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1 Introduction

The exploration of representing recurrence sequences and special numbers in various forms has a
long and fascinating history. Notably, in 2006, Bugeaud, Mignotte, and Siksek [3] demonstrated
that the set of perfect power Fibonacci numbers consists solely of 0, 1, 8, and 144, while perfect
powers among Lucas numbers are limited to 1 and 4. Luca and Szalay [6] established that only
finitely many Fibonacci numbers adhere to the form pa±pb+1, where p is a prime number and a

and b are positive integers with max {a, b} ≥ 2. Building on this, in 2013, Marques and Togbé [8]
characterized all Fibonacci and Lucas numbers expressible as 2x + 3y + 5z.

One of the useful generalizations of the Fibonacci sequence, which is called k-generalized
Fibonacci sequence

(
F

(k)
n

)
with n ≥ − (k − 2) is given by the recurrence relation

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k, for n ≥ 2

with the initial conditions F (k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

Subsequently, in 2014, Marques [7] resolved the Diophantine equation F
(k)
n = 2x + 3y + 5z

with the constraint max (x, y) ≤ z. Recently, Irmak and Alp [5] delved into the k-generalized
Fibonacci numbers in proximity to the form 2x + 3y + 5z. Moreover, other scholarly works have
pursued Fibonacci and Lucas numbers following patterns like 2x + 3y + 5z + 7t (refer to [10] for
comprehensive insights).

Moving forward, it is imperative to define Padovan and Perrin numbers, which hold significant
prominence in the literature. We begin with the Padovan sequence (Pn)n≥0, characterized by
the ternary recurrence relation Pn+3 = Pn+1 + Pn for n ≥ 0, where the initial values are
P0 = P1 = P2 = 1. The first few terms of this sequence are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, . . .

Next, consider the sequence of Perrin numbers, denoted as (℘n)n≥0, which follows the identical
recursive pattern of the sequence of Padovan numbers, namely, ℘n+3 = ℘n+1 +℘n for n ≥ 0, but
with initial values ℘0 = 3, ℘1 = 0 and ℘2 = 2. The first few terms of this sequence are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, . . . .

In this paper, we extend the preceding discourse by elucidating the comprehensive
identification of Padovan numbers and Perrin numbers expressible as the sums and differences
of four distinct prescribed bases raised to perfect powers. Specifically, we rigorously establish all
Padovan and Perrin numbers conforming to the format 7t − 5z − 3y − 2x, where 0 ≤ x, y, z ≤ t.
Our study culminates in the validation of the following two pivotal results:

Theorem 1.1. The only solutions (n, x, y, z, t) of the Diophantine equation:

Pn = 7t − 5z − 3y − 2x (1)

with 0 ≤ max (x, y, z) ≤ t is (14, 2, 1, 1, 2).

Theorem 1.2. The only solutions (n, x, y, z, t) of the Diophantine equation:

℘n = 7t − 5z − 3y − 2x (2)

with 0 ≤ max (x, y, z) ≤ t are (10, 2, 1, 2, 2) and (13, 1, 1, 1, 2).
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2 Preliminaries and known results

In this section, we gather pertinent insights concerning Padovan and Perrin numbers along with
several preliminary lemmas that serve as fundamental components of our primary argument. For
more exhaustive discussions, readers are referred to [1, 2, 11]. It is worth recalling that Padovan
numbers and Perrin numbers exhibit several analogous properties. Notably, they share an identical
recurrence relation, implying that both sequences are governed by the same characteristic equation:
x3 − x− 1 = 0. This equation has the roots α, β and γ, where

α =
3

√
9 +

√
69

18
+

3

√
9−

√
69

18
, β = ω

3

√
9 +

√
69

18
+ ω

3

√
9−

√
69

18

with γ = β. Here, ω is a cubic root of 1. It is well-known that for all n ≥ 0 the Binet’s formula
for the n-th term of Padovan sequence is given by

Pn = cαα
n + cββ

n + cγγ
n, (3)

where 

cα =
1 + α

−α2 + 3α + 1

cβ =
1 + β

−β2 + 3β + 1

cγ =
1 + γ

−γ2 + 3γ + 1

.

