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1 Introduction and Preliminaries

In this paper, from a series expansion of tanx (see (1)), which gives the product expansion of
the cosine function, we derive some continued fractions, certain identities involving derivatives
of tanx, several expressions for log coshx and an identity for π2.

In more detail, the outline of this paper is as follows. In Section 1, we recall the Bernoulli
numbers, the Riemann zeta function together with their special values at even positive integers,
and the product expansion of the sine function. We remind the reader of the Euler numbers and
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explicit expressions of them obtained by a contour integral. In fact, these yield a relationship
between Euler and Bernoulli numbers (see (12)). We show that

tanx =
∞∑
k=0

(
2

π(2k + 1)

)2

2x
1

1−
(

2x
π(2k+1)

)2 (1)

= 8x

(
1

π2 − 4x2
+

∞∑
k=1

1

((2k + 1)π)2 − 4x2

)
,

by expressing tanx as a series involving the Euler numbers and invoking the aforementioned
explicit expressions of Euler numbers. Then we derive the product expansion of the cosine
function from (1). Section 2 contains the main results of this paper. In Theorem 2.1, we derive a
continued fraction for π

4
. In Theorem 2.2, by successively applying differential operators to the

expression
tanx

8x
+

1

4x2 − π2
=

∞∑
k=1

1

((2k + 1)π)2 − 4x2

we show that it is equal to
∑∞

k=1

(
1

((2k+1)π)2−4x2

)n+1

. By taking the (2n− 2)-th derivative of the
partial fraction expression,

tanx = 2
∞∑
k=0

( 1

(2k + 1)π − 2x
− 1

(2k − 1)π + 2x

)
,

of (1), dividing by 22n−1(2n−2)!, and evaluating at x = π
4
, we have the expression in Theorem 2.3,

which is equal to
1

42n−1

(
ζ
(
2n− 1,

1

4

)
− ζ

(
2n− 1,

3

4

))
.

Here ζ(s, x) is the Hurwitz zeta function. By taking the derivative of (1), and letting x = π
2n+1

we
obtain an expression of π2 as an infinite series, which is valid for any integer n. Letting n = 0,
we get an expression of π

2
in Corollary 2.5. From the product expansion of the cosine function,

we show that

tanhx− tanx

8x
=

∞∑
k=0

(
1

(2k + 1)2π2 + 4x2
− 1

(2k + 1)2π2 − 4x2

)
.

From the identity obtained by letting x = π
2(2n+1)

in this, we get a continued fraction for(
π

4

tanh( π
2(2n+1)

)− tan( π
2(2n+1)

)

2n+ 1

)−1

in Theorem 2.6. Finally, from the observation

tanhx = −
∞∑
n=1

E2n−1
22n−1x2n−1

(2n− 1)!
,

we have several expressions for log coshx in Theorem 2.7.

For the rest of this section, we recall the facts that are needed throughout this paper.
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The Bernoulli numbers are defined by

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
(2)

(see [1–21]). The first few terms of Bn are given by:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
,

B12 = − 691

2730
, B14 =

7

6
, B16 = −3617

510
, B18 =

43867

798
, B20 = −174611

330
, . . . ;

B2k+1 = 0, (k ≥ 1).

For s ∈ C with Re(s) > 1, the Riemann zeta function is defined by

ζ(s) =
∞∑
n=1

1

ns
(3)

(see [1, 9, 12]). For n ∈ N, we have (see [8])

ζ(2n) =
∞∑
k=1

1

k2n
=

(−1)n−1(2π)2n

2(2n)!
B2n. (4)

We observe from (2) that

z cot z =
2iz

e2iz − 1
+ iz = 1 +

∞∑
n=1

(−1)n22nB2n

(2n)!
z2n. (5)

From (4) and (5), we get the following product expansion of the sine function:

sin z

z
=

∞∏
k=1

(
1−

(
z

kπ

)2)
(see [2, 8, 13]). It is well known that a continued fraction for π is given by

π =
4

1 +
12

2 +
32

2 +
52

2 +
72

2 +
92

2 + · · ·

(6)

