Notes on Number Theory and Discrete Mathematics Print ISSN 1310-5132, Online ISSN 2367-8275

2025, Volume 31, Number 1, 133–145

DOI: 10.7546/nntdm.2025.31.1.133-145

Power Fibonacci sequences in quadratic integer modulo m

Paul Ryan A. Longhas¹, Cyryn Jade L. Prendol², Jenelyn F. Bantilan³, and Larra L. De Leon⁴

¹ Department of Mathematics and Statistics, Polytechnic University of the Philippines

Manila 1008, Philippines

e-mail: pralonghas@pup.edu.ph

² Department of Mathematics and Statistics, Polytechnic University of the Philippines
Manila 1008, Philippines

e-mail: cjlprendol@pup.edu.ph

³ Department of Mathematics and Statistics, Polytechnic University of the Philippines
Manila 1008, Philippines

e-mail: jenelynbantilan141@gmail.com

⁴ Department of Mathematics and Statistics, Polytechnic University of the Philippines
Manila 1008, Philippines

e-mail: deleonlarra@gmail.com

Received: 5 May 2024 Revised: 11 April 2025
Accepted: 24 April 2025 Online First: 25 April 2025

Abstract: The power Fibonacci sequence in $\mathbb{Z}_m[\sqrt{\delta}]$ is defined as a Fibonacci sequence $F_n = F_{n-1} + F_{n-2}$ where $F_0 = 1$ and $F_1 = a$, such that $a \in \mathbb{Z}_m[\sqrt{\delta}]$ and $F_n \equiv a^n \pmod m$, for all $n \in \mathbb{N} \cup \{0\}$. In this paper, we investigated the existence of power Fibonacci sequences in $\mathbb{Z}_m[\sqrt{\delta}]$, and the number of power Fibonacci sequences in $\mathbb{Z}_m[\sqrt{\delta}]$ for a given m, where δ is a square-free integer. Furthermore, we determined explicitly all power Fibonacci sequences in $\mathbb{Z}_{p^k}[\sqrt{\delta}]$, where p is a prime number.

Copyright © 2025 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Keywords: Power Fibonacci sequences, Fibonacci sequence, Legendre symbol, Quadratic equation, Square-free integer.

2020 Mathematics Subject Classification: 11B39, 11B50.

1 Introduction

The Fibonacci sequence is defined recursively as follows:

$$F_n = F_{n-1} + F_{n-2} \tag{1}$$

where $n \ge 2$, $F_0 = 0$, $F_1 = 1$.

In the study "Power Fibonacci Sequences" by Joshua Ide and Marc S. Renault, the authors introduced a sequence defined as a Fibonacci sequence $F_n = F_{n-1} + F_{n-2}$ where $F_0 = 1$ and $F_1 = a$, such that for some $a \in \mathbb{Z}_m$,

$$F_n \equiv a^n \pmod{m} \tag{2}$$

for all $n \in \mathbb{N} \cup \{0\}$ [2]. If such a exists, they called $\{F_n\}_{n=1}^{\infty}$ a power Fibonacci sequence in \mathbb{Z}_m . For instance, in \mathbb{Z}_5 , there is only one power Fibonacci sequence, that is, when a = 3, but in \mathbb{Z}_{10} there are no such sequences. Also, there are four power Fibonacci sequences in \mathbb{Z}_{209} .

With these ideas in mind, we shall extend the past work of Ide and Renault and work on the power Fibonacci sequences in $\mathbb{Z}_m[\sqrt{\delta}]$ where δ is a square-free integer. We will determine all $m \in \mathbb{Z}^+$ for which power Fibonacci sequences exist in $\mathbb{Z}_m[\sqrt{\delta}]$ and the number of power Fibonacci sequences in $\mathbb{Z}_m[\sqrt{\delta}]$ there are for a given m, where δ is a square-free integer.

The following propositions are vital in the main result.

Proposition 1.1. Let p be an odd prime and $a \in \mathbb{Z}$ with gcd(a, p) = 1. The equation

$$x^2 \equiv a \pmod{p^k} \tag{3}$$

either

- has no solution if $\left(\frac{a}{p}\right) = -1$; or
- has 2 solutions x_1 and $-x_1$ if $\left(\frac{a}{p}\right) = 1$.

Proposition 1.2. The equation $x^2 \equiv 5 \pmod{5^e}$ has no solution $x \in \mathbb{Z}_{5^e}$ for e > 1.

2 Working equations

In this section, we will derive working equations to characterize the power Fibonacci sequences in $\mathbb{Z}_m[\sqrt{\delta}]$, assuming that it exists.

Proposition 2.1. Let $m \in \mathbb{N}$ where m > 1 and let δ be a square-free integer. Then, $\{a^n\}_{n=0}^{\infty}$ is a power Fibonacci sequence in $\mathbb{Z}_m[\sqrt{\delta}]$ if and only if $a = x + \sqrt{\delta}y$ is a root of $f(z) = z^2 - z - 1$ in $\mathbb{Z}_m[\sqrt{\delta}]$. Furthermore, if 2 is a unit in $\mathbb{Z}_m[\sqrt{\delta}]$, then $a = 2^{-1}(1+r)$, where r is a root of $g(z) = z^2 - 5$ in $\mathbb{Z}_m[\sqrt{\delta}]$.

Proof. Assume $\{a^n\}_{n=0}^{\infty}$ is a power Fibonacci sequence in $\mathbb{Z}_m[\sqrt{\delta}]$. Then,

$$a^2 = a^1 + a^0 = a + 1. (4)$$

Therefore, $a \in \mathbb{Z}_m[\sqrt{\delta}]$ is a root of f(z). Conversely, suppose that $a \in \mathbb{Z}_m[\sqrt{\delta}]$ is a root of f(z). Then, $a^2 = a + 1$, and thus, $a^n = a^{n-1} + a^{n-2}$, for all $n \ge 2$, as desired. Furthermore, if 2 is a unit in $\mathbb{Z}_m[\sqrt{\delta}]$, then completing the square implies that $a = 2^{-1}(1+r)$ where r is a root of $g(z) = z^2 - 5$ in $\mathbb{Z}_m[\sqrt{\delta}]$.

