ = 1, λ = −q and fj = wj+t−1wj+t in (1.13) to obtain

p
n∑

j=1

(
1

−q

)j

w2
j+t =

n∑
j=1

(
1

−q

)j

(wj+twj+t+1 + qwj+t−1wj+t)

=

(
1

−q

)n

wn+twn+t+1 − wtwt+1.

Square both sides of (2.6) and use the equation wj+t−1wj+t+1 = w2
j+t + eqj+t−1 to obtain

(p2 − 2q)w4
j+t = w2

j+tw
2
j+t+1 + q2w2

j+t−1w
2
j+t + 2eqj+tw2

j+t.

Use γ = 1, λ = −q2 and fj = w2
j+t−1w

2
j+t in (1.13) to obtain

(p2 − 2q)
n∑

j=1

(
1

−q2

)j

w4
j+t − 2eqt

n∑
j=1

(
1

−q

)j

w2
j+t

=
n∑

j=1

(
1

−q2

)j (
w2

j+tw
2
j+t+1 + q2w2

j+t−1w
2
j+t

)
=

(
1

−q2

)n

w2
n+tw

2
n+t+1 − w2

tw
2
t+1.

It follows from (2.4) that

(p2 − 2q)
n∑

j=1

(
1

−q2

)j

w4
j+t

=

(
1

−q2

)n

w2
n+tw

2
n+t+1 − w2

tw
2
t+1 +

2eqt

p

((
1

−q

)n

wn+twn+t+1 − wtwt+1

)
.

This completes the proof.
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Theorem 2.1. If n and t are integers, then

n∑
j=1

(
1

−q3

)j

w6
j+t =

wn+twn+t+3

(−q3)np(p2 − 3q)
(w4

n+t + eqn+t−2(p2 + q)w2
n+t + e2q2n+2t−3p2)

− wtwt+3

p(p2 − 3q)
(w4

t + eqt−2(p2 + q)w2
t + e2q2t−3p2)

− eqt−2(p2 + q)

p2 − 2q

((
1

−q2

)n

w2
n+tw

2
n+t+1 − w2

tw
2
t+1

)
− e2q2t−3(p4 + 2q2)

p(p2 − 2q)

((
1

−q

)n

wn+twn+t+1 − wtwt+1

)
.

Proof. Use γ = 1, λ = −q3 and fj = wj+t−3wj+t−2wj+t−1wj+twj+t+1wj+t+2 in (1.13) to obtain

n∑
j=1

(
1

−q3

)j

wj+t

(
wj+t+3 + q3wj+t−3

)
wj+t−1wj+t+1wj+t−2wj+t+2

=

(
1

−q3

)n

wn+twn+t+3wn+t−1wn+t+1wn+t−2wn+t+2 − wtwt+3wt−1wt+1wt−2wt+2,

which becomes

p(p2 − 3q)
n∑

j=1

(
1

−q3

)j

w2
j+t(w

2
j+t + eqj+t−1)(w2

j+t + eqj+t−2p2)

=

(
1

−q3

)n

wn+twn+t+3(w
2
n+t + eqn+t−1)(w2

n+t + eqn+t−2p2)

− wtwt+3(w
2
t + eqt−1)(w2

t + eqt−2p2),

with the use of (2.1), (2.2), and (2.3).
Thus,

n∑
j=1

(
1

−q3

)j

(w6
j+t + eqj+t−2(p2 + q)w4

j+t + e2q2j+2t−3p2w2
j+t)

=
wn+twn+t+3

(−q3)np(p2 − 3q)
(w4

n+t + eqn+t−2(p2 + q)w2
n+t + e2q2n+2t−3p2)

− wtwt+3

p(p2 − 3q)
(w4

t + eqt−2(p2 + q)w2
t + e2q2t−3p2);

so that
n∑

j=1

(
1

−q3

)j

w6
j+t =

wn+twn+t+3

(−q3)np(p2 − 3q)
(w4

n+t + eqn+t−2(p2 + q)w2
n+t + e2q2n+2t−3p2)

− wtwt+3

p(p2 − 3q)
(w4

t + eqt−2(p2 + q)w2
t + e2q2t−3p2)

− eqt−2(p2 + q)
n∑

j=1

(
1

−q2

)j

w4
j+t − e2q2t−3p2

n∑
j=1

(
1

−q

)j

w2
j+t;

which upon inserting (2.4) and (2.5) gives the stated result.
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3 Application

We now apply the results of the previous section to derive closed formulas for the finite sums∑n
j=1G

6
j+t,

∑n
j=1G6j+t and

∑n
j=1 G

5
j+t (Gj+t+1 +Gj+t−1). We will also establish a couple of

Fibonacci divisibility properties.
Let (Gj(G0, G1))j∈Z = (wj(G0, G1; 1,−1)) be the generalized Fibonacci sequence, the so-

called Gibonacci sequence (a name that was coined by Benjamin & Quinn [3, p. 17]), having the
same recurrence relation as the Fibonacci sequence but starting with arbitrary initial values; that
is, let

Gj = Gj−1 +Gj−2, (j ≥ 2), (3.1)

where G0 and G1 are arbitrary numbers (here we shall assume that they are integers) not both
zero; with

G−j = G−(j−2) −G−(j−1).

The terms of the generalized Fibonacci sequence can be accessed directly through the Binet
formula:

Gj =
Aαj −Bβj

α− β
, j ∈ Z,

where α = (1 +
√
5)/2, β = (1−

√
5)/2, and A = G1 −G0β and B = G1 −G0α.

