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Abstract: In this paper, we aim to provide alternative solutions of the Legendre’s equation
x2 + ky2 = z2, where k is a square-free positive integer. The results also lead to solutions of
the well-known Pythagorean triples and Eisenstein triples.
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1 Introduction

Legendre’s equation is the Diophantine equation

ax2 + by2 + cz2 = 0, (1)

where x, y, z are integers, not all zero and a, b, c are fixed nonzero integers, not all of the same
sign, and abc is squarefree [7]. When seeking integer solutions to (1), one often encounters
constraints related to quadratic residues modulo specific integers. These constraints have led to
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the development of numerous methods for finding integer solutions to this equation. In the case
(a, b, c) = (1, 1,−1), Equation (1) simplifies to the Pythagorean equation x2 + y2 = z2, and the
solutions (x, y, z) are known as Pythagorean triples.

Another well-known example of integer triples are Eisenstein triples. Unlike Pythagorean
triples, which are associated with right-angled triangles, Eisenstein triples are triples (x, y, z)

of positive integers corresponding to integer-sided triangles with one angle measuring either 60
degree or 120 degree [6]. A 60 -degree Eisenstein triple satisfies the equation x2 − xy+ y2 = z2,

where x < z < y, which corresponds to a triangle with a 60-degree angle [6]. The equation
of 60-degree Eisenstein triples can be transformed into either one of the equivalent forms
(2y − x)2 + 3x2 = (2z)2 or (2x − y)2 + 3y2 = (2z)2, which is a special case of Legendre’s
equation where (a, b, c) = (1, 3,−1). We say that (x, y, z) is a 120 -degree Eisenstein triple
if 0 < x < y < z and x2 + y2 + xy = z2 [6]. The equation of 120-degree Eisenstein triples
can also be transformed to either one of the equivalent equations (2y + x)2 + 3x2 = (2z)2 or
(2x + y)2 + 3y2 = (2z)2, which is also a special case of Legendre’s equation where (a, b, c) =

(1, 3,−1). Several works have been done in solving special cases of (1) and related equations,
see [1, 2, 4, 5, 7–9] for additional details.

The main aim of this paper is to give alternative solutions to the Diophantine equation

x2 + ky2 = z2, (2)

where k is square-free and x, y, z are positive integers. It is well-known that all solutions of (2)
are given by (x, y, z) = (dx0, dy0, dz0) where d is a positive integer and gcd(x0, y0, z0) = 1.
Hence, it suffices to find all possible solutions of (2) with gcd(x, y, z) = 1. Such a solution
is called a primitive solution. We will prove the following theorems by using only elementary
concepts from number theory. One can find similar results in [3, p. 77].

Theorem 1.1. The triple (x, y, z) is a primitive solution to the Diophantine equation (2), where
k is an odd positive integer and is square-free if and only if either one of the following statements
holds:

1. There are odd positive integers m and n such that

(x, y, z) =

(
1

2
|αm2 − βn2|,mn,

1

2
(αm2 + βn2)

)
,

where α and β are positive integers such that αβ = k and gcd(αm, βn) = 1.

2. There are positive integers m and n such that

(x, y, z) =
(∣∣αm2 − βn2

∣∣ , 2mn,αm2 + βn2
)
,

where α and β are positive integers such that αβ = k, gcd(αm, βn) = 1, and αm, βn have
different parity.
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Theorem 1.2. The triple (x, y, z) is a primitive solution to the Diophantine equation (2), where
k is an even positive integer and is square-free if and only if there are positive integers α, β,m,

and n such that

(x, y, z) =
(∣∣αm2 − βn2

∣∣ , 2mn,αm2 + βn2
)
,

where αβ = k, gcd(αm, βn) = 1, and αm, βn have different parity.

2 Alternative characterization

In this section, we give elementary proofs of Theorem 1.1 and Theorem 1.2. Let us start with the
following lemma.

Lemma 2.1. Let a, b, and c be positive integers where b is square-free. If a2 | bc2, then a | c.

