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1 Introduction

For any complex numbers a and q with |q| < 1, we define

(a; q)∞ :=
∞∏
n=0

(1− aqn),

(a; q)n =
(a; q)∞
(aqn; q)∞

, for n ∈ Z,
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and

(a1, a2, a3, . . . , an; q)∞ :=
n∏

k=1

(ak; q)∞.

S. Ramanujan defined [5, p. 197] his general theta function f(a, b) by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2 bn(n−1)/2, |ab| < 1.

By Jacobi triple product identity [2, p. 35],

f(a, b) = (−a; ab)∞(−b; ab)∞(ab, ab)∞, |ab| < 1.

Further, he defined following three special cases of f(a, b):

φ(q) := f(q, q) = (−q; q2)2∞(q2; q2)∞,

ψ(q) := f(q, q3) =
(q2; q2)∞
(q; q2)∞

,

and
f(−q) := f(−q,−q2) = (q; q)∞.

On page 233 of his second notebook, Ramanujan recorded the following four interesting
identities which relates Lambert series to his theta functions:

Theorem 1.1. [5, Entry 8] We have

qψ3(q)ψ(q5)− 5q2ψ(q)ψ3(q5) =
q

1−q2
+

2q2

1−q4
− 3q3

1−q6
+

4q4

1−q8
+

6q6

1−q12
+ · · · , (1.1)

5φ(q)φ3(q5)− φ3(q)φ(q5) = 4

{
1 +

q

1+q
− 2q2

1−q2
− 3q3

1+q3
+

4q4

1−q4
+

6q6

1−q6
+ · · ·

}
, (1.2)

25φ(q)φ3(q5)− φ5(q)

φ(q5)
= 24 + 40

{
q

1+q
− 3q3

1+q3
− 7q7

1+q7
+

9q9

1+q9
+ · · ·

}
, (1.3)

and

ψ5(q)

ψ(q5)
− 25q2ψ(q)ψ3(q5) = 1 + 5

{
q

1+q
− 2q2

1+q2
− 3q3

1+q3
+

4q4

1+q4
+

6q6

1+q6
· · ·

}
. (1.4)

B. C. Berndt [2, pp. 250–257] gave a proof of Theorem 1.1 using the modular equations found
in Ramanujan’s notebooks [5]. These identities can also be deduced from the series identities
established by S. Cooper [3, pp. 533–534] by using the theory of modular forms.

In this paper, our aim is to give an alternative proof for the identities in Theorem 1.1. We
establish three of them by employing W. N. Bailey’s summation formula [1] and the remaining
one by employing Ramanujan’s 1ψ1 summation formula [2, p. 34]. All the four identities will
be proved in Section 3. At the end of Section 3, we deduce two modular equations of degree 5,
originally due to Ramanujan as a consequence of our main results. The required preliminaries
will be recalled in Section 2.
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2 Preliminary results

For convenience, throughout this paper, we set for any positive integer n,

fn = f(−qn).

One can easily see that

φ(q) =
f 5
2

f 2
1 f

2
4

, φ(−q) = f 2
1

f2
, ψ(q) =

f 2
2

f1
, ψ(−q) = f1f4

f2
, and f(q) =

f 3
2

f1f4
. (2.1)

Modular equation of degree n is an equation relating α and β that is induced by

n2F 1(
1
2
, 1
2
; 1; 1− α)

2F 1(
1
2
, 1
2
; 1;α)

= 2F 1(
1
2
, 1
2
; 1; 1− β)

2F 1(
1
2
, 1
2
; 1; β)

,

where

2F 1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

, |z| < 1

is the ordinary hypergeometric function with (a)0 = 1 and (a)n = a(a+1)(a+2) · · · (a+n−1),
for n ≥ 1. If β has degree n over α, then Ramanujan defined the multiplier m by

m = 2F 1(
1
2
, 1
2
; 1;α)

2F 1(
1
2
, 1
2
; 1; β)

.

The well-known Ramanujan’s 1ψ1 Summation formula as follows:
∞∑

n=−∞

(a; q)n
(b; q)n

zn =
(az, q/az, b/a, q; q)∞
(z, b/az, b, q/a; q)∞

, |b/a| < |z| < 1, |q| < 1. (2.2)

We use the following Bailey’s summation formula with suitable convergence conditions:
∞∑

n=−∞

aqn

(1− aqn)2
−

∞∑
n=−∞

bqn

(1− bqn)2
=
a(ab, q/ab, b/a, aq/b; q)∞f

4
1

(a, q/a, b, q/b; q)2∞
. (2.3)

Along with these two summation formulas, we will be using the following identities while
deducing above said identities:

φ2(−q)− 5φ2(−q5) = −4
f 3
2 f5
f1f10

, (2.4)

ψ2(q)− 5qψ2(q5) =
f 3
1 f10
f2f5

, (2.5)