Remark 2.1. Counting the roots of $f(z) = z^2 - z - 1$ in $\mathbb{Z}_m[\sqrt{\delta}]$ determines the number of power Fibonacci sequences in $\mathbb{Z}_m[\sqrt{\delta}]$. Furthermore, if 2 is a unit in $\mathbb{Z}_m[\sqrt{\delta}]$, then counting the roots of $g(z) = z^2 - 5$ determines the number of power Fibonacci sequences in $\mathbb{Z}_m[\sqrt{\delta}]$.

3 Preparatory lemmas

To prove the main result of this study, we need the following lemmas. In this study, if we have a system of equations

$$F(x,y): \begin{cases} f(x,y) = 0\\ g(x,y) = 0, \end{cases}$$

then we write $F(x,y) \equiv 0 \pmod{n}$ if and only if $f(x,y) \equiv 0 \pmod{n}$ and $g(x,y) \equiv 0 \pmod{n}$. In addition, we will use the notation $N(\mathbb{Z}_m[\sqrt{\delta}])$ to be the number of power Fibonacci sequences in $\mathbb{Z}_m[\sqrt{\delta}]$.

Lemma 3.1. Let f(x,y) and g(x,y) be polynomials with integral coefficients and consider the system of equations

$$F(x,y): \begin{cases} f(x,y) = 0 \\ g(x,y) = 0. \end{cases}$$
 (5)

Suppose that gcd(n, n') = 1. If

$$F(x,y) \equiv 0 \pmod{n} \tag{6}$$

has N solutions and

$$F(x,y) \equiv 0 \pmod{n'} \tag{7}$$

has N' solutions, then

$$F(x,y) \equiv 0 \pmod{nn'} \tag{8}$$

has NN' solutions.

Proof. See lemma in [1].
$$\Box$$

By Lemma 3.1, it turns out that $h:\mathbb{N}\to\mathbb{N}\cup\{0\}:m\mapsto N(\mathbb{Z}_m[\sqrt{\delta}])$ is a multiplicative function.

Lemma 3.2. Let $h: \mathbb{N} \to \mathbb{N} \cup \{0\}$ where h(1) = 1 and $h(m) = N(\mathbb{Z}_m[\sqrt{\delta}])$, for m > 1. Then, h is a multiplicative function. Consequently, if $m = p_1^{q_1} p_2^{q_2} \cdots p_k^{q_k}$ is the prime decomposition of m, for $k \geq 1$, then

$$N(\mathbb{Z}_m[\sqrt{\delta}]) = \prod_{i=1}^k N(\mathbb{Z}_{p_i^{q_i}}[\sqrt{\delta}]). \tag{9}$$

Proof. It is enough to show that h is multiplicative. Indeed, let m = ab where $\gcd(a,b) = 1$. Note that $N(\mathbb{Z}_m[\sqrt{\delta}])$ is the number of solutions to the equation $f(x + y\sqrt{\delta}) \equiv 0 \pmod{m}$. Meanwhile,

$$f(x + y\sqrt{\delta}) \equiv 0 \pmod{m}$$
$$(x^2 + \delta y^2 - x - 1) + (2xy - y)\sqrt{\delta} \equiv 0 \pmod{m}.$$

Thus, we have a system of equations

$$x^2 + \delta y^2 - x - 1 \equiv 0 \pmod{m}$$

and

$$2xy - y \equiv 0 \pmod{m}.$$

From Remark 2.1, $N(\mathbb{Z}_m[\sqrt{\delta}])$ is the number of solutions to $f(x + y\sqrt{\delta}) \equiv 0 \pmod{m}$ or

$$F(x,y): \begin{cases} x^2 + \delta y^2 - x - 1 & \equiv 0 \pmod{m} \\ 2xy - y & \equiv 0 \pmod{m}. \end{cases}$$
 (10)

Thus, the number of solutions to $F(x,y) \equiv 0 \pmod{m}$ is $N(\mathbb{Z}_m[\sqrt{\delta}])$. Also, the number of solutions to $F(x,y) \equiv 0 \pmod{a}$ and $F(x,y) \equiv 0 \pmod{b}$ is $N(\mathbb{Z}_a[\sqrt{\delta}])$ and $N(\mathbb{Z}_b[\sqrt{\delta}])$, respectively. Since $\gcd(a,b)=1$, then by Lemma 3.1, the number of solutions to $F(x,y) \equiv 0 \pmod{m}$ is the product of the number of solutions to $F(x,y) \equiv 0 \pmod{a}$ and $F(x,y) \equiv 0 \pmod{b}$. Therefore,

$$h(ab) = h(m) = N(\mathbb{Z}_m[\sqrt{\delta}]) = N(\mathbb{Z}_a[\sqrt{\delta}])N(\mathbb{Z}_b[\sqrt{\delta}]) = h(a)h(b),$$

as desired. \Box

The system of equations in (10) implies that we will deal with equation $ab \equiv 0 \pmod{m}$ where $a, b \in \mathbb{Z}_m$. Lemma 3.3 gives a characterization to the elements a and b satisfying $ab \equiv 0 \pmod{p^k}$ where p is a prime number.

Lemma 3.3. Let p be a prime and $a, b \in \mathbb{Z}_{p^k}$. Then, $ab \equiv 0 \pmod{p^k}$ if and only if there are positive integers t_1 and t_2 where $a = p^r t_1$ and $b = p^s t_2$ with $r + s \ge k$, $r \le k$, $s \le k$, and $\gcd(p, t_1) = 1 = \gcd(p, t_2)$.