(see [5, 14]). In [14], another continued fraction for π is given by

π = 3 +
12

6 +
32

6 +
52

6 +
72

6 +
92

6 + · · ·

. (7)
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The Euler numbers are defined (see [7, 8, 11]) by

2

ez + 1
=

∞∑
n=0

En
zn

n!
. (8)

From (8), we note that (see [8])

E0 = 1, En = −
n∑

i=0

(
n

i

)
Ei, (n ∈ N). (9)

The first few terms of En are given by:

E0 = 1, E1 = −1

2
, E3 =

1

4
, E5 = −1

2
, E7 =

17

8
, E9 = −31

2
, E11 =

691

4
,

E13 = −5461

2
, E15 =

929569

16
, E17 = −3202291

2
, E19 =

221930581

4
, . . . ;

E2k = 0, (k ≥ 1).

For n ≥ 2, by (8), we get

0 = lim
N→∞

∮
CN

2

ez + 1

1

zn
dz

= 2πi
(
Res
z=0

2

ez + 1

1

zn
+

∞∑
k=−∞

Res
z=(2k+1)iπ

2

ez + 1

1

zn

)
= 2πi

( En−1

(n− 1)!
+

∞∑
k=−∞

−2

((2k + 1)iπ)n

)
,

where the contour CN is the (positively oriented) circle with radius 2Nπ centered at the origin
(N = 1, 2, 3, . . . ). Thus we have

En−1 = 2(n− 1)!
1

(πi)n

∞∑
k=−∞

1

(2k + 1)n
(10)

=

 4(n− 1)!
(−1)n/2

πn

∞∑
k=0

1

(2k + 1)n
, for n even,

0, for n odd.

From (10), we note that

E2n−1 = 4(2n− 1)!
(−1)n

π2n

∞∑
k=0

1

(2k + 1)2n
, (11)

= 4(2n− 1)!
(−1)n

π2n

(
1− 1

4n

)
ζ(2n)

= −22n − 1

n
B2n, (n ≥ 1).

As E2n = B2n+1 = 0 for n ≥ 1, the following holds true:

En = −2(2n+1 − 1)

n+ 1
Bn+1, (n ≥ 0). (12)
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We observe that

i tanx = i
eix−e−ix

2i
eix+e−ix

2

(13)

= 1− 2

e2ix + 1

= 1−
∞∑
n=0

En
(2i)n

n!
xn

= −i
∞∑
n=0

E2n+1
22n+1(−1)n

(2n+ 1)!
x2n+1.

From (11) and (13), we have

tanx =
∞∑
n=0

22n+1x2n+1

(2n+ 1)!
(−1)n−1E2n+1 (14)

=
∞∑
n=0

22n+1x2n+1

(2n+ 1)!

4(2n+ 1)!

π2n+2

∞∑
k=0

1

(2k + 1)2n+2

=
∞∑
k=0

(
2

π(2k + 1)

)2

2x
∞∑
n=0

(
2x

π(2k + 1)

)2n

=
∞∑
k=0

(
2

π(2k + 1)

)2

2x
1

1−
(

2x
π(2k+1)

)2 .
By (14), we get

− d

dx
log cosx = tanx = −

∞∑
k=0

(
2

(2k + 1)π

)2

(−2x)
1

1−
(

2x
(2k+1)π

)2 (15)

= −
∞∑
k=0

d

dx
log

(
1−

(
2x

(2k + 1)π

)2)
.

From (15), we have

log cosx =
∞∑
k=0

log

(
1−

(
x

(2k + 1)π

)2)
(16)

= log
∞∏
k=0

(
1−

(
2x

(2k + 1)π

)2)
.

Hence, by (16), we get the product expansion of the cosine function:

cosx =
∞∏
k=0

(
1−

(
2x

(2k + 1)π

)2)
. (17)
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2 Explicit formulas related to Euler product expansion
for cosine function

From (14), we note that

tanx =
∞∑
k=0

(
2

(2k + 1)π

)2

2x

(
1

1−
(

2x
(2k+1)π

)2) (18)

= 8x

(
1

π2 − 4x2
+

∞∑
k=1

1

((2k + 1)π)2 − 4x2

)
.