Proof. Suppose that a2 | bc2. Since the result is obvious for b = 1, we assume that b > 1. The
fundamental theorem of arithmetic implies that there are distinct prime numbers p1, p2, . . . , pn
such that a = pα1

1 pα2
2 · · · pαn

n , b = pβ1

1 pβ2

2 · · · pβn
n , and c = pγ11 pγ22 · · · pγnn where αi ≥ 0, βi ∈ {0, 1}

and γi ≥ 0 for all i = 1, 2, . . . , n. Then 2αi ≤ βi + 2γi for all i = 1, 2, . . . , n.
We consider two cases.

• Case 1: βi = 0. Then 2αi ≤ 2γi and so αi ≤ γi for all i = 1, 2, . . . , n.

• Case 2: βi = 1. Then 2αi ≤ 1 + 2γi. Since 2αi is even and 1 + 2γi is odd, 2αi ≤ 2γi and
hence αi ≤ γi for all i = 1, 2, . . . , n.

This implies αi ≤ γi for all i = 1, 2, . . . , n. Therefore, a | c.

Proof of Theorem 1.1. Let (x, y, z) be a primitive solution to the Diophantine equation (2) where
k is odd and square-free. We consider two cases.

• Case 1: y is odd.

Then z−x is odd. Suppose that z = x+n2β, where n and β are odd positive integers, and
β is square-free. Putting z in (2) and simplifying, we have

ky2 = n2β(2x+ n2β). (3)

From (3), we have n2 | ky2. By Lemma 2.1, n | y. Suppose that y = nl for some odd
l ∈ N. Putting y in (3), we have

kl2 = β(2x+ n2β). (4)

Dividing (4) by gcd(k, β) on both sides, we get

kl2

gcd(k, β)
=

β

gcd(k, β)
(2x+ n2β). (5)

From (5), we must have β

gcd(k, β)
| l2, since k

gcd(k, β)
and β

gcd(k, β)
are relatively prime.

Since β

gcd(k, β)
is square-free, β

gcd(k, β)
| l. Let l = βm

gcd(k, β)
for some odd m ∈ N.
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Putting l in (4) and simplifying, we get

x =
β

gcd(k, β)

[
km2

2 gcd(k, β)
− gcd(k, β)n2

2

]
.

We also have

y = nl =
β

gcd(k, β)
(mn).

Then we finally get

z = x+ βn2 =
β

gcd(k, β)

[
km2

2 gcd(k, β)
+

gcd(k, β)n2

2

]
.

Since k and β are relatively prime and gcd(x, y, z) = 1, we must have β

gcd(k, β)
= 1. This

means β = gcd(k, β) and hence β | k. Let α =
k

β
. Then αβ = k and

(x, y, z) =

(
1

2
(αm2 − βn2),mn,

1

2
(αm2 + βn2)

)
.

Since x must be positive, we may choose x =
1

2
|αm2 − βn2| to ensure non-negativity

regardless of the sign of αm2 − βn2. We also note that |αm2 − βn2| ≥ 2 since α and β

are odd and square-free, as well as m and n are odd. Next, let d = gcd(αm, βn). Suppose
d > 1 and let p be a prime divisor of d. Then p | αm and p | βn. Note that p is odd since
k,m and n are odd. This implies p | x and p | z. Since gcd(x, y, z) = 1, p ∤ y. This means
that p ∤ m and p ∤ n. Thus p | α and p | β, contradicting the fact that k is square-free.
Hence gcd(αm, βn) = 1. In conclusion, we get

(x, y, z) =

(
1

2
|αm2 − βn2|,mn,

1

2
(αm2 + βn2)

)
,

where αβ = k and gcd(αm, βn) = 1.

Conversely, suppose that (x, y, z) = (
1

2
|αm2 − βn2|,mn,

1

2
(αm2 + βn2), where m and n

are odd positive integers such that gcd(αm, βn) = 1. It is clear that (x, y, z) defined above
is a solution to (2) and gcd(αm2, βn2) = 1. Let d = gcd(x, y, z) and suppose that d > 1.
Let p be a prime divisor of d. Then p divides 1

2
(αm2−β2) and 1

2
(αm2+βn2). This implies

that p must divide gcd(αm2, βn2) = 1, a contradiction. Therefore, (x, y, z) is a primitive
solution of (2).