Proof. The converse is trivial. Assume $ab \equiv 0 \pmod{p^k}$. Then, $ab = \theta p^k$, for some $\theta \in \mathbb{N}$. In that case, there exists $a \in \mathbb{N}$ such that $a = \frac{\theta p^k}{b} = t_1 p^r$, for some $t_1 \in \mathbb{N}$ where $\gcd(t_1, p) = 1$. Similarly, $\mathbb{N} \ni b = \frac{\theta p^k}{a} = t_2 p^s$, for some $t_2 \in \mathbb{N}$ where $\gcd(t_2, p) = 1$. Since $a, b \in \mathbb{Z}_{p^k}$, then $r \leq k$, and $s \leq k$. If r + s < k, then $p^k \theta = ab = t_1 t_2 p^{r+s}$, and thus, $p \mid t_1 t_2$, which is a contradiction. Therefore, $r + s \geq k$.

Lemma 3.4. Let $p \neq 5$ be an odd prime. Then, $(x + y\sqrt{\delta})^2 \equiv 5 \pmod{p^k}$, for all $k \in \mathbb{N}$ if and only if exactly one of the following holds:

- 1. $x^2 \equiv 5 \pmod{p^k}$ and $y \equiv 0 \pmod{p^k}$.
- 2. $\delta y^2 \equiv 5 \pmod{p^k}$ and $x \equiv 0 \pmod{p^k}$.

Proof. The converse is trivial. Assume $(x + y\sqrt{\delta})^2 \equiv 5 \pmod{p^k}$. Then,

$$x^2 + 2xy\sqrt{\delta} + \delta y^2 \equiv 5 \pmod{p^k}.$$

Thus, we have the system of equation

$$x^2 + \delta y^2 \equiv 5 \pmod{p^k} \tag{11}$$

and

$$2xy \equiv 0 \pmod{p^k}. \tag{12}$$

Since $2xy \equiv 0 \pmod{p^k}$, then $x = p^r x_0$ and $y = p^s y_0$ where $r + s \ge k$, $r \le k$, $s \le k$, and $\gcd(x_0, p^k) = 1 = \gcd(y_0, p^k)$. For the first case, assume $r \le s$. Suppose $r \ne 0$. Then,

$$(p^r x_0)^2 + \delta(p^s y_0)^2 \equiv 5 \pmod{p^k}.$$

Since $r \leq k$, it follows that

$$p^{2r}x_0^2 + \delta p^{2s}y_0^2 - 5 \equiv 0 \pmod{p^r}.$$
 (13)

Observe that $p^{2r} \equiv 0 \pmod{p^r}$ and $p^{2s} \equiv 0 \pmod{p^r}$. Hence, Equation (13) reduces to

$$-5 \equiv 0 \pmod{p^r}.$$

However, since $p \neq 5$, this is a contradiction for any $r \in \mathbb{N}$. Thus, r = 0 and $x = p^0 x_0 = x_0$, implying $\gcd(x, p^k) = 1$. Consequently, since p is an odd prime then $\gcd(2x, p^k) = 1$, which implies $(2x)^{-1}$ exists in \mathbb{Z}_{p^k} . That being so, Equation (12) reduces to

$$y \equiv 0 \pmod{p^k}$$
.

Therefore, Equation (11) now reduces to $x^2 \equiv 5 \pmod{p^k}$, as desired. For the second case, assume s < r. Suppose $s \neq 0$. Then

$$(p^r x_0)^2 + \delta(p^s y_0)^2 \equiv 5 \pmod{p^k}.$$

Since $s \leq k$, it follows that

$$p^{2r}x_0^2 + \delta p^{2s}y_0^2 - 5 \equiv 0 \pmod{p^s}.$$
 (14)

Observe that $p^{2r} \equiv 0 \pmod{p^s}$ and $p^{2s} \equiv 0 \pmod{p^s}$. Hence, Equation (14) reduces to

$$-5 \equiv 0 \pmod{p^s}$$
.

However, since $p \neq 5$, this is a contradiction for any $s \in \mathbb{N}$. Thus, s = 0 and $y = p^0 y_0 = y_0$, implying $gcd(y, p^k) = 1$. Consequently, since p is an odd prime, then $gcd(2y, p^k) = 1$, which implies $(2y)^{-1}$ exists in \mathbb{Z}_{p^k} . That being so, Equation (12) reduces to

$$x \equiv 0 \pmod{p^k}$$
.

Therefore, Equation (11) now reduces to $\delta y^2 \equiv 5 \pmod{p^k}$, as desired.

Lastly, suppose $x^2 \equiv 5 \pmod{p^k}$ and $\delta y^2 \equiv 5 \pmod{p^k}$. Since $x^2 \equiv 5 \pmod{p^k}$ and $\delta y^2 \equiv 5 \pmod{p^k}$, then Equation (11) becomes

$$5 \equiv 0 \pmod{5^k}$$
.

This is a contradiction for $p \neq 5$ and for any $k \in \mathbb{N}$. Therefore, $x^2 \equiv 5 \pmod{p^k}$ and $\delta y^2 \equiv 5 \pmod{p^k}$ cannot happen at the same time.

Lemma 3.5. Let $e \in \mathbb{N}$, e > 1. Then, $(x + y\sqrt{\delta})^2 \equiv 5 \pmod{5^e}$ if and only if $\delta y^2 \equiv 5 \pmod{5^e}$ and $x \equiv 0 \pmod{5^e}$.