From (18), we have

1

8x
tanx =

1

π2 − 4x2
+

∞∑
k=1

1

((2k + 1)π)2 − 4x2
. (19)

Let x = π in (19). Then we have

1

3π2
=

∞∑
k=1

1

((2k + 1)π)2 − 4π2

=
∞∑
k=1

1

(2k − 1)(2k + 3)π2
.

(20)

Multiplying π2 on both sides of (20), we get

1

3
=

∞∑
k=1

1

(2k − 1)(2k + 3)
=

1

1 · 5
+

1

3 · 7
+

1

5 · 9
+ · · · (21)

Let x = π
4

in (19). Then we see that

1

2π
− 4

3π2
=

∞∑
k=1

4

(4k + 1)(4k + 3)π2
. (22)

Multiplying π2

4
on both sides of (22), we get

π

8
− 1

3
=

1

2

∞∑
k=1

(
1

4k + 1
− 1

4k + 3

)
. (23)

Thus, by (23), we get

3π − 8

12
=

∞∑
k=1

(
1

4k + 1
− 1

4k + 3

)
=

1

5
− 1

7
+

1

9
− 1

11
+

1

13
− 1

15
+ · · · . (24)
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From (21), we get

12

3π − 8
− 1 =

1
3π−8
12

− 1 (25)

=
1− 1

5
+ 1

7
− 1

9
+ 1

11
− 1

13
+ 1

15
− · · ·

1
5
− 1

7
+ 1

9
− 1

11
+ 1

13
− 1

15
+ · · ·

=

(
4
5
− 4

7
+ 4

9
− 4

11
+ 4

13
− 4

15
+ · · · ) +

(
5
7
− 5

9
+ 5

11
− 5

13
+ · · ·

)
1
5
− 1

7
+ 1

9
− 1

11
+ 1

13
− 1

15
+ · · ·

= 4 +
52(

1− 5
7

)
+ 5

9
− 5

11
+ 5

13
− 5

15
+ · · ·

1
7
− 1

9
+ 1

11
− 1

13
+ 1

15
− · · ·

= 4 +
52(

2
7
− 2

9
+ 2

11
− 2

13
+ · · ·

)
+
(
7
9
− 7

11
+ 7

13
− · · ·

)
1
7
− 1

9
+ 1

11
− 1

13
+ 1

15
− · · ·

= 4 +
52

2 +
72(

1− 7
9

)
+ 7

11
− 7

13
+ 7

15
− · · ·

1
9
− 1

11
+ 1

13
− 1

15
+ · · ·

= · · ·

= 4 +
52

2 +
72

2 +
92

2 +
112

2 +
132

2 + · · ·

.

Therefore, by (25), we obtain the following theorem.

Theorem 2.1. We have the following continued fraction for π
4
:

π

4
=

2

3
+

1

5 +
52

2 +
72

2 +
92

2 +
112

2 + · · ·
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By (19), we get

1

8x

d

dx

(
tanx

8x
+

1

4x2 − π2

)
=

∞∑
k=1

1(
((2k + 1)π)2 − 4x2

)2 ,
1

16x

d

dx

1

8x

d

dx

(
tanx

8x
+

1

4x2 − π2

)
=

∞∑
k=1

1(
((2k + 1)π)2 − 4x2

)3 .
Continuing this process, we have

∞∑
k=1

(
1

((2k + 1)π)2 − 4x2

)n+1

(26)

=
1

8nx

d

dx

1

8(n− 1)x

d

dx
· · · 1

16x

d

dx

1

8x

d

dx

(
tanx

8x
+

1

4x2 − π2

)
,

where n is a positive integer.
From (26), we note that[

1

8nx

d

dx

1

8(n− 1)x

d

dx
· · · 1

16x

d

dx

1

8x

d

dx

(
tanx

8x
+

1

4x2 − π2

)]
x=π

4

=
4n+1

π2n+2

∞∑
k=1

(
1

(4k + 1)(4k + 3)

)n+1

.