• Case 2: y is even.

Let y = 2y1 for some y1 ∈ N. Then z− x is even, so we write z − x

2
= n2β where β, n ∈ N

and β is square-free. Thus z = x+ 2n2β. Putting y and z in (2), we have

ky21 = n2β(x+ n2β). (6)

From (6), we have n2 | ky21 . Since k is square-free, Lemma 2.1 implies that n | y1. Let
y1 = ln for some l ∈ N. Putting y1 in (6) and simplifying, we get

kl2 = β(x+ n2β). (7)
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Dividing (7) on both sides by gcd(k, β), we get

kl2

gcd(k, β)
=

β

gcd(k, β)
(x+ n2β). (8)

From (8), we have β

gcd(k, β)
| kl2

gcd(k, β)
. Then we get β

gcd(k, β)
| l2, because k

gcd(k, β)
and

β

gcd(k, β)
are relatively prime. Since β

gcd(k, β)
is square-free, we must have that β

gcd(k, β)
| l.

Let l = βm

gcd(k, β)
for some m ∈ N. Putting l in (7) and solving for x, we get

x =
β

gcd(k, β)

[
km2

gcd(k, β)
− gcd(k, β)n2

]
.

We also have
y = 2y1 = 2(ln) =

β

gcd(k, β)
(2mn)

and

z = x+ 2n2β =
β

gcd(k, β)

[
km2

gcd(k, β)
+ gcd(k, β)n2

]
.

Since gcd(x, y, z) = 1, we must have β

gcd(k, β)
= 1. This means that β = gcd(k, β) and

hence β | k. Let α = k
β

. Then αβ = k and (x, y, z) = (αm2 − βn2, 2mn,αm2 + βn2).

Since x must be positive, we may choose x = |αm2 − βn2| to ensure non-negativity
regardless of the sign of αm2 − βn2. We also note that |αm2 − βn2| ≥ 1 since α and β are
square-free. Next, let d = gcd(αm, βn). Suppose that d > 1 and let p be a prime divisor
of d. Then p | αm2 and p | βn2. This implies that p | x and p | z. Since gcd(x, y, z) = 1,
p ∤ y. This means that p ∤ m and p ∤ n. Thus p | α and p | β, contradicting the fact that k is
square-free. Hence gcd(αm, βn) = 1.

Next, suppose that αm and βn have the same parity. Since αm2 − αm = αm(m − 1) is
even, αm2 and αm have the same parity. Likewise, βn2 and βn have the same parity. Thus
αm2 and βn2 have the same parity. This forces x and z to be even. Thus gcd(x, y, z) ≥ 2,

which is a contradiction. Therefore, αm and βn have different parity.

In summary, we have

(x, y, z) = (|αm2 − βn2|, 2mn,αm2 + βn2),

where αβ = k, gcd(αm, βn) = 1, and αm, βn have different parity.

Conversely, one can show that (x, y, z) defined above is a primitive solution to (2) by
mimicking the proof of Case 1.

Proof of Theorem 1.2. Let (x, y, z) be a primitive solution to (2) where k is even and square-free.
Then k ≡ 2 (mod 4). If y is odd, then y2 ≡ 1 (mod 4). This implies that z2 ≡ 2 or 3 (mod 4),

which is impossible. Hence y is even. Thus the result follows Case 2 of Theorem 1.1.
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3 Applications

This section is devoted to applications of Theorem 1.1 to the well-known Pythagorean triples and
Eisenstein triples.

Corollary 3.1. [3, Theorem 2.2.1] The primitive solutions to the Pythagorean triple x2 + y2=z2

with y even are given by

(x, y, z) = (m2 − n2, 2mn,m2 + n2),

where m and n are positive integers with different parity such that m > n and gcd(m,n) = 1.

Proof. This is a direct consequence of Theorem 1.1 for k = 1.