Proof. The converse is trivial. Assume $(x + y\sqrt{\delta})^2 \equiv 5 \pmod{5^e}$. Then, we have

$$(x^2 + \delta y^2) \equiv 5 \pmod{5^e} \tag{15}$$

and

$$2xy \equiv 0 \pmod{5^e}. \tag{16}$$

Since $2xy \equiv 0 \pmod{5^e}$, then $x = 5^r x_0$ and $y = 5^s y_0$ where $r + s \ge e$, $r \le e$, $s \le e$ and $\gcd(x_0, 5^e) = 1 = \gcd(y_0, 5^e)$. For the first case, assume $r \le s$. Suppose $r \ne 0$, then

$$(5^r x_0)^2 + \delta(5^s y_0)^2 \equiv 5 \pmod{5^e}. \tag{17}$$

Since $r \leq e$, then Equation (17) implies that

$$5^{2r}x_0^2 + \delta 5^{2s}y_0^2 \equiv 5 \pmod{5^r}. \tag{18}$$

Since $r \leq s$, then $5^s \equiv 0 \pmod{5^r}$. Thus, Equation (18) will be reduced to

$$-5 \equiv 0 \pmod{5^r}.\tag{19}$$

Observe that Equation (19) holds if and only if r = 1. However, if r = 1, then $x = 5x_0$, and thus, by invoking Equation (17), we have

$$25x_0^2 + \delta(5^s y_0)^2 \equiv 5 \pmod{5^e}.$$
 (20)

Since e > 1, then from Equation (20) we have

$$5x_0^2 + \delta 5^{2s-1}y_0^2 - 1 \equiv 0 \pmod{5^{e-1}}.$$
 (21)

Consequently, from Equation (21), it follows that

$$5x_0^2 + \delta 5^{2s-1}y_0^2 - 1 \equiv 0 \pmod{5}.$$
 (22)

Thus, Equation (22) reduces to

$$-1 \equiv 0 \pmod{5}$$
.

However, this is a contradiction. Thus, r = 0 and $x = 5^0 x_0 = x_0$, implying $gcd(x, 5^e) = 1$. Consequently, $gcd(2x, 5^e) = 1$, which implies $(2x)^{-1}$ exists in \mathbb{Z}_{5^e} . That being so, Equation (16) reduces to

$$y \equiv 0 \pmod{5^e}$$
.

Hence, Equation (15) now reduces to $x^2 \equiv 5 \pmod{5^e}$. However, since e > 1, this is a contradiction by Proposition 1.2. Thus, s < r. Suppose $s \neq 0$. Since $s \leq e$, from Equation (17) it follows that

$$5^{2r}x_0^2 + \delta 5^{2s}y_0^2 \equiv 5 \pmod{5^s}.$$
 (23)

Since s < r, then $5^r \equiv 0 \pmod{5^s}$. So, Equation (23) implies that

$$-5 \equiv 0 \pmod{5^s}.\tag{24}$$

Observe that Equation (24) holds if and only if s = 1. But, if s = 1, then $y = 5y_0$, and thus, by invoking Equation (17), we have

$$(5^r x_0)^2 + \delta(5y_0)^2 \equiv 5 \pmod{5^e}.$$
 (25)

Since e > 1, then by Equation (25) we have

$$5^{2r-1}x_0^2 + \delta 5y_0^2 - 1 \equiv 0 \pmod{5}.$$
 (26)

Hence, Equation (26) reduces to

$$-1 \equiv 0 \pmod{5}$$
.

Again, this is a contradiction. Thus, s=0 and $y=5^0y_0=y_0$, implying $\gcd(y,5^e)=1$. Consequently, $\gcd(2y,5^e)=1$, which implies $(2y)^{-1}$ exists in \mathbb{Z}_{5^e} . That being so, Equation (16) reduces to

$$x \equiv 0 \pmod{5^e}$$
.

Therefore, Equation (15) now reduces to $\delta y^2 \equiv 5 \pmod{5^e}$, as desired.

4 Power Fibonacci sequences

Since Lemma 3.2 depends on the prime decomposition of m, we consider four specific cases of $N(\mathbb{Z}_m[\sqrt{\delta}])$:

- 1. $N(\mathbb{Z}_{2^k}[\sqrt{\delta}])$ where $k \geq 1$; to be proven in Proposition 4.1,
- 2. $N(\mathbb{Z}_{p^k}[\sqrt{\delta}])$ where $p \neq 5$ is an odd prime; to be proven in Proposition 4.2 through Proposition 4.5,
- 3. $N(\mathbb{Z}_5[\sqrt{\delta}])$; to be proven in Proposition 4.6,
- 4. $N(\mathbb{Z}_{5^e}[\sqrt{\delta}])$ where e > 1; to be proven in Proposition 4.7.

For the first case, we have Proposition 4.1.

Proposition 4.1. $N(\mathbb{Z}_{2^k}[\sqrt{\delta}]) = 0$ for all $k \in \mathbb{N}$.

Proof. By Remark 2.1, $N(\mathbb{Z}_{2^k}[\sqrt{\delta}])$ is the number of solutions to $f(x+y\sqrt{\delta})\equiv 0\ (\mathrm{mod}\ 2^k)$. Suppose $N(\mathbb{Z}_{2^k}[\sqrt{\delta}])>0$. Then, there exists $a:=x+y\sqrt{\delta}$, where $x,y\in\mathbb{Z}_2$ and $f(a)\equiv 0\ (\mathrm{mod}\ 2)$. Thus, we have a system of equations

$$x^2 + \delta y^2 - x - 1 \equiv 0 \; (\text{mod } 2) \tag{27}$$

and

$$(2x - 1)y \equiv 0 \pmod{2}. \tag{28}$$

Since $(2x-1)y \equiv 0 \pmod{2}$, then $y \equiv 0 \pmod{2}$. Hence, Equation (27) reduces to

$$x^2 - x - 1 \equiv 0 \pmod{2},$$

which is a contradiction since $x^2-x-1=0$ does not have a solution in \mathbb{Z}_2 . Therefore, $N(\mathbb{Z}_{2^k}[\sqrt{\delta}])=0$.