φ(q)−
√
5φ(q5) =

(1−
√
5)f2

(−ωq2, ω2q, ω3q,−ω4q2; q2)∞
, (2.6)

φ(q) +
√
5φ(q5) =

(1 +
√
5)f2

(−ωq,−ω2q2,−ω3q2,−ω4q; q2)∞
, (2.7)

ψ(q2) + q
√
5ψ(q10) =

f2
(ωq,−ω2q,−ω3q, ω4q; q2)∞

, (2.8)

and

ψ(q2)− q
√
5ψ(q10) =

f2
(−ωq, ω2q, ω3q,−ω4q; q2)∞

, (2.9)

where ω = e2πi/5. In fact, S. Y. Kang [4] has given a proof of identities (2.4)–(2.9) by employing
elementary methods.
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3 Main results

We begin this section by recalling the following lemmas, which play very important role in our
proofs.

Lemma 3.1. Let ω be the fifth roots of unity. Then, we have

(i) ωn − ω2n − ω3n + ω4n =
(
n
5

)√
5, where n is any non-negative interger and

(
n
5

)
denotes

Legendre symbol of n modulo 5.

(ii) (ω, ω2, ω3, ω4; q)∞ = 5f5
f1

.

(iii) (ωq, ω2q, ω3q, ω4q; q2)∞ = f2f5
f1f10

.

(iv) (−ω,−ω2,−ω3,−ω4; q)∞ = f1f10
f2f5

.

Proof. The above lemma readily follows from the properties of the fifth roots of unity ω. One
may refer to [1] and [4], where similar identities were used.

Lemma 3.2. We have

(i)
∞∑

n=−∞

aqn

(1−aqn)2
−

∞∑
n=−∞

bqn

(1−bqn)2
=

a

(1−a)2
− b

(1−b)2
+

∞∑
n=1

n(an−bn−b−n+a−n)qn

1−qn
.

(ii)
∞∑

n=−∞

aq2n−1

(1− aq2n−1)2
−

∞∑
n=−∞

bq2n−1

(1− bq2n−1)2
=

∞∑
n=1

n(an − bn − b−n + a−n)qn

1− q2n
.

Proof. In the series
∞∑
n=1

aqn

(1− aqn)2
,

expanding each of the summands into geometric series, interchanging the order of summation
and then summing into geometric series, we obtain

∞∑
n=1

aqn

(1− aqn)2
=

∞∑
n=1

nanqn

1− qn
. (3.1)

From the above, the lemma follows.

Lemma 3.3. We have

a

(1− a)2
−

∞∑
n=1

n(an + a−n)qn

1 + qn
=
a(−a; q)∞(−q/a; q)∞(a2q; q2)∞(q/a2; q2)∞f

2
1 f

2
2

(a; q)∞(q/a; q)∞(a2; q2)∞(q2/a2; q2)∞
.

Proof. By replacing b with aq in (2.2), we obtain

∞∑
n=−∞

zn

1− aqn
=

(az; q)∞(q/az; q)∞(q; q)2∞
(a; q)∞(q/a; q)∞(z; q)∞(q/z; q)∞

. (3.2)

Differentiating (3.2) with respect to a, and then using the fact that f ′(a) = f(a)(ln(f(a)))′ and
(3.1), we obtain
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a

(1− a)2
+

∞∑
n=1

nzanqn

1− zqn
+

∞∑
n=1

nz−1a−nqn

1− z−1qn

=
(az; q)∞(q/az; q)∞(q; q)2∞

(a; q)∞(q/a; q)∞(z; q)∞(q/z; q)∞

∞∑
n=0

{
aqn

1−aqn
− azqn

1−azqn
+

qn+1

az

1− qn+1

az

−
qn+1

a

1− qn+1

a

}
. (3.3)

Letting z to −1 in the above, we find that

a

(1− a)2
+

∞∑
n=1

n(an + a−n)qn

1 + qn
=

(−a; q)∞(−q/a; q)∞(q; q)2∞
(a; q)∞(q/a; q)∞(−q; q)2∞

∞∑
n=−∞

aqn

1− a2q2n
.

Using (3.2) in the right-hand side of the above, we establish the required result.

We return to the proof of Theorem 1.1.