Theorem 2.2. For n ∈ N, we have
∞∑
k=1

(
1

((2k + 1)π)2 − 4x2

)n+1

=
1

8nx

d

dx

1

8(n− 1)x

d

dx
· · · 1

16x

d

dx

1

8x

d

dx

(
tanx

8x
+

1

4x2 − π2

)
.

By (18), we get

tanx =
∞∑
k=0

8x(
(2k + 1)π

)2 − 4x2
=

∞∑
k=0

8x(
(2k + 1)π − 2x)((2k − 1)π + 2x)

(27)

= 2
∞∑
k=0

(
1

(2k + 1)π − 2x
− 1

(2k − 1)π + 2x

)
.

From (27), we have

1

22n−1

1

(2n− 2)!

d2n−2

dx2n−2
tanx (28)

=
∞∑
k=0

(
1(

(2k + 1)π − 2x
)2n−1 − 1(

(2k + 1)π + 2x
)2n−1

)
,

where n ∈ N. Taking n = 1 and x = π
4

in (28), we get

π

4
=

∞∑
k=0

(
1

4k + 1
− 1

4k + 3

)
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · ,

which agrees with the result in (24).

173



Letting x = π
4

in (28), we have

1

22n−1

1

(2n− 2)!

[
d2n−2

dx2n−2
tanx

]
x=π

4

=
∞∑
k=0

(
1

(4k + 1)2n−1
− 1

(4k + 3)2n−1

)(
2

π

)2n−1

. (29)

Thus, by (29), we obtain the following theorem.

Theorem 2.3. For n ≥ 2, we have(
π

4

)2n−1
1

(2n− 2)!

[
d2n−2

dx2n−2
tanx

]
x=π

4

=
∞∑
k=0

1

(4k + 1)2n−1
−

∞∑
k=0

1

(4k + 3)2n−1

=
1

42n−1

(
ζ
(
2n− 1,

1

4

)
− ζ

(
2n− 1,

3

4

))
,

where ζ(s, x) is the Hurwitz zeta function given by

ζ(s, x) =
∞∑
n=0

1

(n+ x)s
, s ∈ C with Re(s) > 1.

By (18), we get

sec2 x =
d

dx
tanx = 8

∞∑
k=0

1(
(2k + 1)π

)2 − (2x)2
+ 8x

∞∑
k=0

8x(
(2k + 1)π

)2 − (2x)2
)2 (30)

= 8
∞∑
k=0

(
(2k + 1)π

)2
+ 4x2((

(2k + 1)π
)2 − 4x2

)2 .
From (30), we note that

1

8
sec2 x =

∞∑
k=0

(2k + 1)2π2 + 4x2(
4x2 − (2k + 1)2π2

)2 . (31)

Let x = π
2n+1

, (n ∈ Z) in (31). Then we have

1

8
sec2

(
π

2n+ 1

)
=

∞∑
k=0

(2k + 1)2π2 + 4
(

π
2n+1

)2(
4
(

π
2n+1

)2 − (2k + 1)2π2
)2 (32)

=
∞∑
k=0

(
4 + (2n+ 1)2(2k + 1)2

)(
π

2n+1

)2(
4− (2n+ 1)2(2k + 1)2

)2( π
2n+1

)4 .
Thus, by (32), we get the following theorem.

Theorem 2.4. For n ∈ Z, we have

π2 = 8(2n+ 1)2 cos2
(

π

2n+ 1

) ∞∑
k=0

4 + (2n+ 1)2(2k + 1)2(
4− (2n+ 1)2(2k + 1)2

)2 .
Let n = 0 in Theorem 2.5. Then we have

π2 = 8
∞∑
k=0

4 + (2k + 1)2(
4− (2k + 1)2

)2 . (33)

Thus, by (33), we obtain the following corollary.
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Corollary 2.5. The formula of π/2 is given as follows:

π

2
=

√√√√2
∞∑
k=0

4 + (2k + 1)2(
4− (2k + 1)2

)2 .
From (17), we note that

cos ix =
∞∏
k=0

(
1 +

4x2

(2k + 1)2π2

)
. (34)

As cos ix = coshx, from (34) we have

coshx =
∞∏
k=0

(
1 +

(
2x

(2k + 1)π

)2)
. (35)

By (17) and (35), we get

coshx cosx =
∞∏
k=0

(
1 +

(
2x

(2k + 1)π

)2) ∞∏
k=0

(
1−

(
2x

(2k + 1)π

)2)
(36)

=
∞∏
k=0

(
1−

(
2x

(2k + 1)π

)4)
.