Now, for the second case, that is, $N(\mathbb{Z}_{p^k}[\sqrt{\delta}])$ where $p \neq 5$ is an odd prime, we consider four sub-cases:

- 1. $\left(\frac{5}{p}\right) = 1$; to be proven in Proposition 4.2,
- 2. $\left(\frac{5}{p}\right) = -1$ and $\left(\frac{\delta}{p}\right) = 1$; to be proven in Proposition 4.3,
- 3. $\left(\frac{5}{p}\right) = -1$ and $\left(\frac{\delta}{p}\right) = 0$; to be proven in Proposition 4.4,
- 4. $\left(\frac{5}{p}\right) = -1$ and $\left(\frac{\delta}{p}\right) = -1$; to be proven in Proposition 4.5.

Proposition 4.2. Let $p \neq 5$ be an odd prime such that $\left(\frac{5}{p}\right) = 1$. Then, the following holds:

- 1. $N(\mathbb{Z}_{n^k}[\sqrt{\delta}]) = 2$, for all $k \in \mathbb{N}$.
- 2. The equation $r^2 \equiv 5 \pmod{p^k}$ has two incongruent solution $r_1, r_2 \in \mathbb{Z}_{p^k}$.
- 3. The two power Fibonacci sequences in $\mathbb{Z}_{p^k}[\sqrt{\delta}]$ are $\{(2^{-1}+2^{-1}r_1)^n \bmod p^k\}_{n=0}^{\infty}$ and $\{(2^{-1}+2^{-1}r_2)^n \bmod p^k\}_{n=0}^{\infty}$.

Proof. First, we will prove Statement 1. By Remark 2.1, $N(\mathbb{Z}_{p^k}[\sqrt{\delta}])$ is the number of solutions to $(x+y\sqrt{\delta})^2\equiv 5\ (\mathrm{mod}\ p^k)$, given that $p\neq 5$ is an odd prime and $\left(\frac{5}{p}\right)=1$. Since $\left(\frac{5}{p}\right)=1$ and $\gcd(5,p)=1$, then $r^2\equiv 5\ (\mathrm{mod}\ p^k)$ for some $r\in\mathbb{Z}_{p^k}$. By Lemma 3.4, $x^2\equiv 5\ (\mathrm{mod}\ p^k)$ and $y\equiv 0\ (\mathrm{mod}\ p^k)$. Thus, it suffices to count the solutions to $x^2\equiv 5\ (\mathrm{mod}\ p^k)$ in \mathbb{Z}_{p^k} to determine the number of power Fibonacci sequences in $\mathbb{Z}_{p^k}[\sqrt{\delta}]$. From Proposition 1.1, it follows that $x^2\equiv 5\ (\mathrm{mod}\ p^k)$ has two solutions. Therefore, $N(\mathbb{Z}_{p^k}[\sqrt{\delta}])=2$.

Statements 2. and 3. follow directly from Proposition 1.1, with the assumption that $\left(\frac{5}{p}\right) = 1$, Lemma 3.4, and Proposition 2.1.

Proposition 4.3. Let $p \neq 5$ be an odd prime. If $\left(\frac{5}{p}\right) = -1$ and $\left(\frac{\delta}{p}\right) = 1$, then $N(\mathbb{Z}_{p^k}[\sqrt{\delta}]) = 0$, for all $k \in \mathbb{N}$.

Proof. Since $\left(\frac{\delta}{p}\right) = 1$, then $\mathbb{Z}_{p^k}[\sqrt{\delta}] = \mathbb{Z}_{p^k}$. Since $\left(\frac{5}{p}\right) = -1$, then by [2], $N(\mathbb{Z}_{p^k}[\sqrt{\delta}]) = N(\mathbb{Z}_{p^k}) = 0$, as desired.

Proposition 4.4. Let $p \neq 5$ be an odd prime. If $\left(\frac{5}{p}\right) = -1$ and $\left(\frac{\delta}{p}\right) = 0$, then $N(\mathbb{Z}_{p^k}[\sqrt{\delta}]) = 0$, for all $k \in \mathbb{N}$.

Proof. By Remark 2.1, $N(\mathbb{Z}_{p^k}[\sqrt{\delta}])$ is the number of solutions to $(x+y\sqrt{\delta})^2 \equiv 5 \pmod{p^k}$, given that $p \neq 5$ is an odd prime and $\left(\frac{5}{p^k}\right) = -1$ and $\left(\frac{\delta}{p^k}\right) = 0$. From Lemma 3.4, either

$$x^2 \equiv 5 \pmod{p^k} \tag{29}$$

or

$$\delta y^2 \equiv 5 \pmod{p^k},\tag{30}$$

but not both. Since $\left(\frac{5}{p}\right) = -1$, then by Proposition 1.1, $x^2 \not\equiv 5 \pmod{p^k}$ for any $x \in \mathbb{Z}_{p^k}$. Thus, Equation (30) should have a solution. Suppose, $\delta y^2 \equiv 5 \pmod{p^k}$ for some $y \in \mathbb{Z}_{p^k}$. Since $\left(\frac{\delta}{p}\right) = 0$, then $\gcd(\delta, p^k) \neq 1$. Now, given that δ is a square-free integer, we can express $\delta := pd$ where $\gcd(d, p^k) = 1$. Hence, Equation (30) will be

$$pdy^2 - 5 \equiv 0 \pmod{p^k}. (31)$$

It follows that

$$pdy^2 - 5 \equiv 0 \pmod{p}. \tag{32}$$

Equation (32) reduces to

$$-5 \equiv 0 \pmod{p}$$
.

However, $p \neq 5$, which is a contradiction. This implies $\delta y^2 \not\equiv 5 \pmod{p^k}$ for any $y \in \mathbb{Z}_{p^k}$. Therefore, $N(\mathbb{Z}_{p^k}[\sqrt{\delta}]) = 0$.