Next, we apply the same theorem to get alternative solutions of the 60-degree Eisenstein
triples. It is well-known that if (x, y, z) is a primitive 60-degree Eisenstein triple, then so is
(y − x, y, z) [6]. Here, we give an alternative proof of the following result as a corollary of
Theorem 1.1.

Corollary 3.2. [6, Theorem 13] The positive integers x, y and z form a pair of primitive
60 -degree Eisenstein triple (x, y, z) and (y−x, y, z) with x+y+z not a multiple of 3 if and only
if there exist relatively prime positive integers m and n such that m > n, m ̸≡ n (mod 3), and

(x, y, z) = (n2 + 2mn,m2 + 2mn,m2 +mn+ n2).

Proof. Let x < z < y be a primitive solution to the equation

x2 − xy + y2 = z2 (1)

with x + y + z ̸≡ 0 (mod 3). Then x and y must have different parity. We assume without loss
of generality that x is odd. Multiplying by 4 on both sides of (1) and simplifying, we get

(2y − x)2 + 3x2 = (2z)2. (2)

Note that gcd(2y − x, x, 2z) = 1. Theorem 1.1 implies that

(2y − x, x, 2z) =

(
1

2
(a2 − 3b2), ab,

1

2
(a2 + 3b2)

)
for some odd positive integers a, b where a >

√
3b. Thus

(x, y, z) =

(
ab,

1

4
(a+ 3b)(a− b),

1

4
(a2 + 3b2)

)
.

Choose m =
a− b

2
and n = b. Then m and n are positive integers. Moreover, we have

(x, y, z) = (n2 + 2mn,m2 + 2mn,m2 +mn+ n2),

as required. We also note that m > n since x < y and gcd(m,n) = 1 since gcd(x, y, z) = 1.
Finally, we note that if m ≡ n (mod 3), then x + y + z = 2m2 + 5mn + 2n2 ≡ 0 (mod 3).
Thus m ̸≡ n (mod 3). The converse is clear.
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60-degree Eisenstein triples actually represent integer triangles (a triangle all of whose side
lengths are positive integers) with one angle measures 60◦. They also lead to another class of
integer triangles with one angle measures 120◦. The characterization of primitive 120-degree
Eisenstein triples is similar to that of 60-degree Eisenstein triples. We state without proof the
following corollary.

Corollary 3.3. [3, p. 93] The triple (x, y, z) is a primitive solution to the 120 -degree Eisenstein
triple where x < y < z and x + y + z is not a multiple of 3 if and only if there exist relatively
prime positive integers m and n such that m > n, m ̸≡ n (mod 3), and

(x, y, z) = (m2 − n2, 2mn+ n2,m2 +mn+ n2).

The following tables present primitive solutions of Legendre’s equation x2 + ky2 = z2 where
k = 2, 15, and 30 with restricted range 1 ≤ m ≤ 4 and 1 ≤ n ≤ 4.

k α β m n x y z

2 1 2 1 1 1 2 3

1 2 7 4 9

1 3 17 6 19

1 4 31 8 33

3 1 7 6 11

3 2 1 12 17

3 4 23 24 41

k α β m n x y z

15 1 15 1 1 7 1 8

1 2 59 4 61

1 3 67 3 68

1 4 239 8 241

2 1 11 4 19

2 3 131 12 139

4 1 1 8 31

4 3 119 24 151

15 3 5 1 1 1 1 4

1 2 17 4 23

1 4 77 8 83

2 1 7 4 17

3 1 11 3 16

3 2 7 12 47

3 4 53 24 107

4 1 43 8 53

k α β m n x y z

30 1 30 1 1 29 2 31

1 2 119 4 121

1 3 269 6 271

1 4 479 8 481

30 2 15 1 1 13 2 17

1 3 133 6 137

2 1 7 4 23

2 3 127 12 143

4 1 17 8 47

4 3 103 24 167

30 3 10 1 1 7 2 13

1 2 37 4 43

1 4 157 8 163

3 1 17 6 37

3 2 13 12 67

3 4 133 24 187

30 5 6 1 1 1 2 11

1 2 19 4 29

1 3 49 6 59

1 4 91 8 101
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