The Binet’s formula for ℘n is given by

℘n = αn + βn + γn, for all n ≥ 0. (4)

In numerical terms, the ensuing approximations encapsulate the magnitudes of the quantities α,
β, γ, cα, cβ and cγ: 

1.32 < α < 1.33

0.86 < |β| = |γ| < 0.87

0.72 < cα < 0.73

0.24 < |cβ| = |cγ| < 0.25

|β| = |γ| = α−1/2

. (5)

Further, using induction, one can prove that

αn−2 ≤ Pn ≤ αn−1 holds for all n ≥ 4 (6)

and
αn−2 ≤ ℘n ≤ αn+1 holds for all n ≥ 2. (7)

Certainly, our inquiry necessitates leveraging insights from the theory concerning lower
bounds for nonzero linear forms in the logarithms of algebraic numbers.
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Suppose we have a set of real algebraic numbers η1, η2, . . . , ηl, each distinct from 0 and 1

(1 ≤ i ≤ l), along with corresponding nonzero integers b1, . . . , bl. Let D denote the degree of the
number field Q (η1, η2, . . . , ηl) over Q. We define

B = max {|b1| , |b2| , . . . , |bl|} ,
and

Γ = ηb11 ηb22 · · · ηbll − 1.

Remember that the logarithmic height of a k-degree algebraic number η is defined as follows:

h(η) =
1

k

(
log a+

k∑
j=1

max{0, log |η(j)|}

)
,

where a>0 is the leading coefficient of the minimal polynomial of η (over Z) and η(j) (1≤j≤k)
are the conjugates of η (over Q). Let A1, . . . , Al be positive integers such that

Aj ≥ max {Dh (ηj) , |log ηj| , 0.16} , 1 ≤ j ≤ l.

We will use the following deep Lemma proved by Matveev [9].

Lemma 2.1. If ηb11 ηb22 · · · ηbll ̸= 1, then

log
∣∣∣ηb11 ηb22 · · · ηbll − 1

∣∣∣ ≥ −1.4× 30l+3 × l4.5 ×D2 (1 + logD) (1 + logB)A1 · · ·Al.

Once an initial upper bound on n in each of our equations has been obtained, typically it
tends to be excessively large. The subsequent pivotal step involves its reduction. To achieve this
reduction, we rely on a variant of the renowned Baker–Davenport lemma credited to Dujella and
Pethő (refer to [4]). For any real number x, we denote the distance from x to the nearest integer
by ∥x∥ = min {|x− n| ; n ∈ Z}.

Lemma 2.2. Let M be a positive integer, let p/q be a convergent of the continued fraction of the
irrational number κ such that q > 6M , and let A,B, τ be some real numbers with A > 0 and
B > 1. Let ε = ∥τq∥ −M ∥κq∥. If ε > 0, then there exists no solution to the inequality

0 < |uκ− v + τ | < AB−ω

in positive integers u, v, and ω with u ≤ M and

ω ≥
log
(
Aq
ε

)
logB

.

Lemma 2.3. Let κ be a real number and x, y be integers such that∣∣∣∣κ− x

y

∣∣∣∣ < 1

2y2
.

Then x/y = pk/qk is a convergent of κ. Furthermore, let M and N be a non-negative integers
such that qN > M and putting a(M) := max{ai : i = 0, 1, 2, . . . , N}. Then the inequaliy∣∣∣∣κ− x

y

∣∣∣∣ > 1

(a(M) + 2) y2
(8)

holds for all pairs (x, y) of positive integers with 0 < y < M .

Now, we are ready to present the proofs of our results.
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3 Proofs of main results

This section is dedicated to prove the two principal outcomes, outlined in this paper.

Proof of Theorem 1.1. We divide the proof into two parts.

Part I (Deriving an absolute upper bound for n). Combining the Binet’s formula (3) and equation
(1), we see that∣∣cααn − 7t

∣∣ = |2x + 3y + 5z + cββ
n + cγγ

n| ≤ 2x + 3y + 5z + |cββn|+ |cγγn| .