Proposition 4.5. Let $p \neq 5$ be an odd prime such that $\left(\frac{5}{p}\right) = -1$ and $\left(\frac{\delta}{p}\right) = -1$. Then, the following holds:

- 1. $N(\mathbb{Z}_{p^k}[\sqrt{\delta}]) = 2$, for all $k \in \mathbb{N}$.
- 2. The equation $\delta r^2 \equiv 5 \pmod{p^k}$ has two incongruent solutions $r_1, r_2 \in \mathbb{Z}_{p^k}$.
- 3. The two power Fibonacci sequences in $\mathbb{Z}_{p^k}[\sqrt{\delta}]$ are $\{(2^{-1}+2^{-1}r_1)^n \bmod p^k\}_{n=0}^{\infty}$ and $\{(2^{-1}+2^{-1}r_2)^n \bmod p^k\}_{n=0}^{\infty}$.

Proof. First, we will prove Statement 1. By Remark 2.1, $N(\mathbb{Z}_{p^k}[\sqrt{\delta}])$ is the number of solutions to $(x+y\sqrt{\delta})^2 \equiv 5 \pmod{p^k}$, given that $p \neq 5$ is an odd prime and $\left(\frac{5}{p}\right) = -1$ and $\left(\frac{\delta}{p}\right) = -1$. Since $\left(\frac{5}{p}\right) = -1$, then by Proposition 1.1, $x^2 \not\equiv 5 \pmod{p^k}$ for any $x \in \mathbb{Z}_{p^k}$. Thus, by Lemma 3.4,

 $\delta y^2 \equiv 5 \pmod{p^k}$ and $x \equiv 0 \pmod{p^k}$. So, it is enough to count the solutions of $\delta y^2 \equiv 5 \pmod{p^k}$ in \mathbb{Z}_{p^k} . Since $\left(\frac{\delta}{p}\right) = 1$, then $\gcd(\delta, p^k) = 1$. As a consequence, we have

$$y^2 \equiv 5\delta^{-1} \pmod{p^k}.$$

Now,

$$\left(\frac{5\delta^{-1}}{p}\right) = \left(\frac{5}{p}\right)\left(\frac{\delta^{-1}}{p}\right) = \left(\frac{5}{p}\right)\left(\frac{\delta}{p}\right) = (-1)(-1) = 1. \tag{33}$$

Since $\left(\frac{5\delta^{-1}}{p}\right) = 1$, then by Proposition 1.1, it follows that $y^2 \equiv 5\delta^{-1}(\bmod p^k)$ or $\delta y^2 \equiv 5(\bmod p^k)$ has two solutions. Therefore, $N(\mathbb{Z}_{p^k}[\sqrt{\delta}]) = 2$.

Statements 2. and 3. follow directly from Proposition 1.1, with the assumption that $\left(\frac{5\delta^{-1}}{p}\right) = 1$, Lemma 3.4, and Remark 2.1.

For the third case, we have Proposition 4.6.

Proposition 4.6. If δ is a square-free integer, then $N(\mathbb{Z}_5[\sqrt{\delta}]) = 1$. Furthermore, the only power Fibonacci sequence in $\mathbb{Z}_5[\sqrt{\delta}]$ is $\{1, 3, 4, 2, 1, \ldots\}$.

Proof. By Remark 2.1, the roots of $f(x)=x^2-x-1$ in $\mathbb{Z}_5[\sqrt{\delta}]$ are those residues of the form $2^{-1}(1\pm m)$, where $m^2=5$ in $\mathbb{Z}_5[\sqrt{\delta}]$. However, $m^2=5$ in $\mathbb{Z}_5[\sqrt{\delta}]$ implies that $m^2=0$ in $\mathbb{Z}_5[\sqrt{\delta}]$. Consequently, m=0, and thus, $2^{-1}(1\pm m)=2^{-1}=3$. Hence, the only root of f in $\mathbb{Z}_5[\sqrt{\delta}]$ is 3. Thus, there exists one distinct root of f in $\mathbb{Z}_5[\sqrt{\delta}]$. Therefore, $N([\mathbb{Z}_5[\sqrt{\delta}])=1$. Furthermore, by Remark 2.1, the only power Fibonacci sequence in $\mathbb{Z}_5[\sqrt{\delta}]$ is

$${3^n \mod 5}_{n=0}^{\infty} = {1, 3, 4, 2, 1, \ldots},$$

as desired. \Box

Finally, for the last case, we have Proposition 4.7.

Proposition 4.7. Let e > 1 and $\lambda = \frac{\delta}{5}$. Then, $5 \mid \delta$ and $\lambda \equiv \pm 1 \pmod{5}$ if and only if $N(\mathbb{Z}_{5^e}[\sqrt{\delta}]) > 0$. Consequently, $N(\mathbb{Z}_{5^e}[\sqrt{\delta}]) = 10$. Furthermore, the ten power Fibonacci sequences in $\mathbb{Z}_{5^e}[\sqrt{\delta}]$ are

$$\{(2^{-1} + (2^{-1}y_1 + 5^{e-1}(i-1))\sqrt{\delta})^n : n \in \mathbb{N} \cup \{0\}\}$$

and

$$\{(2^{-1} + (2^{-1}y_2 + 5^{e-1}(i-1))\sqrt{\delta})^n : n \in \mathbb{N} \cup \{0\}\},\$$

where y_1 and y_2 are two incongruent roots of $\lambda y^2 \equiv 1 \pmod{5^{e-1}}$ and i = 1, 2, 3, 4, 5.

Proof. Suppose $5 \mid \delta$ and $\frac{\delta}{5} = \lambda \equiv \pm 1 \pmod{5}$. Then, $\delta = 5\lambda$ for some $\lambda \in \mathbb{Z}$. Since $\lambda \equiv \pm 1 \pmod{5}$, then $\left(\frac{\lambda}{5}\right) = 1$, and thus, $\left(\frac{\lambda^{-1}}{5}\right) = 1$. Consequently, $\gcd(\lambda^{-1}, 5) = 1$. Now, by Proposition 1.1,

$$y^2 \equiv \lambda^{-1} \pmod{5^{e-1}} \tag{34}$$

has two solutions for e > 1, implying

$$\lambda y^2 - 1 = 5^{e-1}t\tag{35}$$

for some $t \in \mathbb{Z}$. From (35), we have

$$5\lambda y^2 \equiv 5 \pmod{5^e}$$

 $\delta y^2 \equiv 5 \pmod{5^e}$.