From (36), we have

tanhx− tanx =
d

dx

(
log coshx+ log cos x

)
(37)

=
d

dx
log

(
coshx cosx

)
=

d

dx
log

( ∞∏
k=0

(
1−

(
2x

(2k + 1)π

)4)
=

d

dx

∞∑
k=0

log

(
1−

(
2x

(2k + 1)π

)4)
=

d

dx

∞∑
k=0

[
log

(
1 +

(
2x

(2k + 1)π

)2)
+ log

(
1−

(
2x

(2k + 1)π

)2)]

=
∞∑
k=0

( 8x(
(2k+1)π

)2

1 +
(

2x
(2k+1)π

)2 −
8x(

(2k+1)π
)2

1−
(

2x
(2k+1)π

)2)

= 8x
∞∑
k=0

(
1

(2k + 1)2π2 + 4x2
−

∞∑
k=0

1

(2k + 1)2π2 − 4x2

)
.

Thus, by (37), we get

tanhx− tanx

8x
=

∞∑
k=0

(
1

(2k + 1)2π2 + 4x2
− 1

(2k + 1)2π2 − 4x2

)
. (38)
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Letting x = π
2(2n+1)

, (n ≥ 1) in (38), we have

tanh
(

π
2(2n+1)

)
− tan

(
π

2(2n+1)

)
4π

2n+1

(39)

=
∞∑
k=0

(
1

(2k + 1)2π2 +
(

π
2n+1

)2 − 1

(2k + 1)2π2 −
(

π
2n+1

)2).
Thus, by (39), we get

π

4(2n+ 1)

[
tanh

(
π

2(2n+ 1)

)
− tan

(
π

2(2n+ 1)

)]
(40)

=
∞∑
k=0

(
1

(2k + 1)2(2n+ 1)2 + 1
− 1

(2k + 1)2(2n+ 1)2 − 1

)
=

1

2(n+ 1)2 + 1
− 1

(2n+ 1)2 − 1
+

1

32(2n+ 1)2 + 1
− 1

32(2n+ 1)2 − 1
+ · · ·

From (40), we note that

4(2n+ 1)

π
(
tanh

(
π

2(2n+1)

)
− tan

(
π

2(2n+1)

))− 1 (41)

=
1

π
(
tanh

(
π

2(2n+1)

)
−tan

(
π

2(2n+1)

))
4(2n+1)