Proof of (1.1). Replacing q by q2 in (2.3) and then in the resultant identity, replacing a by aq−1

and b by bq−1, we obtain

∞∑
n=−∞

aq2n−1

(1− aq2n−1)2
−

∞∑
n=−∞

bq2n−1

(1− bq2n−1)2
=
a

q

(ab/q2, q4/ab, b/a, aq2/b; q2)∞
(a/q, q3/a, b/q, q3/b; q2)2∞

f 4
2 . (3.4)

Using Lemma 3.2(ii) in the above, we find that

∞∑
n=1

n(an − bn − b−n + a−n)qn

1− q2n
=
a

q
· (ab/q

2, q4/ab, b/a, aq2/b; q2)∞
(a/q, q3/a, b/q, q3/b; q2)2∞

f 4
2 . (3.5)

Setting a = ω and b = ω2 in the above, then employing Lemma 3.1(i) to the left-hand side of the
resulting identity and employing Lemma 3.1(i), (ii) and (iii) in the right-hand side of the resulting
identity, and after simplification, we obtain

∞∑
n=1

(
n

5

)
nqn

1− q2n
= q

f 2
1 f2f

2
10

f 2
5

. (3.6)

We have
qψ3(q)ψ(q5)− 5q2ψ(q)ψ3(q5) = qψ(q)ψ(q5){ψ2(q)− 5qψ2(q5)}. (3.7)

Employing (2.5) and (2.1) in the above, we find that

qψ3(q)ψ(q5)− 5q2ψ(q)ψ3(q5) = q
f 2
1 f2f

2
10

f 2
5

. (3.8)

Finally, by comparing (3.6) and (3.8), we complete the proof of (1.1).

Proof of (1.2). From (2.3) and Lemma 3.2(i), we obtain

a

(1− a)2
− b

(1− b)2
+

∞∑
n=1

n(an − bn − b−n + a−n)qn

1− qn
=
a(ab, q/ab, b/a, aq/b; q)∞f

4
1

(a, q/a, b, q/b; q)2∞
. (3.9)

161



By setting a = −ω and b = −ω2 in the above, on employing Lemma 3.1(i) to the left-hand side
and Lemma 3.1(ii) and (iv) to the right-hand side and then on simplification, we arrive at

1 +
∞∑
n=1

(
n

5

)
n(−1)nqn

1− qn
=
f1f

2
2 f

3
5

f 2
10

. (3.10)

Consider

5φ(−q)φ3(−q5)− φ3(−q)φ(−q5) = φ(−q)φ(−q5){5φ2(−q5)− φ2(−q)}.

Employing (2.4) and (2.1) in the above, we obtain

5φ(−q)φ3(−q5)− φ3(−q)φ(−q5) = 4
f1f

2
2 f

3
5

f 2
10

. (3.11)

By (3.10) and (3.11), it follows that

5φ(−q)φ3(−q5)− φ3(−q)φ(−q5) = 4

{
1 +

∞∑
n=1

(
n

5

)
(−1)nnqn

1− qn

}
.

Finally, by replacing q with −q, we establish (1.2).

Proof of (1.3). By (3.10), it follows that

√
5 +

√
5

∞∑
n=1

(
n

5

)
n(−1)nqn

1− qn
=

√
5
f1f

2
2 f

3
5

f 2
10

. (3.12)

By setting a = ω and b = ω2 in (3.9), and employing the same method used to deduce (3.10)
from (3.9), we find that

−1√
5
+
√
5

∞∑
n=1

(
n

5

)
nqn

1− qn
= − 1√

5

f 5
1

f5
. (3.13)

Subtracting (3.12) from (3.13) and multiplying the resultant equation throughout by −4
√
5, we

get

24− 40
∞∑
n=1

(
2n− 1

5

)
(2n− 1)q2n−1

1− q2n−1
= 4

{
f 5
1

f5
+ 5

f1f
2
2 f

3
5

f 2
10

}
. (3.14)

On the other hand, we have

25φ(−q)φ3(−q5)− φ5(−q)
φ(−q5)

=
φ(−q)
φ(−q5)

{5φ2(−q5)− φ2(−q)}{5φ2(−q5) + φ2(−q)}. (3.15)

Employing (2.4) and (2.1) in the above, we obtain

25φ(−q)φ3(−q5)− φ5(−q)
φ(−q5)

=

{
f 5
1

f5
+ 5

f1f
2
2 f

3
5

f 2
10

}
. (3.16)

Comparing (3.16) and (3.14), we deduce that

25φ(−q)φ3(−q5)− φ5(−q)
φ(−q5)

= 24− 40
∞∑
n=1

(
2n− 1

5

)
(2n− 1)q2n−1

1− q2n−1
. (3.17)

By replacing q with −q, we establish (1.3).
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Proof of (1.4). Substituting a = ω2 in Lemma 3.3 and then subtracting the resulting identity by
the identity obtained by substituting a = ω in Lemma 3.3, we deduce that

ω

(1− ω)2
− ω2

(1− ω2)2
−

∞∑
n=1

n(ωn − ω2n − ω3n + ω4n)qn

1 + qn
= Z

{
1

X
− ω

Y

}
, (3.18)

where

Z = ω(−ω,−ω2,−ω3q,−ω4q; q)∞(ωq, ω2q, ω3q, ω4q; q2)∞,

X = (ω,−ω2,−ω3q, ω4q; q)∞(ωq, ω2, ω3q2, ω4q; q2)∞,

and
Y = (−ω, ω2, ω3q,−ω4q; q)∞(ωq2, ω2q, ω3q, ω4; q2)∞.

