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Abstract: Ohtsuka and Nakamura found simple formulas for 7, FJ and > LS, where Fj,
and Lj are the k-th Fibonacci and Lucas numbers, respectively. In this note we extend their
results to a general second order sequence by deriving a formula for 37, (—1/¢%)’w},,, where
(w;(wo, wr;p,q)) is the Horadam sequence defined by wy, wy; w; = pw,;_1 — qwj_o (j > 2);
where ¢ is an arbitrary integer and w, w1, p and ¢ are arbitrary complex numbers, with p # 0
and ¢ # 0. As a by-product we establish a divisibility property for the generalized Fibonacci
sequence.
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1 Introduction

Let F}, and L;, be the k-th Fibonacci and Lucas numbers.
In the year 2010, Ohtsuka and Nakamura [6] derived the following formulas for the sum of
the sixth powers of Fibonacci and Lucas numbers.

F3F, 5+ Fy,
Zpﬁ &7 1.1)

- L°L, 1255,

d L= *31 n 39, (1.2)

We will extend (1.1) and (1.2) as follows:

F5, Friis — FOF, Fopo — F
Z 5, = +td' n+t+3 e 48 | ot 2t7 (1.3)
4 4
L} Lyyirs — LiLiys  125(Fopy0 — Foy)
Z Ly, = TR S (1.4)

Our goal in this paper is to develop a formula for

n 1 7 .
> (=) whe

j=1

where (w;) ez = (w;(wo, w1; p, q)) is the Horadam sequence, defined for all integers and arbitrary
complex numbers wy, wy, p # 0 and g # 0, by the recurrence relation

wj = pwj—l - qwj—27 ] Z 2, (15)

withw_; = (pw_j411 —w_j42) /q.
Associated with (w;) are the Lucas sequences of the first kind, (u;(p, ¢)) = (w;(0,1;p,q)),
and of the second kind, (v;(p, q¢)) = (w;(2, p; p, q)); that is

w =0,u; =1, wu;=puj_1—quj_s, J=2, (1.6)

and
Vg =2,v1=p, U =pUj_1—qUj_2, J =2, (1.7)

with U—j = (pu_j+1 — U_j+2) /q and V—; = (pU_j+1 — U_j+2) /q
The closed formula for w;(wg, w; p, ¢) in the non-degenerate case, p* — 4¢q > 0 is

Ac? — BtI

w; = ———, (1.8)
o—T
where
A:wl—on, B:wl—'LU[)O', (19)
and o and 7 are given by
p+VP*—4q p— VP> —4q
=olpg) = T=Tpe) = (1.10)
so that
o+ 717 =np, O’—T:\/m7 andaT:q. (111)
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In particular,
J 13 ) .
wj= 2 =gl 41 (1.12)
o—T

Further results on Horadam sequence can be found in the survey paper [5]. Properties of
Lucas sequences can be found in [7, Chapter 1].
We require the following telescoping summation identity (see [1]):

i j n+1
Z (%)J (Vi = Af) = ’Y/\_nfn+1 — /1 (1.13)
j=1

where ( f;) is a sequence and -y and )\ are arbitrary parameters.
As by-products, we will establish the following Fibonacci divisibility properties

4| F3,,if niseven; 4| Ls,,if nisodd
and evaluate the following sums:
> Gy
j=1

and

n

Z G?th (Gjytr1 + Gipe),

j=1

where G is a generalized Fibonacci number, defined by the recurrence relation
Gj=Gj1+Gja, (122),

where G and (G are arbitrary integers.

2 Results

Our main result, an explicit expression for the weighted sum of the sixth powers of Horadam
numbers is given in Theorem 2.1, but first we state a couple of required lemmata.

Lemma 2.1. [4, Equations (3.16), (4.5)] If j and r are integers, then
Wj—rWj4r = w]z + eqj—rua
Wjtr + ¢ Wiy = VW5,
2

where e = pwow, — qwg — wy.

In particular, we have

Wi Wi = w) +eq’ (2.1
Wj_owjia = w5 +eq’7p?, (2.2)
wjis + ¢ wj_3 = p(p* — 3q)w;. (2.3)
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Lemma 2.2. [fn and t are integers, then

1 n
pz ( ) JH = (—_q) W+t Wn4t+1 — WWiya, 2.4)

and

n

1 J
(P’ —29)) (_—q2) Wiy
=1

1 \" 9 9 9 o 2eqt 1\"
= —_q2 Wy Wiy — Wy Wy + —— » —_q Wyt Whtt41 — WiWiyy | -

(2.5)

Proof. The recurrence relation of the Horadam sequence allows the following arrangement:
pw?th = WjptWjtt+1 T qQWjpt—1Wy4¢- (2.6)

Usey=1, A= —qgand f; = wj;+—1w;4 in (1.13) to obtain

n 1 j
pz ( ) j+t Z (—) (Wi Wjter1 + QWi 1Wj 1)

Jj=1 —4

1 n
= (—) Wn+tWntt41 — Wi Wiy 1.