On the other hand, since t ≥ max {x, y, z}, it follows that 2x ≤ 70.4t, 3y ≤ 70.6t and 5z ≤ 70.9t.
By (5), we conclude that ∣∣cααn7−t − 1

∣∣ < 5

70.1t
. (9)

We first observe that cααn7−t − 1 ̸= 0. Otherwise, cααn = 7t. Conjugating the last relation and
taking the absolute value, we obtain

1 < 7t = |cββn| < 1.

However, this assertion leads to a contradiction. Hence, it follows that we must have

0 <
∣∣cααn7−t − 1

∣∣ < 5

70.1t
. (10)

In the case when n = 0, by (1), this yields 7t = 2x + 3y + 5z − 1 ≤ 2x + 3y + 5z, implying that
t is either 0 or 1. For n > 0, considering the left-hand side of (6), we obtain αn−2 ≤ 7t, which
consequently leads to

n < 6.93t+ 2. (11)

If t ≤ 12, then n ≤ 85. A brute force search with Pari/GP in the range 0 ≤ t, n ≤ 85 turned up
that the only solution of (1) is (n, x, y, z, t) = (14, 2, 1, 1, 2).

Now, we assume that n ≥ 86 and so t > 12. Since x, y, z ≤ t, there exist three real numbers
r1, r2, r3 ∈ ]0, 1[ such that 2x < 7r1t, 3y < 7r2t and 5z < 7r3t. Indeed, it suffices to choose that
r1 = 0.36, r2 = 0.57 and r3 = 0.83. By (1) and the right-hand side of (6) we see that

αn−1 ≥ 7t − 5z − 3y − 2x > 7t − 70.83t − 70.57t − 70.36t

= 7x
(
1− 1

70.17t
− 1

70.43t
− 1

70.64t

)
> 0.98× 7t,

which gives t ≤ 0.15n− 0.13 < n.
Applying Matveev’s outcome (refer to Lemma 2.1), we employ it on the left-hand side of (9).

With reference to (10), we have demonstrated that the expression on the left-hand side of (9) is
nonzero. We take l = 3, η1 = cα, η2 = α, η3 = 7 and b1 = 1, b2 = n, b3 = −t. For this choice,
we have D = [Q (α) : Q] = 3. Since t < n, therefore we can take B = n = max {1, t, n}. Note
that the minimal polynomial of cα over Z is given by 23X3 − 23X2 + 6X − 1, which has roots
cα, cβ and cγ . Since |cα| < 1 and |cβ| = |cγ| < 1, we conclude that

h (η1) = h (cα) =
log 23

3
.
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In addition, we have h (η2) = h (α) =
logα

3
and h (η3) = h (7) = log 7. Thus, by (5), we can

take 
max {3h (η1) , |log η1| , 0.16} ≤ 3.2 = A1,

max {3h (η2) , |log η2| , 0.16} ≤ 0.29 = A2,

max {3h (η3) , |log η2| , 0.16} ≤ 5.84 = A3.

By Matveev’s result stated in Lemma 2.1, after straightforward calculation, we get∣∣cααn7−t − 1
∣∣ > exp (−c1 (1 + log n)) , (12)

where c1 = 1. 47× 1013. It follows from (10) and (12) that

ec1(1+logn) >
70.1t

5
,

where by (11), t > n− 2

6.93
. Therefore, we obtain

0.14n− 1.90 < 1.20× 1013 (1 + log n) ,

which gives n < 3.1×1015. Thus, we conclude that if (n, x, y, z) is a solution in positive integers
of (1) with the condition 0 ≤ max (x, y, z) ≤ t, then n < 3.10× 1015.

Part II (Reducing the bound on n). Let us put

Λ1 = log cα + n logα− z log 7.

Clearly, Λ1 ̸= 0 since αcα /∈ Z. Hence, we must consider the following two possibilities.
If Λ1 > 0, then eΛ1 > 1, so from (10) we obtain 0 < Λ1 < eΛ1 − 1 < 5

70.1t
.

