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Abstract: In this paper, we consider the factorization of generalized sequences, by employing
a method based on trigonometric identities. The new method is of reduced complexity and
represents an improvement compared to existing results. We establish a connection between
the bi-periodic Fibonacci and Lucas polynomials and tridiagonal matrices, which exploits the
calculation of eigenvalues of associated tridiagonal matrices.
Keywords: Bi-periodic Fibonacci polynomials, Bi-periodic Lucas polynomials, Tridiagonal
matrices, Trigonometric identities, Eigenvalues, Complex factorizations.
2020 Mathematics Subject Classification: 15A15, 15B05, 15A60, 11B39.

1 Introduction and preliminaries
Recently, the recursive integer numbers and some tridiagonal matrices have attracted continued
interest in variety of fields, including algebra and number theory. Usually, meeting of apparently
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different fields of mathematics leads to new perspectives and reveals some unexpected results.
In past decades, many research papers focused on the connection between tridiagonal matrices
and integer sequences. For instance, by employing the properties of Chebyshev polynomials,
Cahill et al. in [5] obtained a series of complex factorization equations of Fibonacci and Lucas
numbers by computing eigenvalues and determinants of associated tridiagonal matrices.

In addition, a plethora of research results regarding the factorization, determinants, inversion
etc. of tridiagonal matrices have been obtained. (For more details the reader is referred to
[1, 2, 4–11, 13, 15–18] and references therein.) In particular, famous Fibonacci numbers and
their properties have been studied through properties of tridiagonal matrices. In [5] Cahill et al.
provided an n× n tridiagonal matrix M(n) of the form:

M(n) =


1 i

i 1 i

i 1
. . .

. . . . . . i

i 1


n×n

,

such that det(M(n)) = Fn−1. By employing this matrix and constructing additional tridiagonal
matrices, they also proved that

Fn =
n−1∏
j=1

(
1− 2i cos

(
jπ

n

))
, n ≥ 2,

where Fn is Fibonacci number and i is the imaginary number. Later, they considered sets of
tridiagonal matrices whose determinants generate linear subsequences of Fibonacci and Lucas
numbers. Meanwhile, they focused on complex factorizations of these subsequences (see for
example [5, 6]) that led to

F2n =
n−1∏
j=1

(
3− 2 cos

(
jπ

n

))
,

which was improved by

F2mn = F2m

n−1∏
j=1

(
L2m − 2 cos

(
jπ

n

))
.

For other sequences, such as Lucas or Pell numbers, tridiagonal matrices

D(n) =



1
2

i

i 1 i

i 1
. . .

. . . . . . i

i 1


n×n

, N(n) =


2i 1

1 2i 1

1 2i
. . .

. . . . . . 1

1 2i


n×n

were provided with the property that their determinants form Lucas and Pell numbers, respectively.
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By choosing different entries of tridiagonal matrices, similarly other sequences can be derived.
Inspired by the aforementioned reference, we change the entries of M(n) as follows:

P (n) =


3 1

1 3 1

1 3
. . .

. . . . . . 1

1 3


n×n

.

In this case, we obtain that det(P (n)) = F2n+2.

In [17] Strang designed a family of matrices that can result in a series of number sequences.
In 2011, the authors of [4] proposed the complex factorization of generalized Lucas sequence
by same tridiagonal matrix methods. Jun [14] got the complex factorizations of the generalized
Fibonacci sequences. In short, there is a relationship between the determinants of tridiagonal
matrices and famous sequences of numbers, and similar methods have been used for calculations.
Therefore, it makes sense to establish a different method as well as an algorithm with reduced
complexity. In the light of above mentioned articles, in this paper, we will fuse techniques from
the areas of both number theory and linear algebra to consider a method for complex factorization
of bi-periodic Fibonacci and Lucas numbers. Our method is based on a trigonometric identity
and it is essentially different from those of [4, 14, 15, 17, 18]. Furthermore, by choosing different
elements in tridiagonal matrices, it can be used to illustrate some properties of second-order linear
equations.

Subsequently, we review various of preliminaries regarding the bi-periodic Fibonacci and
Lucas polynomials, tridiagonal matrices, trigonometric identities, respectively (see [19]).

Definition 1.1. The bi-periodic Fibonacci polynomial qn(x)
∞
n=0 and the bi-periodic Lucas

polynomial ln(x)
∞
n=0 are respectively defined in the following forms:

qn(x) =

{
axqn−1(x) + qn−2(x), n is even
bxqn−1(x) + qn−2(x), n is odd

n ≥ 2,

ln(x) =

{
bxln−1(x) + ln−2(x), n is even
axln−1(x) + ln−2(x), n is odd

n ≥ 2,

with initial values q0(x) = 0, q1(x) = 1, l0(x) = 2, l1(x) = ax.