Square both sides of (2.6) and use the equation w; ¢ 1w 411 = w5, + eq’ "~ to obtain

2 4 Jtta

(P —2q)wj,, = wi Wiy + i wi, + 2eq T wi .

Usey =1, A= —¢*and f; = w?,, wj,, in (1.13) to obtain

(»* — 2¢) En: (_ng) —2eq' Z < ) W

7=1
w? + 2w? w? )
_E: J-‘rt i1 T4 Wi 1 Wiy
n
_ 1 2 2 2.9
—\ =g Wh 4t Wnppyp1 — Wy Wipg-

It follows from (2.4) that

(p* —2q) i (%)j Wy

J=1

1\" 2eq" 1\"
= (__q2> w?m—i—twr%—i-t—i-l w?wt2+1 + 7 <(_q) W4t Wntt41 — wtwt+1> .

This completes the proof. O
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Theorem 2.1. If n and t are integers, then

& 1Y 6 Wn4tWn4t43 4 t—2/ 2 2 2 on+42t—3, 2
— | Wi = (Wpry +eq" 77207 + Qupy, + TP
; (—q3> T (=) = 3g) .
WiW4-3 4 2 2t—3 2
— ———(w +eq"(p* + Qi + ¢* %7
p(p® —3q)" '
t—2(, 2 n
eq"*(p* +q) 1
s ((_ 7 Wi Wity — WiWE
2q2t 3(p4+2q2) 1\"
5 — | WpWnyepl — Wit | -
p(p* — 2q) —q
PI"OOf: Use Y= ]_, A= —q3 and fj = Wj4t—3Wj4t—2Wj4t—1 W54t Wj 441 W5 4¢42 in (113) to obtain

n
1 J
3
E (__qg Wit (wj+t+3 +q wj+t—3) Wit 1 Wit 41 Wyt —2Wj 4142

Jj=1

1 n
= <_q3 W4t Wn4t4-3Wn4t—1Wn4t4+1Wntt—2Wntt42 — Wil 3We—1 Wi41 Wi—2Wi42,

which becomes
2 - 1\’ 2 2 it—1\(, 2 j+t—2_ 2
p(p” = 3q) Z (__ 3> wy (Wi +eq” ) (wiy, + e P
=1 81
1\" bt nt—
= <_—q3) wn+twn+t+3(w721+t +eq H 1)<w721+t +eq +t 2172)
- wtwt+3(wt2 + €qt_1)(wt +eq"” 2p2)

with the use of (2.1), (2.2), and (2.3).

Thus,

n 1 7 . -

> (_—qg) (Wi, + e 2 (0 + @y, + ¢ Pt
j=1
Wn4-tWn+t+3 4 n+t—2/. 2 2 2n42t—3, 2
= (wpyy +eq" "2 (0° + Q)i + €q p°)
(—¢®)mp(p> —3¢) " " !
WiWyi13 4 2 2t-3 2
— (W +eq"” (p +Q)7~U + e p7);
p(p*—3q) " " !
so that
- 1\’ 6 Wp4tWn4t+3 4 t—2/ 2 2 2 2n42t—3 2
— | Wi, = (Wpyy + "7 207 + Qup .y + TP
; (—q3> (=)t = 3g) I
WiWi4-3 4 2 2t—3_ 2
— ————(w} + eq" 7 (P* + Qui + ¢ %p?)
p(p® —3q)" '
- n 1 j n
_eqt 2(p2+Q)Z (j) w;;ﬁ 2 2t 3p2 ( ) J+t’
=1 N4 i=1
which upon inserting (2.4) and (2.5) gives the stated result. L]
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3 Application

We now apply the results of the previous section to derive closed formulas for the finite sums
> i1 G 2 Gy and 377 GY L (Gyegr + Gye1). We will also establish a couple of
Fibonacci divisibility properties.

Let (G;(Go, G1))jez = (w;(Go, G1;1,—1)) be the generalized Fibonacci sequence, the so-
called Gibonacci sequence (a name that was coined by Benjamin & Quinn [3, p. 17]), having the
same recurrence relation as the Fibonacci sequence but starting with arbitrary initial values; that
is, let

Gj=Gj1+Gja (§22), (3.1

where GGy and (G, are arbitrary numbers (here we shall assume that they are integers) not both
zero; with
G ;=G (-2 =G ()

The terms of the generalized Fibonacci sequence can be accessed directly through the Binet

formula: , .
Ao — Bf?

a—fB
where o = (14 /5)/2, = (1 —/5)/2,and A = G, — GyBand B = G, — Gya.
It is clear that with the substitution of p = 1 and ¢ = —1, the identity stated in Theorem 2.1

Gj = j €L,

reduces to the following:

Proposition 3.1. [fn and t are integers, then

n 5 5
Z G6 . Gn+th+t+3 - Gt Gt+3
JjHt —
Jj=1 4

3.2)
n €2 (Gt (Grivy1 + Gupi1) — G(Giy1 + Gi—1))
4 )

where eq = G% — G? + GoG.
Note that, in obtaining the final form of (3.2), we used
4Gs—&—l - Gs+3 = Gs—i—l + Gs—l-

The Fibonacci and Lucas numbers stated in the Introduction correspond to (G,(0,1));ez and
(G(2,1)) ez, respectively.