This implies $\delta y^2 \equiv 5 \pmod{5^e}$ has a solution. Therefore, by Lemma 3.5 and Remark 2.1, $N(\mathbb{Z}_{5^e}[\sqrt{\delta}]) > 0$. Now, we claim that $N(\mathbb{Z}_{5^e}[\sqrt{\delta}]) = 10$. Let $f(x) = x^2 - x - 1$. By Remark 2.1 and Lemma 3.5, note that if y_0 is a solution of $\delta y^2 \equiv 5 \pmod{5^e}$, then

$$2^{-1}(1+y_0\sqrt{\delta}) = 2^{-1} + 2^{-1}y_0\sqrt{\delta}$$

is a solution to

$$f(x + y\sqrt{\delta}) \equiv 0 \pmod{5^e}.$$
 (36)

Thus, solutions to Equation (36) are of the form $2^{-1} + 2^{-1}y\sqrt{\delta}$ where $\delta y^2 \equiv 5 \pmod{5^e}$ or $y^2 \equiv \lambda^{-1} \pmod{5^{e-1}}$. Now, let y_1 and y_2 be the two incongruent solutions of Equation (34) where $y_1 \neq y_2$. Set

$$r_i = 2^{-1} + (2^{-1}y_1 + 5^{e-1}(i-1))\sqrt{\delta}$$

and

$$s_i = 2^{-1} + (2^{-1}y_2 + 5^{e-1}(i-1))\sqrt{\delta}$$

where i=1,2,3,4,5. Observe that $f(r_i)=0$ and $f(s_i)=0$, and thus, r_1,r_2,r_3,r_4,r_5 , s_1,s_2,s_3,s_4 , and s_5 are ten incongruent solutions to Equation (36). Therefore, by Remark 2.1, $N(\mathbb{Z}_{5^e}[\sqrt{\delta}]) \geq 10$.

Assume t is another incongruent solution of Equation (36) that is, $t \neq r_i$ and $t \neq s_i$ for i=1,2,3,4,5. Then, there exists $c \in \mathbb{Z}_{5^e}$ such that $t=2^{-1}+2^{-1}c\sqrt{\delta}$ where $\delta c^2 \equiv 5 \pmod{5^e}$. Thus, we have

$$5\lambda c^2 \equiv 5 \pmod{5^e}$$
$$\lambda c^2 \equiv 1 \pmod{5^{e-1}} \tag{37}$$

However, it was initially stated that Equation (34) or (37) has exactly two incongruent solutions y_1 and y_2 in $\mathbb{Z}_{5^{e-1}}$, and thus, either $y_1 = c$ or $y_2 = c$. By Hensel's lemma, either $t = r_i$ or $t = s_i$, a contradiction of the assumption that t is another incongruent solution. Therefore, $N(\mathbb{Z}_{5^e}[\sqrt{\delta}]) = 10$. Furthermore, by Proposition 2.1, the ten power Fibonacci sequences in $\mathbb{Z}_{5^e}[\sqrt{\delta}]$ are

$$\{(2^{-1} + (2^{-1}y_1 + 5^{e-1}(i-1))\sqrt{\delta})^n : n \in \mathbb{N} \cup \{0\}\}$$

and

$$\{(2^{-1} + (2^{-1}y_2 + 5^{e-1}(i-1))\sqrt{\delta})^n : n \in \mathbb{N} \cup \{0\}\}\$$

where y_1 and y_2 are two incongruent roots of $\lambda y^2 \equiv 1 \pmod{5^{e-1}}$ and i = 1, 2, 3, 4, 5.

Conversely, by Remark 2.1, $N(\mathbb{Z}_{5^e}[\sqrt{\delta}])$ is the number of solutions to $(x+y\sqrt{\delta})^2 \equiv 5 \pmod{5^e}$. Assume $N(\mathbb{Z}_{5^e}[\sqrt{\delta}]) > 0$. By Lemma 3.5, the equation

$$\delta y^2 \equiv 5 \pmod{5^e} \tag{38}$$

must have a solution. Suppose $5 \nmid \delta$. Then, $5 \mid y$, that is, $y = 5y_0$ for some $y_0 \in \mathbb{Z}$. From Equation (38), we have

$$5\delta y_0^2 - 1 \equiv 0 \pmod{5^{e-1}}. (39)$$

Since $e - 1 \ge 1$, it follows that

$$-1 \equiv 0 \pmod{5}$$
,

which is a contradiction. Therefore, $5 \mid \delta$. Now, assume $5 \mid \delta$ where $\delta = 5\lambda$ for some $\lambda \in \mathbb{Z}$. From Equation (38), we have

$$5\lambda y^2 - 5 \equiv 0 \pmod{5^e}$$
$$\lambda y^2 - 1 \equiv 0 \pmod{5^{e-1}}.$$

Since $e - 1 \ge 1$, it follows that,

$$\lambda y^2 \equiv 1 \pmod{5}.\tag{40}$$

By inspection, only $\lambda \equiv \pm 1 \pmod{5}$ satisfies Equation (40). Therefore, $5 \mid \delta$ and $\frac{\delta}{5} = \lambda \equiv \pm 1 \pmod{5}$.

Now, we accomplished the objective of this study and proved the main theorem by applying Lemma 3.2.