In particular,

qn(x) = a1−ξ(n)bξ(n)xqn−1(x) + qn−2(x),

ln(x) = aξ(n)b1−ξ(n)xln−1(x) + ln−2(x),

where and ξ(n) =
1− (−1)n

2
is the parity function, namely, when n is an even number, ξ(n) = 0,

otherwise, ξ(n) = 1. Furthermore, when x = 1, we can obtain the classical bi-periodic Fibonacci
and Lucas numbers defined in [3, 12]. We calculate the following identities:
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(
b

a

) ξ(n−1)
2

qn(x) =
√
abx

(
b

a

) ξ(n−2)
2

qn−1(x) +

(
b

a

) ξ(n−3)
2

qn−2(x),(
b

a

) ξ(n)
2

ln(x) =
√
abx

(
b

a

) ξ(n−1)
2

ln−1(x) +

(
b

a

) ξ(n−2)
2

ln−2(x).

By setting
(
b
a

) ξ(n−1)
2 qn(x) = Qn(x),

(
b
a

) ξ(n)
2 ln(x) = Ln(x), we obtain:

Qn(x) =
√
abxQn−1(x) +Qn−2(x), Q0(x) = q0(x) = 0, Q1(x) = q1(x) = 1;

Ln(x) =
√
abxLn−1(x) + Ln−2(x), L0(x) = l0(x) = 2, L1(x) =

√
abx.

Thus, the study of bi-periodic Fibonacci and Lucas polynomials qn(x), ln(x) is converted to
an analogous problem of polynomials Qn(x) and Ln(x). In the sequel, we study how this property
affects the complex factorization of bi-periodic polynomials.

Lemma 1.1 ( [19]). The bi-periodic Fibonacci and Lucas polynomials satisfy the following
properties:

qn(x) =
a1−ξ(n)

(ab)⌊
n
2
⌋

(
αn(x)− βn(x)

α(x)− β(x)

)
,

ln(x) =
aξ(n)

(ab)⌊
n+1
2

⌋
(αn(x) + βn(x)),

qn+1(x) + qn−1(x) = ln(x),

qn(x)ln(x) = q2n(x),

with α(x), β(x) being the roots of λ2 − abxλ− ab = 0.

Lemma 1.2. The following recurrence relations always hold:

q2mn(x) = l2m(x)q2m(n−1)(x)− q2m(n−2)(x),

l2mn(x) = l2m(x)l2m(n−1)(x)− l2m(n−2)(x).

Proof. Observe that by Binet formula α(x)β(x) = −ab, and therefore

q2mn(x) =
a

(ab)mn

(
α2mn(x)− β2mn(x)

α(x)− β(x)

)
,

l2m(x) =
1

(ab)m
(α2m(x) + β2m(x)),

as well as

l2mq2m(n−1) =
1

(ab)m
(α2m(x) + β2m(x))

a

(ab)m(n−1)

(
α2m(n−1)(x)− β2m(n−1)(x)

α(x)− β(x)

)
=

a

(ab)mn

(
α2mn(x)− β2mn(x)

α(x)− β(x)

)
+

a

(ab)m(n−2)

(
α2m(n−2)(x)− β2m(n−2)(x)

α(x)− β(x)

)
= q2mn(x) + q2m(n−2)(x).
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Hence the identity can be represented in the following form:

q2mn(x) = l2m(x)q2m(n−1)(x)− q2m(n−2)(x).

In a similar way, we obtain that l2mn(x) satisfies:

l2mn(x) = l2m(x)l2m(n−1)(x)− l2m(n−2)(x).

Lemma 1.3. Let

Qn =



√
abx i

i
√
abx i

i
√
abx

. . .
. . . . . . i

i
√
abx

 ,

where i is the imaginary number. Then det(Qn) = Qn+1(x).

Lemma 1.4. Let

Qm(n) =


q2m(x) 0

0 l2m(x) 1

1 l2m(x)
. . .

. . . . . . 1

1 l2m(x)

 ,

where i is the imaginary number. Then det(Qm(n)) = q2mn(x).

2 Main results

In this part of our paper we give complex factorizations and their proofs for bi-periodic Fibonacci
and bi-periodic Lucas polynomials. Moreover, we provide some examples to verify our main
results.

Theorem 2.1. The bi-periodic Fibonacci polynomial qn(x) satisfies the identity

qn(x) =
(a
b

) ξ(n−1)
2

n−1∏
k=1

(√
abx+ 2i cos

(
kπ

n

))
, (1)

where i =
√
−1.