From Lemma 3.1(i), it follows that

ω

(1−ω)2
− ω2

(1−ω2)2
−

∞∑
n=1

n(ωn−ω2n−ω3n+ω4n)qn

1 + qn
= − 1√

5

{
1+5

∞∑
n=1

(
n

5

)
nqn

1+qn

}
. (3.19)

From Lemma 3.1(iii) and (iv), one can easily see that

Z = −f 2
1 f

2
2 . (3.20)

Next by employing Lemma 3.1(ii), (2.7), (2.8) and then simplifying using (2.1), we establish

1

X
=

1

2
√
5

1

f2f10
{ψ2(q) +

√
5φ(q5)ψ(q2)− q

√
5φ(q)ψ(q10) + 5qψ2(q5)}. (3.21)

Similarly, using Lemma 3.1(ii), (2.6), (2.9) and then using (2.1), we obtain

ω

Y
=

−1

2
√
5
· 1

f2f10
{ψ2(q)−

√
5φ(q5)ψ(q2)− q

√
5φ(q)ψ(q10) + 5qψ2(q5)}. (3.22)

Using (3.19), (3.20), (3.21) and (3.22) in (3.18), we obtain

1 + 5
∞∑
n=1

(
n

5

)
nqn

1 + qn
=
f 2
1 f2
f10

{ψ2(q) + 5qψ2(q5)}. (3.23)

We have

ψ5(q)

ψ(q5)
− 25q2ψ(q)ψ3(q5) =

ψ(q)

ψ(q5)
{ψ2(q)− 5qψ2(q5)}{ψ2(q) + 5qψ2(q5)}. (3.24)

From (2.5) and (2.1), we find that

ψ5(q)

ψ(q5)
− 25q2ψ(q)ψ3(q5) =

f 2
1 f2
f10

{ψ2(q) + 5qψ2(q5)}. (3.25)

By comparing (3.23) and (3.25), we complete the proof of (1.4).

Corollary 3.1. [5, Entry 13(iv), p. 236)]. Let β has degree 5 over α and m is a multiplier of
degree 5. Then, we have

5

m
= 1 + 24/3

{
α5(1− α)5

β(1− β)

}1/24

.
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Proof. Ramanujan recorded the following identity in his lost notebook [6, p. 139]:

1 +
∞∑
n=1

(
n

5

)
nqn

1− qn
=
f 5
1

f5
. (3.26)

From (1.2) and (1.3), we find that

25φ(q)φ3(q5)− 10φ3(q)φ(q5) +
φ5(q)

φ(q5)
= 16

{
1 +

∞∑
n=1

(
2n

5

)
2nq2n

1− q2n

}
. (3.27)

Employing (3.26) in (3.27), we obtain

25φ(q)φ3(q5)− 10φ3(q)φ(q5) = 16
f 5
2

f10
− φ5(q)

φ(q5)

or
{
5
φ2(q5)

φ2(q)
− 1

}2

= 16
f 5
2φ(q

5)

f10φ5(q)
,

which implies

5
φ2(q5)

φ2(q)
− 1 = 4

{
f 5
2φ(q

5)

f10φ5(q)

}1/2

. (3.28)

Transforming (3.28) in terms of α, β, and m, we obtain the corollary.

Corollary 3.2. [5, Entry 13(vi), p. 236)]. If β has degree 5 over α and m is a multiplier of
degree 5, then we have

5

m
=

1 +
(
α5

β

)1/8
1 + (αβ3)1/8

. (3.29)

Proof. From (1.3) and (1.4), we obtain

25φ(q)φ3(q5)− φ5(q)

φ(q5)
− 8

ψ5(q)

ψ(q5)
+ 200ψ(q)ψ3(q5) = 16{ψ

5(q)

ψ(q5)
+ 25ψ(q)ψ3(q5)}.

Rearranging the terms, we simplify that

5
φ2(q5)

φ2(q)

{
1 + 2q2

ψ(q)ψ3(q5)

φ(q)φ3(q5)

}
= 1 + 4

ψ5(q)φ(q5)

ψ(q5)φ(q)
. (3.30)

It is easy to see that the Corollary 3.2 is equivalent to the above theta function identity.

4 Conclusion

The results recorded by Ramanujan in his notebooks surprised many mathematicians around the
world. The goal is not only to verify his results, but also to understand the methods he might have
employed to derive them. While the initial goal of this article was to prove Entry 8 of Chapter 19
of Ramanujan’s second notebook in the spirit of Ramanujan, our approach evolved to incorporate
Bailey’s summation—a simpler and classical alternative, while still helping us understand his
methods.
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