It is clear that with the substitution of p = 1 and q = −1, the identity stated in Theorem 2.1
reduces to the following:

Proposition 3.1. If n and t are integers, then

n∑
j=1

G6
j+t =

G5
n+tGn+t+3 −G5

tGt+3

4

+
e2G (Gn+t(Gn+t+1 +Gn+t−1)−Gt(Gt+1 +Gt−1))

4
,

(3.2)

where eG = G2
0 −G2

1 +G0G1.

Note that, in obtaining the final form of (3.2), we used

4Gs+1 −Gs+3 = Gs+1 +Gs−1.

The Fibonacci and Lucas numbers stated in the Introduction correspond to (Gj(0, 1))j∈Z and
(Gj(2, 1))j∈Z, respectively.

Our next result, a certain sum of generalized Fibonacci numbers with indices in arithmetic
progression is an immediate consequence of (3.2).

Proposition 3.2. If n and t are integers, then

n∑
j=1

G6j+t =
G6n+t+3 −Gt+3

4
. (3.3)
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Proof. Since the sequences (αj)j∈Z and (βj)j∈Z are each a generalized Fibonacci sequence,
setting Gm = αm and Gm = βm, in turn, in (3.2) gives

n∑
j=1

α6j+t =
α6n+t+3 − αt+3

4

and
n∑

j=1

β6j+t =
β6n+t+3 − βt+3

4
,

where we wrote t for 6t since t is arbitrary and 6t occurs in all the exponents. Combining these,
using the Binet formula yields (3.3). Note that

eα =
(
α0
)2 − (α1

)2
+ α0α1 = 1− α2 + α = 0 = eβ.

Since the left-hand side of (3.3) is always an integer, we deduce the following divisibility rule.

Proposition 3.3. If n and t are integers, then

4 | G6n+t+3 −Gt+3. (3.4)

Taking (Gj) to be the Fibonacci sequence and using the fact that

F6n+t+3 − Ft+3 =

L3n+t+3F3n, if n is even

F3n+t+3L3n, if n is odd
,

we have
4 | L3n+t+3F3n, if n is even; 4 | F3n+t+3L3n, if n is odd; (3.5)

and, since t is an arbitrary integer which can be chosen as t = −3n− 2, this gives

4 | F3n, if n is even; 4 | L3n, if n is odd. (3.6)

Of course, the same result can be obtained by taking (Gj) to be the sequence of Lucas numbers
and using the fact that

L6n+t+3 − Lt+3 =

5F3n+t+3F3n, if n is even

L3n+t+3L3n, if n is odd
,

so that
4 | F3n+t+3F3n, if n is even; 4 | L3n+t+3L3n, if n is odd, (3.7)

giving again (3.6).
Based on a method developed in [2], stated here in Lemma 3.1, we will now derive, from (3.2),

a formula for
∑n

j=1G
5
j+t (Gj+t+1 +Gj+t−1).

Lemma 3.1. Let g(x) be the infinite times differentiable, complex-valued Gibonacci function
defined by

g(x) =
Aαx −Bβx

α− β
, x ∈ R, (3.8)

where α = (1 +
√
5)/2, β = (1−

√
5)/2, and A = G1 −G0β and B = G1 −G0α.
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Then
g(x)|x=j∈Z = Gj; (3.9)

and

ℜ

(
d

dx
g(x)

∣∣∣∣
x=j∈Z

)
=

Gj+1 +Gj−1√
5

lnα, (3.10)

where ℜ(y) denotes the real part of y.

Proposition 3.4. If n and t are integers, then

n∑
j=1

G5
j+t (Gj+t+1 +Gj+t−1)

=
e2G
24

(
5G2

n+t + (Gn+t+1 +Gn+t−1)
2 − 5G2

t − (Gt+1 +Gt−1)
2)

+
1

24
G4

n+t (Gn+t (Gn+t+4 +Gn+t+2) + 5Gn+t+3 (Gn+t+1 +Gn+t−1))

− 1

24
G4

t (Gt (Gt+4 +Gt+2) + 5Gt+3 (Gt+1 +Gt−1)) .

(3.11)

Proof. The Gibonacci function form of (3.2) is

n∑
j=1

g(j + t)6 =
g(n+ t)5g(n+ t+ 3)− g(t)5g(t+ 3)

4

+
e2G (g(n+ t)(g(n+ t+ 1) + g(n+ t− 1))− g(t)(g(t+ 1 + g(t− 1)))

4
,

Differentiating this with respect to t and making use of Lemma 3.1 gives (3.11).

In particular,

n∑
j=1

F 5
j+tLj+t =

1

12

(
L2n+2t − L2t + F 4

n+t (F2n+2t+3 + 2Fn+t+3Ln+t)
)

− F 4
t

12
(F2t+3 + 2Ft+3Lt) ,

(3.12)

and
n∑

j=1

L5
j+tFj+t =

25

12
(L2n+2t − L2t) +

1

12
L4
n+t (F2n+2t+3 + 2Ln+t+3Fn+t)

− L4
t

12
(F2t+3 + 2Lt+3Ft) ;

(3.13)

with the special values

n∑
j=1

F 5
j Lj =

1

12

(
L2n + F 4

n (F2n+3 + 2Fn+3Ln)
)
− 1

6
, (3.14)

n∑
j=1

L5
jFj =

1

12

(
25L2n + L4

n (F2n+3 + 2Ln+3Fn)
)
− 41

6
. (3.15)
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Note that, in deriving (3.12) and (3.13), we used

L2
n + 5F 2

n = 2L2n,

and
FmLn + LnFm = 2Fm+n.
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