Our next result, a certain sum of generalized Fibonacci numbers with indices in arithmetic
progression is an immediate consequence of (3.2).

Proposition 3.2. Ifn and t are integers, then

- Gen -G
Z Gojor = 6 +t+?;1 t+3 3.3)
j=1
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Proof. Since the sequences (af);cz and (/57);cz are each a generalized Fibonacci sequence,
setting GG,,, = o™ and G,,, = ™, in turn, in (3.2) gives

QfnHtH3 i3

n

E a6j+t —

, 4
Jj=1

and
[Bont+t+3 _ gt+3

- 65+t _
;5 . :

where we wrote ¢ for 6¢ since ¢ is arbitrary and 6¢ occurs in all the exponents. Combining these,

using the Binet formula yields (3.3). Note that
ea:(aO)Q—(a1)2+a0a1:1—a2+a:0:eﬁ. [l
Since the left-hand side of (3.3) is always an integer, we deduce the following divisibility rule.
Proposition 3.3. Ifn and t are integers, then

4| Genyiys — Giys. (3.4)
Taking (G ;) to be the Fibonacci sequence and using the fact that

L3n+t+3F3na if n is even
Fénytrs — Fris = . . )
F3, 141303, ifnisodd

we have
4| Lspyii3Fan,if niseven; 4| Fs,yyi3L3,,if nis odd; (3.5)
and, since t is an arbitrary integer which can be chosen as t = —3n — 2, this gives
4| F3,,if niseven; 4| Ls,,if nis odd. (3.6)

Of course, the same result can be obtained by taking (G;) to be the sequence of Lucas numbers
and using the fact that

9F5,1t43F5,, 1fniseven
Lepyiss — Liys = o )
Lspiii3Lls,, ifnisodd
so that
4| Fspiir3Fsn,if niseven; 4| Ls,iiy3L3,,1f nis odd, (3.7
giving again (3.6).
Based on a method developed in [2], stated here in Lemma 3.1, we will now derive, from (3.2),
aformula for 37 | G, (Gjrer1 + Gje1).

Lemma 3.1. Let g(x) be the infinite times differentiable, complex-valued Gibonacci function

defined by
Aa® — BS*
g(x) = T a—5

where a = (1 ++/5)/2, 8= (1 —+/5)/2, and A = G, — GoB and B = G| — Gy,

z € R, (3.8)
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Then
g(x)|x:jez = Gy; (3.9

and

d Gip+ G,
R —g(x =2 B, (3.10)
(dm ( )z:JGZ) V5

where R(y) denotes the real part of y.

Proposition 3.4. [f n and t are integers, then

Z G?-i—t (Gjtes1 + Gipe)
) )
24
+ Gn+t (Gt (Guytra + Gogry2) + 5Gnii43 (Gryrr1 + Goge-1))

G (5G2,; + (Gt + Grreo1)? = 5G2 — (G + Gir)?) 3.11)

— ﬂG? (Gt (Giya + Giy2) +5G143 (Gigr + Gio1)) -

Proof. The Gibonacci function form of (3.2) is

ig(j gy = 9+ D+ 23) —g(t)°g(t +3)

n e (gn+)(gn+t+1) +gn+t—1) —gt) (gt +1+g(t —1)))
4 bl

Differentiating this with respect to ¢ and making use of Lemma 3.1 gives (3.11). ]

In particular,

1
Z Tl = (L2n+2t — Lot + Fyyy (Fongores + 2Fi143Ln4t))

(3.12)
F4
- E (Forys +2F3Ly),
and
25 1,
Z L} Fje = 15 (Lznvze = Lae) + o Loy (Fongates + 2LnsessFrse)
3.13
Lt (3.13)
D) = (Farps + 2Lei3Fy) 5
with the special values
1
§2F5 = LM+F4@%ﬁ+aﬂm¢>) 5 (3.14)
: 41
Z LiF; = 25L2n + Lt (Fonss + 2Ly 43F,)) — - (3.15)
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Note that, in deriving (3.12) and (3.13), we used

and

L2 +5F? = 2Ly,,

FypLy + LyFy = 2F, 0.
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