Theorem 4.8. Let δ be a square-free integer. Then,

$$N(\mathbb{Z}_m[\sqrt{\delta}]) = \begin{cases} 2^k, & \text{if } m = p_1^{q_1} p_2^{q_2} \cdots p_k^{q_k} \text{ or } m = 5p_1^{q_1} p_2^{q_2} \cdots p_k^{q_k}, \\ & \text{where } p_i \neq 5 \text{ is an odd prime,} \\ & \text{and there is no } p_i \text{ such that } \left(\frac{5}{p_i}\right) = -1 \text{ and } \left(\frac{\delta}{p_i}\right) = 1 \\ & \text{or there is no } p_i \text{ such that } \left(\frac{5}{p_i}\right) = -1 \text{ and } \left(\frac{\delta}{p_i}\right) = 0, \\ & \text{for } i = 1, 2, \dots, k; k \geq 0. \end{cases}$$

$$N(\mathbb{Z}_m[\sqrt{\delta}]) = \begin{cases} 10 \cdot 2^k, & \text{if } m = 5^n p_1^{q_1} p_2^{q_2} \cdots p_k^{q_k}, \\ & \text{where } n > 1 \text{ and } p_i \neq 5 \text{ is an odd prime,} \\ & \text{whenever } 5 \mid \delta \text{ and } \frac{\delta}{5} = \lambda \equiv \pm 1 \pmod{5}, \\ & \text{and there is no } p_i \text{ such that } \left(\frac{5}{p_i}\right) = -1 \text{ and } \left(\frac{\delta}{p_i}\right) = 1 \\ & \text{or there is no } p_i \text{ such that } \left(\frac{5}{p_i}\right) = -1 \text{ and } \left(\frac{\delta}{p_i}\right) = 0, \\ & \text{for } i = 1, 2, \dots, k; k \geq 0. \end{cases}$$

5 Examples

Example 5.1. Count and determine all power Fibonacci sequences in $\mathbb{Z}_{605}[i]$ where $i = \sqrt{-1}$.

Solution. Note that $605 = 5 \cdot 11^2$ and $\left(\frac{5}{11}\right) = 1$. Applying Theorem 4.8, then $N(\mathbb{Z}_{605}[i]) = 2$. The two Power Fibonacci sequences in $\mathbb{Z}_{605}[i]$ are

$$\{1, 158, 159, 317, 476, \ldots\}$$
 and $\{1, 448, 449, 292, 136, \ldots\}$.

Example 5.2. Count and determine all power Fibonacci sequences in $\mathbb{Z}_{21}[i]$ where $i = \sqrt{-1}$.

Solution. Note that $21 = 3 \cdot 7$. Since $\left(\frac{5}{3}\right) = -1$, $\left(\frac{-1}{3}\right) = -1$, $\left(\frac{5}{7}\right) = -1$ and $\left(\frac{-1}{7}\right) = -1$, then $N(\mathbb{Z}_{21}[\sqrt{-1}]) = 2^2 = 4$. The power Fibonacci sequences in $\mathbb{Z}_{21}[i]$ are:

$$\{1, 11 + 2i, 12 + 2i, 2 + 4i, 14 + 6i, 16 + 10i, \ldots\},\$$

$$\{1, 11 + 5i, 12 + 5i, 2 + 10i, 14 + 15i, 16 + 4i, \ldots\},\$$

$$\{1, 11 + 16i, 12 + 16i, 2 + 11i, 14 + 6i, 16 + 17i, \ldots\},\$$

$$\{1, 11 + 19i, 12 + 19i, 2 + 17i, 14 + 15i, 16 + 11i, \ldots\}.$$

Example 5.3. Count and determine all power Fibonacci sequences in $\mathbb{Z}_{25}[\sqrt{5}]$.

Solution. Applying Theorem 4.8, then $N(\mathbb{Z}_{25}\sqrt{5}]) = 10 \cdot 2^0 = 10$. The ten power Fibonacci sequences in $\mathbb{Z}_{25}[\sqrt{5}]$ are the following:

```
 \left\{ 1, 13 + 2\sqrt{5}, 14 + 2\sqrt{5}, 2 + 4\sqrt{5}, 16 + 6\sqrt{5}, 18 + 10\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 3\sqrt{5}, 14 + 3\sqrt{5}, 2 + 6\sqrt{5}, 16 + 9\sqrt{5}, 18 + 15\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 7\sqrt{5}, 14 + 7\sqrt{5}, 2 + 14\sqrt{5}, 16 + 21\sqrt{5}, 18 + 10\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 8\sqrt{5}, 14 + 8\sqrt{5}, 2 + 16\sqrt{5}, 16 + 24\sqrt{5}, 18 + 15\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 12\sqrt{5}, 14 + 12\sqrt{5}, 2 + 24\sqrt{5}, 16 + 11\sqrt{5}, 18 + 10\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 13\sqrt{5}, 14 + 13\sqrt{5}, 2 + \sqrt{5}, 16 + 14\sqrt{5}, 18 + 15\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 17\sqrt{5}, 14 + 17\sqrt{5}, 2 + 9\sqrt{5}, 16 + 4\sqrt{5}, 18 + 10\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 22\sqrt{5}, 14 + 22\sqrt{5}, 2 + 11\sqrt{5}, 16 + 4\sqrt{5}, 18 + 15\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 23\sqrt{5}, 14 + 23\sqrt{5}, 2 + 21\sqrt{5}, 16 + 19\sqrt{5}, 18 + 15\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 23\sqrt{5}, 14 + 23\sqrt{5}, 2 + 21\sqrt{5}, 16 + 19\sqrt{5}, 18 + 15\sqrt{5}, \dots \right\}, \\ \left\{ 1, 13 + 23\sqrt{5}, 14 + 23\sqrt{5}, 2 + 21\sqrt{5}, 16 + 19\sqrt{5}, 18 + 15\sqrt{5}, \dots \right\}.
```

References

- [1] Hull, R. (1932). The numbers of solutions of congruences involving only *k*th powers. *Transactions of the American Mathematical Society*, 34(4), 908–937.
- [2] Ide, J., & Renault, M. S. (2012). Power Fibonacci sequences. *The Fibonacci Quarterly*, 50(2), 175–179.