− 1

=
1− 1

(2n+1)2+1
+ 1

(2n+1)2−1
− 1

32(2n+1)2+1
+ 1

32(2n+1)2−1
− · · ·

1
(2n+1)2+1

− 1
(2n+1)2−1

+ 1
32(2n+1)2+1

− 1
32(2n+1)2−1

+ · · ·

= (2n+ 1)2 +

(2n+1)2+1
(2n+1)2−1

− (2n+1)2+1
32(2n+1)2+1

+ (2n+1)2+1
32(2n+1)2−1

− · · ·
1

(2n+1)2+1
− 1

(2n+1)2−1
+ 1

32(2n+1)2+1
− 1

32(2n+1)2−1
+ · · ·

= (2n+ 1)2 +
((2n+ 1)2 + 1)2

1− (2n+1)2+1
(2n+1)2−1

+ (2n+1)2+1
32(2n+1)2+1

− (2n+1)2+1
32(2n+1)2−1

+ · · ·
1

(2n+1)2−1
− 1

32(2n+1)2+1
+ 1

32(2n+1)2−1
− · · ·

= (2n+ 1)2 +
((2n+ 1)2 + 1)2

−2 +
((2n+ 1)2 − 1)2

1− (2n+1)2−1
32(2n+1)2+1

+ (2n+1)2−1
32(2n+1)2−1

− · · ·
1

32(2n+1)2+1
− 1

32(2n+1)2−1
+ · · ·

= (2n+ 1)2 +
((2n+ 1)2 + 1)2

−2 +
((2n+ 1)2 − 1)2

8(2n+ 1)2 + 2 +
(32(2n+ 1)2 + 1)2

1− 32(2n+1)2+1
32(2n+1)2−1

+ 32(2n+1)2+1
52(2n+1)2+1

− · · ·
1

32(2n+1)2−1
− 1

52(2n+1)2+1
+ · · ·

= · · ·
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= · · ·

= (2n+ 1)2 +

(
(2n+ 1)2 + 1

)2
−2 +

(
(2n+ 1)2 − 1

)2
8(2n+1)2 + 2 +

(
32(2n+ 1)2 + 1

)2
−2 +

(
32(2n+ 1)2 − 1

)2
16(2n+1)2 + 2 +

(52(2n+ 1)2 + 1)2

−2 +
(52(2n+ 1)2 − 1)2

24(2n+1)2 + 2 + · · ·

Therefore, by (41), we obtain the following theorem.

Theorem 2.6. For n ≥ 1, we have(
π

4

tanh( π
2(2n+1)

)− tan( π
2(2n+1)

)

2n+ 1

)−1

= (2n+1)2+1+

(
(2n+ 1)2 + 1

)2
−2 +

(
(2n+ 1)2 − 1

)2
8(2n+1)2 + 2 +

(
32(2n+ 1)2 + 1

)2
−2 +

(
32(2n+ 1)2 − 1

)2
16(2n+1)2 + 2 +

(52(2n+ 1)2 + 1)2

−2 +
(52(2n+ 1)2 − 1)2

24(2n+1)2+2 + · · ·
Observing that

tanhx = 1− 2

e2x + 1
= −

∞∑
n=1

E2n−1
22n−1x2n−1

(2n− 1)!
,

we have

− tanhx = − d

dx
log

(
coshx

)
=

∞∑
n=1

E2n−1
22n−1x2n−1

(2n− 1)!
. (42)

From (42) and (11), we note that

− log coshx =
∞∑
n=1

E2n−1
22n−1

(2n− 1)!2n
x2n (43)

=
∞∑
n=1

(
2x

π

)2n
(−1)n

4n
(−1)nπ2n E2n−1

(2n− 1)!

=
∞∑
n=1

(
2x

π

)2n
(−1)n

n

∞∑
k=0

1

(2k + 1)2n

=
∞∑
n=1

(
2x

π

)2n
(−1)n

n

(
1− 1

4n

)
ζ(2n).
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By (35), we get

log cosh(x) =
∞∑
k=0

log

(
1 +

(
2x

(2k + 1)π

)2)
(44)

=
∞∑
k=1

log

(
1 +

( 2x

(2k − 1)π

)2
)
.

Therefore, by (42), (43) and (44), we obtain the following theorem.

Theorem 2.7. For x ∈ R, we have

log coshx =
∞∑
k=1

log

(
1 +

(
2x

(2k − 1)π

)2)
= −

∞∑
k=1

E2k−1
22k−1

(2k − 1)!2k
x2k

=
∞∑
k=1

(
2x

π

)2k
(−1)k−1

k

(
1− 1

4k

)
ζ(2k).

In particular, we have

tanhx = −
∞∑
k=1

E2k−1
22k−1

(2k − 1)!
x2k−1.

3 Conclusion

In this paper, we demonstrated that a series for tanx, which gives a product expansion of the
cosine function, is very useful in deriving various results. Indeed, by using this series we obtained
some continued fractions, certain identities involving derivatives of tanx, several expressions for
log coshx and an identity for π2.

Especially, we obtained two continued fractions of π
4
, the one in Theorem 2.1 and the other in

Theorem 2.6. We remark here that the one in Theorem 2.6 gives an infinite family of continued
fractions for π

4
, since we can choose n as any positive integer.

The authors have studied many stuffs related to Bernoulli and Euler polynomials and numbers
by using many different ideas and methods. We would like to continue to carry out researches
centered around Bernoulli and Euler polynomials and numbers.
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