Suppose now that Λ1 < 0. It is easy to check that 5

70.1t
<

1

2
for all t > 4. Then, from (10), we

have that
∣∣eΛ1 − 1

∣∣ < 1

2
and, therefore, e|Λ1| < 2. Now, since Λ1 < 0, we have

0 < |Λ1| < e|Λ1| − 1 ≤ e|Λ1|
(
e|Λ1| − 1

)
<

10

70.1t
.

In both cases, the inequality 0 < |Λ1| <
10

70.1t
holds for all t > 5. Replacing Λ1 in the previous

inequality by its formula and dividing by log 7, we conclude that

0 <

∣∣∣∣n logαlog 7
− t+

log cα
log 7

∣∣∣∣ < 10

70.1t × log 7
< 5.14× (2.65)−t .

We are now ready to apply Lemma 2.2 with the following parameters

κ =
logα

log 7
, τ =

log cα
log 7

, A = 5.14, B = 2.65.

Clearly, κ is an irrational number. Let pk/qk represent the k-th convergent of κ’s continued
fraction. To narrow down the bound on n, we set M = 3.1 × 1015 as an upper limit for n. Our
objective now is to identify a convergent of κ with a denominator exceeding 6M . Specifically, we
find that q27 = 38595361995753261 satisfies this condition, using the following Pari/GP program
(Listing 1).
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1 memo=Map();

2 memoize(f,A[..]) =

3 {

4 my(res);

5 if(!mapisdefined(memo, [f,A], &res),

6 res = call(f,A);

7 mapput(memo, [f,A], res));

8 res;

9 }

10 \p 500

11 padovan(n) = if(n <= 2,1,memoize(padovan, n-2)+memoize(padovan, n-3));

12 alpha = ((9 + sqrt(69))/18)ˆ(1/3) + ((9 - sqrt(69))/18)ˆ(1/3);

13 c_ {alpha} = (1+alpha)/(-( alphaˆ2) + 3*alpha + 1);

14 kappa = log(alpha)/log(7); tau = log(c_ {alpha})/log(7);

15 M = 3.10*10ˆ15;

16 cf = contfrac(kappa,600);

17 dis(x) = abs(x-round(x));

18 cvg = contfracpnqn(cf,#cf)[2,27];

19 eps = 10;

20 s = 0;

21 b = dis(tau *cvg) - M*dis(kappa*cvg); if(b < 0, s = s+1);

22 eps = min(eps,b);eps

23

24 % 14 = 0.29175...

Listing 1. Pari/GP code for computing ε (Lemma 2.2).

Thus, by Lemma 2.2 with ε = ∥τq∥ − M ∥κq∥ ≥ 0.29, we deduce that if (n, x, y, z, t)

constitutes a solution in positive integers to Equation (1), then

t <
log
(
Aq
ε

)
logB

=

log

(
5.14× 38595361995753261

0.29

)
log 2.65

= 42.139,

which gives n < 293 by (11). Applying Lemma 2.2 once again and performing the same
calculations with M = 293 and q7 = 8394. Here, ε ≥ 0.31. So, if (n, x, y, z, t) is a solution
in positive integers of equation (1), then t ≤ 12, which implies that n ≤ 85. This contradicts the
hypothesis that n ≥ 86. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. From (2) and (4), we obtain∣∣αn − 7t
∣∣ = |2x + 3y + 5z − βn − γn| ,

or, equivalently, ∣∣αn7−t − 1
∣∣ = ∣∣∣∣2x7t + 3y

7t
+

5z

7t
− βn

7t
− γn

7t

∣∣∣∣ < 5

70.1t
. (13)

From the left-hand side of (7) and (2), we obtain the estimate αn−2 ≤ 7t, this yields

(n− 2) <
t log 7

logα
+ 2,

i.e., n < 6.93t+ 2.
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If t ≤ 19, then n ≤ 135. A brute force search with Pari/GP in the range 0 ≤ t ≤ 19

and 0 ≤ n ≤ 135 revealed that the only solutions (n, x, y, z, t) of (2) are (10, 2, 1, 2, 2) and
(13, 1, 1, 1, 2). Thus, we assume that t ≥ 20. By (2) and the second inequality of (7), it follows
that

αn+1 ≥ 7t − 5z − 3y − 2x > 7t − 70.83t − 70.57t − 70.36t

= 7t
(
1− 1

70.17t
− 1

70.43t
− 1

70.64t

)
> 0.98 · 7t,

which implies that 6.91t− 1.072 < n, and this also yields t < n.
We further utilize Matveev’s result as outlined in Lemma 2.1 on the left-hand side of (13).