Proof. From the relation between tridiagonal matrices and polynomials Qn(x), we can obtain a
sequence of tridiagonal matrices Qn(x) of the form:

Qn(x) =



√
abx i

i
√
abx i

i
√
abx

. . .
. . . . . . i

i
√
abx

 .
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Furthermore, by Lemma 1.3, we have

Qn+1(x) = det(Qn(x)) =
n∏

k=1

λk, n ≥ 1.

Next we apply a new method to compute the eigenvalues λk of Qn(x). Firstly, we present an
efficient formula for computing the eigenvalues of tridiagonal matrix Qn(x). If Qn(x)u = λu,

then
iuj−1 +

√
abxuj + iuj+1 = λuj, u0 = un+1 = 0, 1 ≤ j ≤ n. (2)

The initial values are due to the first and the last row of Qn(x). Taking into account the trigonometric
identity

sin(j + 1)α + sin(j − 1)α = 2 sin jα cosα,

we first multiply by i both sides, and then we add
√
abx sin jα. This leads to

i sin(j + 1)α + i sin(j − 1)α +
√
abx sin jα = 2i sin jα cosα +

√
abx sin jα

= (
√
abx+ 2i cosα) sin jα.

Hence the equation (2) always holds if

λj =
√
abx+ 2i cosα, uj = sin jα.

The boundary condition un+1 = 0 implies that α = kπ
n+1

, 1 ≤ k ≤ n.

Since u is a nonzero vector, then n eigenvalues of Qn(x) are of the form,

λk =
√
abx+ 2i cos

(
kπ

n+ 1

)
, 1 ≤ k ≤ n.

Thus, we obtain

Qn+1(x) =
n∏

k=1

(√
abx+ 2i cos

(
kπ

n+ 1

))
.

It can be also expressed as

Qn(x) =
n−1∏
k=1

(√
abx+ 2i cos

(
kπ

n

))
=

n−1∏
k=1

(√
abx− 2i cos

(
kπ

n

))
.

The corresponding factorization of the bi-periodic Fibonacci polynomial qn(x) is constructed as
follows

qn(x) =
(a
b

) ξ(n−1)
2

Qn(x) =
(a
b

) ξ(n−1)
2

n−1∏
k=1

(√
abx+ 2i cos

(
kπ

n

))
.

This completes the proof.

Example 2.1. By substituing n = 3 in (1), we obtain q3(x) as

q3(x) =
(a
b

) ξ(2)
2

2∏
k=1

(√
abx+ 2i cos

(
kπ

3

))
=

(√
abx+ 2i cos

(π
3

))(√
abx+ 2i cos

(
2π

3

))
=

(√
abx+ i

)(√
abx− i

)
= abx2 + 1.
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Remark 2.1. When we set a = b = 1 in Example 2.1, the third term of the Fibonacci polynomial
is obtained.

Theorem 2.2. The bi-periodic Lucas polynomial ln(x) satisfies the following identity

ln(x) =
(a
b

) ξ(n)
2

n∏
k=1

(√
abx+ 2i cos

(k − 1
2
)π

n

)
, (3)

where i =
√
−1.

Proof. Since det(Ln(x)) = Ln(x) for

Ln(x) =



√
abx 2i

i
√
abx i

i
√
abx

. . .
. . . . . . i

i
√
abx


n×n

,

we compute the eigenvalues of Ln(x). From Ln(x)v = λv, we obtain

ivj−1 +
√
abxvj + ivj+1 = λvj, 1 ≤ j ≤ n.

The boundary conditions are v0 = v2, vn+1 = 0. Taking into account the trigonometric
identity

sin(n− j + 1− 1)α + sin(n− j + 1 + 1)α = 2 sin(n− j + 1)α cosα,

we first multiply by i both sides, and then we add
√
abx sin(n− j + 1)α. This leads to

i sin(n− j + 1− 1)α + i sin(n− j + 1 + 1)α +
√
abx sin(n− j + 1)α

= 2i sin(n− j + 1)α cosα +
√
abx sin(n− j + 1)α

= (
√
abx+ 2i cosα) sin(n− j + 1)α.

To ensure the initial values v0 = v2, vn+1 = 0, taking vj = sin(n− j +1)α, 1 ≤ j ≤ n, and then
we obtain

λk =
√
abx+ 2i cos

(k − 1
2
)π

n
,

because v0 = v2 means sin(n− 1)α = sin(n+ 1)α, that is α =
(k− 1

2
)π

n
.

Thus we obtain

Ln(x) =
n∏

k=1

(√
abx+ 2i cos

(k − 1
2
)π

n

)
.

The bi-periodic Lucas polynomial ln(x) satisfies the identity

ln(x) =
(a
b

) ξ(n)
2

Ln(x) =
(a
b

) ξ(n)
2

n∏
k=1

(√
abx+ 2i cos

(k − 1
2
)π

n

)
.
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Example 2.2. Substituting n = 3 in (3), we can get the complex factorization of bi-periodic
Lucas polynomials l3(x) as below

l3(x) =
(a
b

) ξ(3)
2

3∏
k=1

(√
abx+ 2i cos

(k − 1
2
)π

3

)
=

√
a

b

(√
abx+ 2i cos

(π
6

))(√
abx+ 2i cos

(π
2

))(√
abx+ 2i cos

(
5π

6

))
=

√
a

b

(√
abx+ i

√
3
)√

abx
(√

abx− i
√
3
)

= ax
(
abx2 + 3

)
.

Remark 2.2. When we take a = b = 1 in Example 2.1, the third term of the Lucas polynomial
can be derived.

Theorem 2.3. The bi-periodic Fibonacci polynomial q2mn(x) satisfies the identity

q2mn(x) = q2m(x)
n−1∏
k=1

(
l2m(x) + 2 cos

(
kπ

n

))
.

Proof. By Lemma 1.4 and Theorem 2.1, it is clear that the following identity holds

q2mn(x) = q2m(x)
n−1∏
k=1

(
l2m(x) + 2 cos

(
kπ

n

))
.

Theorem 2.4. The bi-periodic Lucas polynomial l2mn(x) satisfies the identity

l2mn(x) =
n∏

k=1

(
l2m(x) + 2 cos

(
(k − 1

2
)π

n

))
.

Proof. Consider the matrix

Lm(n) =


l2m(x)

√
2√

2 l2m(x) 1

1 l2m(x)
. . .

. . . . . . 1

1 l2m(x)

 .

Then

det(Lm(1)) = l2m(x),

det(Lm(2)) = l22m(x)− 2 = l4m(x),

det(Lm(n)) = l2m(x) det(Lm(n− 1))− det(Lm(n− 2)).

with det(Lm(n)) = l2mn(x). Due to Lemma 1.2 and Theorem 2.2, we present in the form:

l2mn(x) =
n∏

k=1

(
l2m(x) + 2 cos

(
(k − 1

2
)π

n

))
.
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Remark 2.3. Consider the matrices,

Fm(n) =


F2m 0

0 L2m 1

1 L2m
. . .

. . . . . . 1

1 L2m

 ,

and

Nm(n) =


L2m 2

1 L2m 1

1 L2m
. . .

. . . . . . 1

1 L2m

 ,

where Fn and Ln are the Fibonacci and Lucas numbers, respectively. Then we obtain det(Fm(n)) =

F2mn and det(Nm(n)) = L2mn . With a similar approach as in this article, we obtain

F2mn = F2m

n−1∏
k=1

(
L2m − 2 cos

kπ

n

)
and

L2mn =
n∏

k=1

(
L2m + 2 cos

(2k − 1)π

2n

)
.

Remark 2.4. Consider the matrix

Lm,p(n) =


l2m+p(x)

√
lp(x)√

lp(x) l2m(x) 1

1 l2m(x)
. . .

. . . . . . 1

1 l2m(x)

 .

Using this method, we obtain the complex factorization of the bi-periodic Fibonacci and Lucas
polynomials q2mn+p(x), l2mn+p(x), qαk+β(x), and lαk+β(x). For example, we have det(Lm,p(n)) =

l2mn+p(x). Moreover, readers can check the complex factorization of l2m+p(x) using the method
mentioned in this paper.

Remark 2.5. Employing a methodology analogous to that utilized in this study, it is possible
to derive complex factorizations of well-known numerical sequences, including the Fibonacci,
k-Fibonacci, Pell, Lucas, k-Lucas, and Pell-Lucas number sequences, among others.

Remark 2.6. Utilizing the methodology presented in this paper, readers can analyze the
eigenvalues of a special tridiagonal matrix in the following form:
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D(n) =


d 2

1 d 1

1 d
. . .

. . . . . . 1

2 d

 .

3 Conclusion

In this study, combining matrix theory and number theory, we have given complex factorizations
for bi-periodic Fibonacci and Lucas polynomials with the aid of tridiagonal matrices. The
proposed method consists of a simpler and shorter algorithm than of those previously studied.
Complex factorization of many polynomials and numbers can be obtained according to the special
cases of the polynomial of this study. As a result, our results provide a more general approach.
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