It is noteworthy that the expression on the left-hand side of (13) is non-zero; its vanishing would
imply αn = 7t ∈ Z, so αn ∈ Z. This is impossible. We take l = 2, η1 = α , η2 = 7 and b1 = n,
b2 = −t. For this choice, we have D = [Q(α) : Q] = 3. Note that h(η1) =

logα

3
, h(η2) = log 7.

Thus, we can choose A1 = 0.28, A2 = 5.84. Note that B = max{|b1|, |b2|} = max{n, t} = n.
Applying Lemma 2.1, we get∣∣αn7−t − 1

∣∣ > exp (−c2 (1 + log n)) , (14)

where c2 = 2.36 × 1010. Thus from (13), (14) and the fact that t > n− 2

6.93
, taking logarithms in

inequalities (13), (14) and comparing the resulting inequalities, we get that

0.972n− 1.61 < 2.36× 1010 (1 + log n) ,

giving n < 6.8× 1011.
We proceed to diminish the bound concerning n by leveraging the extremal characteristic of

continued fractions. Considering (13), we introduce

Λ2 = n logα− t log 7.

Note that Λ2 ̸= 0, thus, we distinguish the following cases. If Λ2 > 0, then eΛ2 > 1, so from (13)
we obtain 0 < Λ2 < eΛ2 − 1 <

5

70.1t
.

Suppose now that Λ2 < 0. It is easy to check that 5

50.1t
<

1

2
for all t > 5. Then, from (13), we

have that
∣∣eΛ2 − 1

∣∣ < 1

2
and so e|Λ2| < 2. Since Λ2 < 0, we also have

0 < |Λ2| < e|Λ2| − 1 ≤ e|Λ2|
(
e|Λ2| − 1

)
<

10

70.1t
.

In both cases, the inequality 0 < |Λ2| <
10

70.1t
holds for all t > 5. Replacing Λ2 in the above

inequality by its formula and dividing by log 7, we see that

0 <

∣∣∣∣n logαlog 7
− t

∣∣∣∣ < 10

log 7× 70.1t
. (15)

Let [a0, a1, a2, a3, a4, . . .] = [0, 6, 1, 11, 1, . . .] be the continued fraction of the ratio logα

log 7
, and

let pk/qk be its k-th convergent. Recall that n < 6.8 × 1011. A quick inspection using Pari/GP
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reveals that q19 < 6.8×1011 < q20. Furthermore, aM = max{ai : i = 0, 1, . . . , 20} = a10 = 146.
Applying the continued fraction inequality (see Lemma 2.3), we also see that∣∣∣∣n logαlog 7

− t

∣∣∣∣ > 1

(aM + 2)n
=

1

148n
. (16)

Comparing inequalities (15) and (16), we obtain

1

148n
<

10

log 7× 70.1t
.

Since t >
n− 2

6.93
, we conclude that 0.072n < 4.85 + log n, and hence 0 ≤ n < 135.54. This

implies that t <
n+ 1.072

6.91
< 19.69. A contradiction since we have assumed before that t ≥ 20.

Thus, the proof of Theorem 1.2 is finished.

For further research, we close this paper by the following conjecture.

Conjecture 3.1. Each of the Diophantine equations Pn = qt4 − qz3 − qy2 − qx1 and ℘n =

qt4 − qz3 − qy2 − qx1 has a unique solution for infinitely many prime numbers q1, q2, q3 and q4
with 2 ≤ q1 < q2 < q3 < q4 and 0 ≤ x, y, z ≤ t.
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